文档库 最新最全的文档下载
当前位置:文档库 › 管海燕-2009-面向对象的航空影像与LiDAR数据融合分类

管海燕-2009-面向对象的航空影像与LiDAR数据融合分类

管海燕-2009-面向对象的航空影像与LiDAR数据融合分类
管海燕-2009-面向对象的航空影像与LiDAR数据融合分类

第34卷第7期2009年7月武汉大学学报?信息科学版

G eomatics and Information Science of Wuhan University Vol.34No.7

J uly 2009

收稿日期:2009205219。

项目来源:国家863计划资助项目(2007AA12Z154,2006AA12Z136);国家测绘局06基础资助测绘资助项目(46999071110121)。

文章编号:167128860(2009)0720830204文献标志码:A

面向对象的航空影像与LiDAR 数据融合分类

管海燕1 邓 非2 张剑清1,3 钟 良1

(1 武汉大学遥感信息工程学院,武汉市珞喻路129号,430079)

(2 武汉大学测绘学院,武汉市珞喻路129号,430079)

(3 武汉大学测绘遥感信息工程国家重点实验室,武汉市珞喻路129号,430079)

摘 要:针对机载激光雷达(light detection and ranging ,LiDAR )数据与航空彩色影像的数据特点,提出了一种面向对象的多源数据融合分类方法。该方法根据影像光谱特性将航空影像分割为若干个同质区域,通过综合考察每个区域内LiDAR 数据的滤波结果、空间离散度、高差值和航空影像光谱信息,判断各区域归属为哪一类。实验表明,该方法能够有效地分离房屋、树木和裸露地3种基本地物。关键词:机载激光雷达;航空影像;面向对象;融合;分类中图法分类号:P237.4

尽管LiDAR 数据能够直接获得目标的空间三维点云,但是它却难以直接获得物体表面的语义信

息(材质和结构等)[1]。航空遥感影像提供了丰富的空间信息与纹理特征等大量的语义信息,但获取的主要是建筑物的顶面信息,漏掉了建筑物立面的大量几何和纹理数据。针对不同传感器数据源的优点和局限性,将多源数据融合以弥补各单个数据源的局限性是一个非常重要的研究方向[225]。

本文利用LiDA R 和航空影像两类传感器数据的特点,采用融合多源数据的分类策略进行面向对象的地物分类。首先,分别从LiDAR 和航空影像两个数据源中获取用于分类的线索;然后,分割LiDA R 高程图与航空影像进行波段融合后的图像,将分割后同质区域块作为一个分类对象;最后,根据训练样本获取分类规则,对每个分类对象综合考察LiDAR 和航空影像提供的分类线索,判断其归属。

1 面向对象的航空影像和LiDAR

分类

1.1 数据集

实验采用加拿大Optech 公司提供的数据:

①灰度表示的距离图像(见图1),图中像素灰度值与高程值呈正比,图中像素越亮表示高程值越大;②纠正后的真彩色正射影像数据,影像地面分辨率为0.5像素(见图2)

 

图1 激光扫描数据

Fig.1 Laser Scanning Data

图2 真彩色正射影像

Fig.2 True 2Color Ortho 2image

1.2 分类线索

线索1:对激光点云的末次回波进行滤波处理,初步分类为地面点与地物点。

线索2:计算激光点云的首末次高程差信息,作为判断是否为树木的标准之一。

线索3:计算激光点云的空间分散度,也作为判断树木的标准之一。

线索4:对彩色航空影像提取直线,获取直线特征。建筑物包含很多直线信息,因此直线特征

 第34卷第7期管海燕等:面向对象的航空影像与LiDAR 数据融合分类

可作为判断建筑物的线索之一。直线提取首先采用Canny 算子提取边缘,然后边缘细化、跟踪和直线拟合(见图3)。1.2.1 机载激光点云滤波

1)根据给定尺寸划分正方形格网,从每个格网单元中选取高程最低的激光点,作为地面种子点加入到不规则三角网(TIN )中,构成初始D TM 。一般格网尺寸应该大于激光点云数据中

最大建筑物大小,但是最大建筑物的尺寸大小很多时候不能正确估计。在这种情况下,为了降低最大建筑物大小对种子点选取的影响,对所选出来的种子点拟合一个参考平面,根据区域的地形坡度阈值将残差大的点从种子点中去除。

2)遍历TIN ,计算落在三角形中的激光点到三角形的距离d ,如果满足给定的高程差阈值,则认为该点是地面点。将TIN 中所有的三角形遍历结束后,将获得的地面点重新加入TIN 。重复迭代执行,直至满足设定的最少地面点或者迭代最大次数,迭代结束。激光点云末次回波的滤波结果如图4所示,图中白色表示地物点,黑色表示地面点。1.2.2 机载激光点云高程差计算

很多LiDAR 数据都能够提供多次回波信息。如果是植被区域,激光点的首次回波和末次回波的高度差就相当大,而如果对应区域是道路或者是屋顶,则两次获得的高程差会很小甚至接近于零。激光射到建筑物边缘也能产生两次回波信息,首末次回波高差信息见图5,图中像素值与高差成正比,像素越亮表示高差值越大。图5中夹在植被区域内有一些相对孤立的高差值很小的区域,主要是由于激光光斑很小,同一激光束完全射到某片树叶内,产生的高程几乎相等;还有一些非常浓密的树丛,激光无法穿透,也出现一次回波现象,如图5中所示椭圆框中的树丛。1.2.3 机载激光点云离散度计算

首先构建激光点云的2维K 2D 树,搜索激光点云中每个点邻域内的全部相邻点,建立该激光

点在空间上的3×3离散矩阵:

S j =

n

i =1

(v T i v i )(j =1,2,…,M )

(1)

式中,S j 为第j 个点的3×3离散矩阵;n 为第j 个点邻域内相邻点的数目;v i 为第j 个点的第i 个相邻点的空间坐标,v i =[x y i z i ];v T i 为v i 的转置矩阵;M 为激光点云点数。

将离散矩阵S j 作奇异值分解,可获取该点矩阵的3个特征值,并将特征值从小到大排列。设定3个类别:①两个特征值远大于另外一个特征值,则该点被标记为平面类(图5中灰色像素点);

②一个特征值远大于另外两个特征值,则该点被标记为边缘类(图5中黑色像素点);③3个特征值都足够大,则标记为空间离散类(图5中白色像素点)。实验数据中如果房屋顶部形状多变,则会在屋顶处出现一些离散点,一般平顶房屋和地面都表现为灰色的平面点,地面上小物体(如小汽车等)也会造少量离散点。比较稀疏的树木会表现出很多边缘点,而较为浓密的树木包含很多的离散点,因此,可将离散点和边缘点作为判断树木的标准之一。1.3 航空影像分割

影像分割采用金字塔影像数据结构的分裂与归并算法,分裂与归并方法在金字塔图像表示上进行,初始区域是方形的且与一定的金字塔层元素对应[6]。

首先,定义一个划分为区域的初始分割、一致性准则和一个金字塔数据结构。其次,如果金字塔数据结构中的任意一个区域不是一致的,就将其分裂为4个子区域;如果具有相同父节点的4个区域符合一致性准则,则合并它们。如果没有区域可以分裂或合并,则转到下一步。然后,如果任意两个邻接区域符合一致性准则,合并它们(即使它们在金字塔的不同层或没有相同的父节点)。最后,如果必须删除小尺寸区域,则将小区域与其最相似的邻接区域合并。图7为图2采用分裂合并金字塔分割的结果

图3 直线提取图

Fig.3 Line Segments 图4 滤波结果Fig.4 Result of Filtering 图5 首末次回波高程差Fig.5 Difference Height Between First Return and Last Return

图6 点云特征值

Fig.6 Point

Eigen Image

1

38

武汉大学学报?信息科学版2009年7月

为提高分割精度,可以将点云距离影像(图1(a))与真彩色航空影像(图2)利用Brovey变换融合法融合。图8为融合后进行直方图拉伸后的结果示意图。融合后的影像包含了LiDAR数据的高程信息,可以将树木、建筑物与地面等清晰区别出,简化影像分割的难度,提高影像分割的正确性。

1.4 面向对象的多源特征分类

将LiDA R数据与航空真彩色影像融合后,影像分割出的每个区域块当作待分类对象,综合考察每个对象内所含的滤波结果、高程差、离散矩阵特征值以及直线段4种信息。如果这个对象满足划分为某一类的准则,则将这个区域内所有像素划分为此类中。将区域看作对象,需要将区域内4种信息量化,定义4个统计量F1、F2、F3、F4。F1=区域内地面点的个数/区域内点的总个数; F2=高差大于设定阈值点的个数/区域内点的总个数;F3=区域内含有空间离散特征值点的个数/区域内点的总个数;F4=直线段个数。因此,可以建立人工决策树。将需要分类的树木、建筑物和裸露地3个类别作为假设,F1、F2、F3、F44种信息作为变量,确定F1、F2、F3、F4有关的具体条件。通过训练样本获取这些判断的具体条件,具体分类规则如表1所示。

根据表1创建的假设、规则、条件得出分类的结果,如图9所示,图中灰色为树木,黑色为建筑物,浅灰色为地面,图10为分类结果的三维点云显示。

表1 多源特征分类规则

Tab.1 Classification on Multi2sources Features of Rules 假设变量(规则)条件

树木高程差较大的点所占百分比F2>80%

离散特征值的点所占百分比F3>60%裸露地面地面点所占百分比F1>50%

高程差较大的点所占百分比F2<10%建筑物地面点所占百分比F1<10%

高程差较大的点所占百分比F2<20%

直线段个数F4≥2

2 实验精度分析

为了准确地评价分类精度(或误差),有必要将分类结果与参考验证信息系统对比。因为场景的复杂性,特别是树木的光谱不一致以及离散等限制,人工分类精度不高,但建筑物能够容易地分类出。为了避免人工分类误差的影响,本文通过建筑物分类的精度比较来评价分类精度,图11是人工分类出的建筑物的三维点云图。从建筑物的个数和建筑物所含激光点个数两个方面进行精度分析。人工分类出建筑物为38座,基于面向对象的融合分类方法获得35座建筑物,检测出建筑物的比例为92.11%。分类误差包含正确类别的漏分误差和所划归的错误类别的多分误差[7]。漏分误差指的是将建筑物点错分为非建筑物点,多分误差是指将其他非建筑物点分类为建筑物点。建筑物分类误差见表2。

图7 R G B影

像分割

Fig.7 Aerial Image Segmentation

图8 点云

与R G B影像融合

Fig.8 Fusion of

Aerial Image And

Point Cloud Image

 

图9 分类

结果

Fig.9 Classific2

ation Result

 

图10 分类结

果三维显示

Fig.10 Point Classifi2

cation Result

 

图11 建筑物人工

分类参考信息

Fig.11 Building Refe2

rence Data

表2 建筑物分类误差

Tab.2 Classification Error of Buildings

参考建筑物点

面向对象融合分类的建筑物

建筑物点实际建筑物点漏分点漏分误差多分点多分误差

24137224102190422339.25%506 2.10% 238

 第34卷第7期管海燕等:面向对象的航空影像与LiDAR数据融合分类

3 结 语

本文通过面向对象的方法分割航空彩色影像,把分割后的同质区域作为待分类对象,建立起多源特征的分类系统。每个对象根据LiDA R数据的滤波结果、空间离散度、高差值与彩色影像的光谱特性确认其归属。从分类误差的分析来看,这种分类方法切实可行。

参 考 文 献

[1] Baltsavias E P.A Comparison Between Photogram2

metry and Laser Scanning[J].ISPRS Journal of

Photogrammetry and Remote Sensing,1999,54

(1):83294

[2] Dowman I.Integration of LiDAR and IFSAR for

Mapping[J].International Archives of Photogram2

metry,Remote Sensing and Spatial Information Sci2

ences,2004,34(B2):902100

[3] Sohn G,Dowman I.Data Fusion of High2Resolu2

tion Satellite Imagery and LiDAR Data for Automat2

ic Building Extraction[J].ISPRS Journal of Photo2

grammetry&Remote Sensing,2007,62:43263 [4] Schwalbe E.3D Building Model G eneration from

Airborne Laser Scanner Data Using2D GIS Data

and Orthogonal Point Cloud Projections[C].ISPRS

W G III/3,III/4,V/3Workshop,Enschede,Neth2

erlands,2005

[5] Csanyi N,Toth https://www.wendangku.net/doc/5510560292.html,bining LiDAR Data with

Stereoscopically Extracted Surfaces:Feature Level

Fusion[C].ISPRS Joint Workshop of ISPRS W G I/

3and II/2,Portland,Oregon,USA,2003

[6] Sonka M,Hlavac V,Boyle R.Image Processing,

Analysis,and Machine vision[M].USA:Interna2

tional Thomson Publishing,1998

[7] Jensen J R.Introductory Digital Image Processing:

a Remote Sensing Perspective(Third Edition)

[M].London:Prentice Hall,2005

第一作者简介:管海燕,博士生。主要研究方向为计算机视觉、利用激光雷达与影像进行城市三维重建。

E2mail:t hetis.guan@https://www.wendangku.net/doc/5510560292.html,

Object2B ased Fusion and Classif ication of Airborne Laser

Scanning Data and Aerial Images

GUA N H ai y an1 D EN G Fei2 Z H A N G J i anqi ng1,3 Z HO N G L i ang1 (1 School of Remote Sensing and Information Engineering,Wuhan University,129Luoyu Road,Wuhan430079,China) (2 School of Geodesy and Geomatics,Wuhan University,129Luoyu Road,Wuhan430079,China)

(3 State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,

Wuhan University,129Luoyu Road,Wuhan430079,China)

Abstract:We propose a new object2based f using and classification approach of combination of airborne laser scanning data and aerial images.Firstly,a image segmentation,based on spli2 ting and merging wit h pyramid data,can be p rocessed o n aerial image to get a set of disjoint regio ns.Then,to every region,filtering result s,height difference information and sparse character of airborne laser scanning data and line segment s,which is ext racted from aerial image,can be investigated to classify t his region to a kind class.Experiment result s show t hat t his met hod can divide point clouds to t hree f undamental object s efficiently and reliably.

K ey w ords:LiDAR;o bject2based;f usion;classification;high2resolution image

About the f irst author:G UAN Haiyan,Ph.D candidate,majors in compute vision and3D city construction with LiDAR and Images.

E2mail:thetis.guan@https://www.wendangku.net/doc/5510560292.html,

338

影像信息提取之——面向对象特征提取

同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本专题以ENVI中的面向对象的特征提取FX工具为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ●面向对象分类技术概述 ● ENVI FX简介 ● ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:对象构建和对象的分类。 影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于规则(知识)分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等对象属性信息。基于规则(知识)分类也是根据影像对象的属性和阈值来设定规则进行分类。 表1为三大类分类方法的一个大概的对比。

遥感图像几种分类方法的比较

摘要 遥感图像分类一直是遥感研究领域的重要内容,如何解决多类别的图像的分类识别并满足一定的精度,是遥感图像研究中的一个关键问题,具有十分重要的意义。 遥感图像的计算机分类是通过计算机对遥感图像像素进行数值处理,达到自动分类识别地物的目的。遥感图像分类主要有两类分类方法:一种是非监督分类方法,另一种是监督分类方法。非监督分类方法是一个聚类过程,而监督分类则是一个学习和训练的过程,需要一定的先验知识。非监督分类由十不能确定类别属性,因此直接利用的价值很小,研究应用也越来越少。而且监督分类随着新技术新方法的不断发展,分类方法也是层出不穷。从传统的基十贝叶斯的最大似然分类方法到现在普遍研究使用的决策树分类和人工神经网络分类方法,虽然这些方法很大程度改善了分类效果,提高了分类精度,增加了遥感的应用能力。但是不同的方法有其不同优缺点,分类效果也受很多因素的影响。 本文在对国内外遥感图像分类方法研究的进展进行充分分析的基础上,应用最大似然分类法、决策树分类法对TM影像遥感图像进行了分类处理。在对分类实现中,首先对分类过程中必不可少的并影响分类效果的步骤也进行了详细地研究,分别是分类样本和分类特征;然后详细介绍两种方法的分类实验;最后分别分析分类结果图,采用混淆矩阵和kappa系数对两种方法的分类结果进行精度评价。 关键词:TM遥感影像,图像分类,最大似然法,决策树 题目:遥感图像几种分类方法的比较...................................... 错误!未定义书签。摘要.. (1) 第一章绪论 (3)

1.1遥感图像分类的实际应用及其意义 (4) 1.2我国遥感图像分类技术现状 (5) 1.3遥感图像应用于测量中的优势及存在的问题 (6) 1.3.1遥感影像在信息更新方面的优越性 (6) 1.3.2遥感影像在提取信息精度方面存在的问题 (6) 1.4研究内容及研究方法 (8) 1.4.1研究内容 (8) 1.4.2 研究方法 (8) 1.5 论文结构 (9) 第二章遥感图像的分类 (9) 2.1 监督分类 (9) 2.1.1 监督分类的步骤 (9) 2.1.2 最大似然法 (11) 2.1.3 平行多面体分类方法 (12) 2.1.4 最小距离分类方法 (13) 2.1.5监督分类的特点 (13) 2.2 非监督分类 (14) 2.2.1 K-means算法 (14) K-均值分类法也称为 (14) 2.2.2 ISODATA分类方法 (15) 2.2.3非监督分类的特点 (17) 2.4遥感图像分类新方法 (17) 2.4.1基于决策树的分类方法 (17) 2.4.2 人工神经网络方法 (19) 2.4.3 支撑向量机 (20) 2.4.4 专家系统知识 (21) 2.5 精度评估 (22) 第三章研究区典型地物类型样本的确定 (24) 3.1 样本确定的原则和方法 (24) 3.2 研究区地物类型的确定 (24) 3.3样本区提取方案 (25) 3.4 各个地物类型的样本的选取方法 (25) 3.4.1 建立目视解译标志 (25) 3.4.2 地面实地调查采集 (26) 3.4.3 利用ENVI遥感图像处理软件选取样本点 (26) 第四章遥感图像分类实验研究 (26) 4.1遥感影像适用性的判定 (26) 4.2分类前的预处理 (28) 4.2.1空间滤波的处理 (28) 4.2.2 频域滤波处理 (28) 4.3利用ENVI软件对影像按照不同的分类方法进行监督分类 (30) 4.3.1监督分类 (30) 4.3.2 决策树 (33) 4.4分类后的处理 (35)

试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。

遥感原理与应用 1.试述遥感图像分类的方法,并简单分析各种分类方法的优缺点。答:监督分类:1、最大似然法;2、平行多面体分类法:这种方法比较简单,计算速度比较快。主要问题 是按照各个波段的均值为标准差划分的平行多面体与实际地物类别数据点分布的点群形态不一致,也就造成俩类的互相重叠,混淆不清的情况;3、最小距离分类法:原理简单,分类精度不高,但计算速度快,它可以在快速浏览分类概况中使用。通常使用马氏距离、欧氏距离、计程距离这三种判别函数。主要优点:可充分利用分类地区的先验知识,预先确定分类的类别;可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度(避免分类中的严重错误);可避免非监督分类中对光谱集群组的重新归类。主要缺点:人为主观因素较强;训练样本的选取和评估需花费较多的人力、时间;只能识别训练样本中所定义的类别,对于因训练者不知或因数量太少未被定义的类别,监督分类不能识别,从而影响分结果(对土地覆盖类型复杂的地区需特别注意)。 非监督分类:1、ISODATA; 2、K-Mean:这种方法的结果受到所选聚类中心的数目和其初始位置以及模式分布的几何性质和读入次序等因素的影响,并且在迭代的过程中又没有调整类别数的措施,因此不同的初始分类可能会得到不同的分类结果,这种分类方法的缺点。可以通过其它的简单的聚类中心试探方法来找出初始中心,提高分类结果;主要优点:无需对分类区域有广泛地了解,仅需一定的知识来解释分类出的集群组;人为误差的机会减少,需输入的初始参数较少(往往仅需给出所要分出的集群数量、计算迭代次数、分类误差的阈值等);可以形成范围很小但具有独特光谱特征的集群,所分的类别比监督分类的类别更均质;独特的、覆盖量小的类别均能够被识别。主要缺点:对其结果需进行大量分析及后处理,才能得到可靠分类结果;分类出的集群与地类间,或对应、或不对应,加上普遍存在的“同物异谱”及“异物同谱”现象,使集群组与类别的匹配难度大;因各类别光谱特征随时间、地形等变化,则不同图像间的光谱集群组无法保持其连续性,难以对比。

面向对象分类之图像分割

传统的基于像素的遥感影像处理方法都是基于遥感影像光谱信息极其丰富,地物间光谱差异较为明显的基础上进行的。对于只含有较少波段的高分辨率遥感影像,传统的分类方法,就会造成分类精度降低,空间数据的大量冗余,并且其分类结果常常是椒盐图像,不利于进行空间分析。为解决这一传统难题,模糊分类技术应运而生。模糊分类是一种图像分类技术,它是把任意范围的特征值转换为0 到1 之间的模糊值,这个模糊值表明了隶属于一个指定类的程度。通过把特征值翻译为模糊值,即使对于不同的范围和维数的特征值组合,模糊分类能够标准化特征值。模糊分类也提供了一个清晰的和可调整的特征描述。 对于影像分类来说,基于像元的信息提取是根据地表一个像元范围内辐射平均值对每一个像元进行分类,这种分类原理使得高分辨率数据或具有明显纹理特征的数据中的单一像元没有很大的价值。影像中地物类别特征不仅由光谱信息来刻画的,很多情况下(高分辨率或纹理影像数据)通过纹理特征来表示。此外背景信息在影像分析中很重要,举例来说,城市绿地与某些湿地在光谱信息上十分相似,在面向对象的影像分析中只要 明确城市绿地的背景为城市地区,就可以轻松地区分绿地与湿地,而在基于像元的分类中这种背景信息几乎不可利用。面向对象的影像分析技术是在空间信息技术长期发展的过程中产生的,在遥感影像分析中具有巨大的潜力,要建立与现实世界真正相匹配的地表模型,面向对象的方法是目前为止较为理想的方法。 面向对象的处理方法中最重要的一部分是图像分割。 图像分割是一种重要的图像技术,在理论研究和实际应用中都得到了人们的广泛重视。图像分割的方法和种类有很多,有些分割运算可直接应用于任何图像,而另一些只能适用于特殊类别的图像。有些算法需要先对图像进行粗分割,因为他们需要从图像中提取出来的信息。例如,可以对图像的灰度级设置门限的方法分割。值得提出的是,没有唯一的标准的分割方法。许多不同种类的图像或景物都可作为待分割的图像数据,不同类型的图像,已经有相对应的分割方法对其分割,同时,某些分割方法也只是适合于某些特殊类型的图像分割。分割结果的好坏需要根据具体的场合及要求衡量。图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。 为后续工作有效进行而将图像划分为若干个有意义的区域的技术称为图像分割(Image Segmentation),早期的图像分割方法可以分为两大类。一类是边界方法,这种方法假设图像分割结果的某个子区域在原来图像中一定会有边缘存在;一类是区域方法,这种方法假设图像分割结果的某个子区域一定会有相同的性质,而不同区域的像素则没有共同的性质。这两种方法都有优点和缺点,有的学者考虑把两者结合起来进行研究。现在,随着计算机处理能力的提高,很多方法不断涌现,如基于彩色分量分割、纹理图像分割。所使用的数学工具和分析手段也是不断的扩展,从时域信号到频域信号处理,小波变换等等。 目前,有许多的图像分割方法,从分割操作策略上讲,可以分为基于区域生成的分割方法,基于边界检测的分割方法和区域生成与边界检测的混合方法.图像分割主要包括4种技术:并行边界分割技术、串行边界分割技术、并行区域分割技术和串行区域分割技术。

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

面向对象影像分析简要介绍--以eCognition为例

面向对象影像分析简要介绍 ——以eCognition软件为例 前言 遥感影像的光谱,空间,时间分辨率不断提高,为开展各类遥感应用提供各种数据。但在遥感数据获取能力增强的同时,也使得丰富的影像数据得不到充分利用和挖掘,从而出现“数据丰富,信息贫乏”的困境。如何快速自动准确地从遥感影像中提取出能满足某种应用的专题信息,是我们亟待要解决的问题。 随着面向对象思想的风行以及面向对象影像分析技术的不断成熟,使得我们从高分影像中提取专题信息变得更加便捷。尤其是一些商业的面向对象影像分析软件的出现,如eCognition,Feature Analysis。eCognition软件的口号就是“Exploring the soul of imagery(发掘影像最大潜能)”。本论文旨在从eCognition软件了解面向对象影像分析的相关思想和技术。希望通过探究eCognition软件背后的思想以及技术原理,如面向对象,多尺度分割,模糊分类等,为高分辨率遥感影像的特征描述以及建模带来一些启发。 1.面向对象 面向对象的思想是针对具体应用,将问题处理对象(逻辑概念上或物理概念上)划分为合适粒度(即对象)来进行处理,并封装其相应的属性以及行为,同时为了更好的复用以及扩展,维护更新,使其具有继承,多态,聚合等特性。 1.1对象 对象是指状态和行为的集合体,在物理实现上表现为数据和操作的集合,逻辑上表现为有职能的实体。它是用来描述现实世界中的物理概念或逻辑概念上的物体。比如人就是一个对象,它有性别,年龄,姓名等属性,人有吃饭睡觉等行为。武汉大学也是一个对象,它有名称,学院机构,学校历史等属性,也有教学科研等行为。不同的是人是物理概念上的对象,武汉大学是逻辑概念上的对象。 1.2抽象性,封装性,继承性 抽象是抽取出我们所感兴趣的部分,用这些少量特征来描述一个事物。封装性是对事物的数据和操作进行封装,即对其状态和行为进行封装。继承特性是对事物属性和行为的继承。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

遥感专题讲座——影像信息提取(四、面向对象特征提取)

面向对象的影像分类技术 “同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。 本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。 本专题包括以下内容: ??●面向对象分类技术概述 ??●ENVI FX简介 ??●ENVI FX操作说明 1、面向对象分类技术概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:影像对象构建和对象的分类。

影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。 影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。基于知识分类也是根据影像对象的熟悉来设定规则进行分类。 目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。 表1为三大类分类方法的一个大概的对比。 类型基本原理影像的最小单元适用数据源缺陷 传统基于光谱的分类方 法地物的光谱信息 特征 单个的影像像元 中低分辨率多光谱 和高光谱影像 丰富的空间信息利 用率几乎为零 基于专家知识决策树根据光谱特征、空 间关系和其他上 下文关系归类像 元 单个的影像像元多源数据知识获取比较复杂 面向对象的分类方法几何信息、结构信 息以及光谱信息 一个个影像对象 中高分辨率多光谱 和全色影像 速度比较慢

遥感图像分类方法综述

遥感图像分类方法综述 刘佳馨 摘要:伴随着科学技术在我们的生活中不断发展,遥感技术便应运而生,而遥感图像因成为遥感技术分析中的不可缺少的依据,变得备受关注。在本文中,以遥感图像分类方法为研究中心,从传统分类方法、近代分类方法两个方面对分类方法进行了介绍,并以此为基础对分类思想及后续处理进行说明,进而展望了遥感图像分类的研究趋势和发展前景。 关键词:遥感图像;图像分类;分类方法 1 引言 遥感,作为采集地球数据及其变化信息的重要技术手段,在世界范围内的各个国家以及我国的许多部门、科研单位和公司等,例如地质、水体、植被、土壤等多个方面,得到广泛的应用,尤其在监视观测天气状况、探测自然灾害、环境污染甚至军事目标等方面有着广泛的应用前景。伴随研究的深入,获取遥感数据的方式逐渐具有可利用方法多、探测范围广、获取速度快、周期短、使用时受限条件少、获取信息量大等特点。遥感图像的分类就是对遥感图像上关于地球表面及其环境的信息进行识别后分类,来识别图像信息中所对应的实际地物,从而进一步达到提取所需地物信息的目的。 2 遥感图像分类基本原理 遥感是一种应用探测仪器,在不与探测目标接触的情况下,从远处把目标的电磁波特性记录下来,并且通过各种方法的分析,揭示出物体的特征性质及其变化的综合性探测技术。图像分类的目的在于将图像中每个像元根据其不同波段的光谱亮度、空间结构特征或其他信息,按照某种规则或算法划分为不同的类别。而遥感图像分类则是利用计算机技术来模拟人类的识别功能,对地球表面及其环境在遥感图像上的信息进行属性的自动判别和分类,以达到提取所需地物信息的目的。 3 遥感图像传统分类方法 遥感图像传统分类方法是目前应用较多,并且发展较为成熟的分类方法。从分类前是否需要获得训练样区类别这一角度进行划分,可将遥感图像传统分类方法分为两大类,即监督分类(supervised classification)和非监督分类(Unsupervised

面向对象影像分类(样本模式)

面向对象影像分类(基于样本) 1、进行尺度为100的影像分割。 2、在Class Hierarchy中点右键,选择Insert class,依次建立四个类:房屋、道路、湖泊、草地。 3、编辑特征空间:选择菜单“Classification -> Nearest Neighbor -> Edit Standard NN Feature Space”,双击左边的特征列表中的特征,选择以下一些特征,如下图:

4、应用分类规则:选择菜单“Classification -> Nearest Neighbor -> Apply Standard NN to Classes”把它插入到类描述中,选择左边框中的类,单击,即可将该类加入到右边的框中,如下图: 点击OK后,在Class Hierarchy中双击一个类,如草地,可以看出分类特征已经添加到

该类中,如下图: 5、选择样本:选择菜单View -> toolbar -> sample,打开样本导航器,如下图: 选择按钮,打开样本编辑器,如下图:

6、选择类的样本:从样本编辑器中的Active Class中选择需要选择样本的类,如草地,在分割图上点击样例对象,当你单击一个类时,它的特征值在每个列出的特征被以高亮度的红色指示显示,这样可以使您对比不同对象它们的相关特征值,如下图:

该类的样本,选择后样本编辑器会成为如下的状态: 依次为所有的类选择足够的样本。 7、执行分类:在Process Tree中选择Append New,Algorithm中选择Basic Classification -> Classification,在Algorithm Parameters的Active Classes中选择“草地、道路、房屋、湖泊”, 设置如下图:

遥感影像分类实验报告

面向对象分类实验报告 姓名: 学号: 指导老师: 地球科学与环境工程学院

一、实验目的 面向对象法模拟人类大脑认知过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。首先我们要用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。 二、实验意义 1、使用eCognition进行面向对象的影像分类的流程; 2、体会面向对象思想的内涵,学会将大脑认知过程转变为机器语言; 三、实验内容 3.1、影像的预处理 利用ERDAS软件将所给的全色影像和多光谱遥感影像进行融合,达到既满足高空间分辨率,又保留光谱信息。Image interperter-> spatial enhancement-> resolution merge.输入融合前的两幅影像,完成影像的预处理过程。 图 1 图像融合步骤

图 2 融合后的图像 3.2、使用eCongition 创建工程 a、使用规则集模式创建工程 图 3 模式选择 b、file->new projection ,打开Create Project和Import Image Layers两个

对话框,将上面的实验数据导入。(注意,数据以及工程文件保存路径不要有中文) 图 4 导入数据 c、选择数据修改波段名称,并设置Nodata选项。

遥感的面向对象分类法

遥感的面向对象分类法 传统的基于像素的遥感影像处理方法都是基于遥感影像光谱信息极其丰富,地物间光谱差异较为明显的基础上进行的。对于只含有较少波段的高分辨率遥感影像,传统的分类方法,就会造成分类精度降低,空间数据的大量冗余,并且其分类结果常常是椒盐图像,不利于进行空间分析。为解决这一传统难题,模糊分类技术应运而生。模糊分类是一种图像分类技术,它是把任意范围的特征值转换为 0 到 1 之间的模糊值,这个模糊值表明了隶属于一个指定类的程度。通过把特征值翻译为模糊值,即使对于不同的范围和维数的特征值组合,模糊分类能够标准化特征值。模糊分类也提供了一个清晰的和可调整的特征描述。对于影像分类来说,基于像元的信息提取是根据地表一个像元范围内辐射平均值对每一个像元进行分类,这种分类原理使得高分辨率数据或具有明显纹理特征的数据中的单一像元没有很大的价值。影像中地物类别特征不仅由光谱信息来刻画的,很多情况下(高分辨率或纹理影像数据)通过纹理特征来表示。此外背景信息在影像分析中很重要,举例来说,城市绿地与某些湿地在光谱信息上十分相似,在面向对象的影像分析中只要明确城市绿地的背景为城市地区,就可以轻松地区分绿地与湿地,而在基于像元的分类中这种背景信息几乎不可利用。面向对象的影像分析技术是在空间信息技术长期发展的过程中产生的,在遥感影像分析中具有巨大的潜力,要建立与现实世界真正相匹配的地表模型,面向对象的方法是目前为止较为理想的方法。面向对象的处理方法中最重要的一部分是图像分割。 随着对地观测任务逐渐精细化,高分辨率遥感卫星影像的应用越来越广泛。这对遥感影像分类方法提出了挑战。已有的研究表明:基于像元的高分辨率遥感影像分类存在明显的限制。近年来,面向对象影像分析(Object-Based ImageAnalysis,OBIA)在高分辨率遥感影像处理中渐露头角,被认为是遥感与地理信息科学发展的重要趋势。本文针对面向对象影像分类(Object-Based Image Classification,OBIC)方法中的若干问题开展研究。主要研究内容与结论包括: 1)模糊遥感影像分割算法研究 针对当前影像分割算法应用于模糊影像时产生过渡区对象的问题,设计了过渡区对象识别方法。对简单地物模糊影像和复杂地物模糊影像进行实验发现:提出的算法能够有效识别过渡区对象。 2)代表地物最佳分割尺度研究 针对多参考对象情况下的地物最佳分割尺度选择问题,设计了基于对象内部同质性加权

监督分类和面向对象分类流程

监督分类和面向对象分类流程 高分一号城市绿地现状调查与分析实现教程将介绍基于高分一号影像数据的城市绿地信息提取的实现步骤,下图是主要的操作流程图一首先对高分影像进行预处理,其次使用监督分类法和面向对象分类法对城市绿地进行分类,然后对分类出来的影像进行矢量化处理,最后另其在arcGIS中进行统计分析,得出武汉市城市绿地的现状,下面是具体步骤。第一章数据预处理因为处理数据是高分一号影像,处理软件为,因为以下版本不能对高分一号直接进行处理,所以需要安装r6补丁,将下面两个文件直接粘贴到软件所在位置,然后就可以打开高分影像了图二图三为了加快数据处理的速度,是选择先进行辐射定标然后将图像裁剪在进行后续的操作,预处理流程如下图:

图四辐射校正分为辐射定标和大气校正打开数据:ENVI-Open As-CRESDA-GF-1,选择处理的影像,打开XML后缀文件;辐射定标:选择Toolbox->Radiometric Correction-> Radiometric Calibration,选择待处理的高分数据弹出Radiometric Calibration对话框,进行如图设置。对于多光谱影像,点击Apply FLAASH Setting 设置成默认值;如果是对全色影像进行辐射定标,那么Calibration则是Reflectance,Out Put Type 为UInt,Scale Factor为1000,如下图:高分一号多光谱影像参数设置高分一号全色影像参数设置大气校正:选择Toolbox->Radiometric Correction->Atmospheric Correction Module->FLAASH Atmospheric Correction,弹出FLAASH Atmospheric Correction Model Input Parameters对话框。要注意,全色影像不做大气校正,多光谱影像则需要做大气校正处理。

基于面向对象和规则的遥感影像分类研究

第31卷第4期2006年4月武汉大学学报?信息科学版 G eomatics and Information Science of Wuhan University Vol.31No.4Apr.2006 收稿日期:2006201215。 项目来源:R GC Grant 资助项目(CU H K.4251/03H );国家自然科学基金资助项目(40201036);测绘遥感信息工程国家重点实验室 开放研究基金资助项目(W KL (03)0102)。 文章编号:167128860(2006)0420316205文献标志码:A 基于面向对象和规则的遥感影像分类研究 陈云浩1,2 冯 通2 史培军1 王今飞3 (1 北京师范大学资源学院,北京市新街口外大街19号,100875) (2 香港中文大学地理与资源管理系,香港新界沙田)(3 加拿大西安大略大学地理系,加拿大,N6A 5C2) 摘 要:讨论了面向对象和规则的光学遥感影像分类方法。首先利用多尺度分割形成影像对象,建立对象的层次结构,计算对象的光谱特征、几何特征、拓扑特征等,利用对象、特征形成分类规则,并通过不同对象层间信息的传递和合并实现对影像的分类。并以北京城市土地利用分类为例,对该方法进行了验证。关键词:面向对象;多尺度分割;规则;分类中图法分类号:TP753;P237.4 面向像元的分类方法实际上是以像元为基本 单元,利用其光谱(颜色)信息进行信息的提取与归并。虽然许多数学方法如各种神经网络方法[1]、模糊分类[2]、改进的最大似然分类[3]等的引入提高了分类的精度,然而从根本上讲,基于像元的分类方法仍相当于图像理解过程的第一层次,即仅利用基本像元的特征进行识别,对于色调空间分布等较为复杂的关系没有考虑。自从IKO 2NOS 、Quickbrid 等高空间分辨率影像出现以来,传统的利用面向像元的影像分类技术就面临着许多挑战[4]。针对上述情况,许多考虑地物空间特征的遥感影像分类方法得以发展,如支持向量机[5]、上下文分类[6]、纹理分类[7]等。在分类过程中,考虑了地物的纹理、形状、尺寸等空间特征,以像元的空间特征辅助光谱信息,以提高分类精度。显然,此类方法应属于图像理解的第二层次。虽然利用纹理等信息可以辅助分类,然而在很多情况下,只有图像被分割为同质对象时,图像分析的结果才有意义[8,9]。本文正是利用了面向对象的分类思想,在对遥感影像进行多尺度分割的基础上,探讨面向对象分类策略、分类规则的建立方法。 1 面向对象分类原理 所谓面向对象方法,通过对影像的分割,使同质像元组成大小不同的对象。正是由于对象内部的光谱差异小,所以对任一对象可以忽略其纹理等空间信息,而从光谱和形状两方面刻画。利用对象的空间特征和光谱特征进行分类,可以有效地克服基于像元层次分类的不足[10]。面向对象的分类方法主要包括影像分割、对象层次结构、分类规则和信息提取。1.1 影像分割 多尺度影像分割从任一个像元开始,采用自下而上的区域合并方法形成对象。小的对象可以经过若干步骤合并成大的对象,每一对象大小的调整都必须确保合并后对象的异质性小于给定的阈值。因此,多尺度影像分割可以理解为一个局部优化过程,而异质性则是由对象的光谱(spec 2t ral )和形状(shape )差异确定的[11],形状的异质性则由其光滑度和紧凑度来衡量[11]。显然,设定了较大的分割尺度,则对应着较多的像元被合并,因而产生较大面积的对象。

面向对象图像分类

【ENVI入门系列】24. 面向对象图像分类 目录 1.概述 2.基于规则的面向对象信息提取 第一步:准备工作 第二步:发现对象 第三步:根据规则进行特征提取 3.基于样本的面向对象的分类 第一步:选择数据 第二步:分割对象 第三步:基于样本的图像分类 4.基于规则的单波段影像提取河流信息 1.概述 面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。它主要分成两部分过程:影像对象构建和对象的分类。ENVI FX的操作可分为两个部分:发现对象(Find Object)和特征提取(Extract features),如下图所示。

图1.1 FX操作流程示意图(*项为可选操作步骤) 这个工具分为三种独立的流程化工具:基于规则、基于样本、图像分割。 本课程分别学习基于规则的面向对象分类和基于样本的面向对象分类,以及基于规则的方法从单波段灰度影像中提取河流信息。 注:本课程需要面向对象空间特征提取模块(ENVI Feature Extraction-FX)使用许可。

2.基于规则的面向对象信息提取 该工具位置在:Toolbox /Feature Extraction/ Rule Based Feature Extraction Workflow。 数据位置:"24-面向对象图像分类\1-基于规则"。 第一步:准备工作 根据数据源和特征提取类型等情况,可以有选择地对数据做一些预处理工作。 ?空间分辨率的调整 如果您的数据空间分辨率非常高,覆盖范围非常大,而提取的特征地物面积较大(如云、大片林地等)。可以降低分辨率,提供精度和运算速度。可利用Toolbox/Raster Management/Resize Data工具实现。 ?光谱分辨率的调整 如果您处理的是高光谱数据,可以将不用的波段除去。可利用Toolbox/Raster Management/Layer Stacking工具实现。 ?多源数据组合 当您有其他辅助数据时候,可以将这些数据和待处理数据组合成新的多波段数据文件,这些辅助数据可以是DEM, lidar 影像, 和SAR 影像。当计算对象属性时候,会生成这些辅助数据的属性信息,可以提高信息提取精度。可利用Toolbox/Raster Management/Layer Stacking工具实现。

遥感影像分类方法实验报告

实验报告

目录 1 实验目的 (4) 2 实验数据 (4) 3 实验内容 (4) 4 实验步骤 (5) 4.1 对人口矢量数据(shapefile)进行投影转换 (5) 4.1.1 Census.shp文件投影坐标的检查 (5) 4.1.2 将投影坐标转换为WGS_1984_UTM_Zone_16N (6) 4.2 对遥感影像进行几何精校正(以经过投影变换的人口矢量数据为基准) (6) 4.2.1 Census.shp在ENVI软件的加载 (6) 4.2.2 对遥感影像进行几何精校正(以矢量数据为基准) (7) 4.2.3 用矢量图层对遥感影像进行裁剪 (10) 4.3 将Pan波段和多光谱波段进行融合,并对融合效果进行定性和定量评价 (11) 4.3.1 两种融合方法的原理 (11) 4.3.2 进行 Gram-Schmidt Spectral Sharpening融合 (11) 4.3.4 融合效果进行定性评价 (14) 4.3.5 融合效果进行定量评价(软件提供的计算方法) (15) 4.3.6 融合效果进行定量评价(Matlab编程计算) (16) 4.3.7 遥感影像融合定量分析代码 (20) 4.4 生成住房密度栅格影像 (23) 4.4.1 两表的连接 (23) 4.4.2 计算房屋密度 (24) 4.4.3 直接栅格化 (25) 4.4.4 IDW插值 (25) 4.4.5 对房屋密度图进行重分类 (26) 4.5 将住房密度栅格影像作为额外的通道与ETM+多光谱波段进行叠加 (26) 4.6 监督分类(融合方法为HSV,波段为5,4,3) (27) 4.6.1 打开Google Earth影像作为监督分类的参照 (27) 4.6.2 建立兴趣区 (29) 4.6.3 训练样区的选择 (30) 4.6.4 训练样区的评价 (31) 4.6.5 执行监督分类 (33) 4.6.6 分类后处理 (35) 4.6.7 评价结果分析 (37) 4.6.8 分类结果面积统计 (38) 4.6.9 分类结果 (41) 4.7 分类结果评价与分析 (41) 4.7.1 未加入房屋密度图层的分类结果评价与分析 (41) 4.7.2 加入IDW插值房屋密度图层的分类结果评价与分析 (42) 4.7.3 加入直接栅格化房屋密度图层的分类结果评价与分析 (43) 4.7.4 加入重分类后IDW插值房屋密度图层的分类结果评价与分析 (44) 4.7.5 从总精度与Kappa系数对分类结果进行评价 (45)

面向对象的高分辨率遥感影像分类

二○一一届毕业设计 面向对象的高分辨率遥感影像分类Object-oriented Classification of high Resolution Remote Sensing images 学院:地质工程与测绘学院 专业:遥感科学与技术 姓名: 学号: 指导教师: 完成时间:2011年6月17日 二〇一一年七月

摘要 高空间分辨率遥感影像使得在较小的空间尺度上观察地表细节变化,进行大比例尺遥感制图,以及监测人为活动对环境的影响成为可能。随着高分辨率影像的应用越来越普及,迫切要求人们对高分辨率遥感信息提取进行研究,以满足高分辨率影像信息不断增长的应用和研究需要 高分辨率遥感影像光谱信息有限,空间信息丰富,地物的尺寸、形状及相邻地物间的关系都得到很好的反映。面向对象的分类方法与传统的基于像素的分类相比,不仅仅是依靠光谱信息,而且还充分利用影像的空间信息,分类时也克服了基于像元的逐点分类无法对相同语义特征的像素集合进行识别的缺点,是一种目前最适合于高分辨率遥感影像的分类方法。 本文采用面向对象的分类方法对高分辨率影像进行分类,该方法首先对影像进行多尺度分割获得同质区域对象,在此基础上利用模糊分类思想对分割后的对象进行分类。该方法不仅充分利用了高分辨率影像的空间信息,还将基于像素的分类提升到了基于对象的分类。 多尺度分割采用的是区域生长合并算法,通过对尺度阈值、光谱因子及形状因子等参数的控制,可以获得不同尺度下有意义的对象。分割后的对象不仅包含了原始的光谱信息,还可以提供大量辅助特征,如纹理、形状、拓扑等特征。综合利用这些特征以及模糊分类的思想,使得高分辨率影像分类在减少分类不确定性的同时,还提高了分类的精度。 最后将面向对象分类结果与传统的基于像素分类结果进行对比分析,发现其分类精度要明显高于传统法,且具有较强的抗噪声的功能,分类所得的地物结果相对较为完整,具有更丰富的语义信息,更加符合客观现实情形。 关键词:高分辨率遥感影像,面向对象的分类,影像分割,多尺度,最近邻分类

面向对象分类之图像分割资料

22,蹒跚:腿脚不灵便,走路缓慢摇摆的样子。 23.蓦地:突然。 24.拘谨:言行过于谨慎,拘束。 25,颀长:身材高。 26.孔武有力:勇武而有力量。 27.悉意:全心全意。 28.翩然:形容动作轻快。 29.孕育:用来比喻酝酿新事物。 30.销声匿迹:消失声音,藏起形迹。 31.俯首贴耳:形容非常驯服恭顺。 32.怠惰:懒惰。 33.情致:情趣兴致。 34.描摹:用语言文字表示人或事物的形象,情状和特 性。 35.孤寂:孤独寂寞。 36.少见多怪:由于见识少,遇见平常的事物都感到奇 怪。 37.涵养:蓄积并保持。 39.目不识丁:形容人不识字。 40.饱学之士:指学识丰富的人。 41 .委实:实在。 42.不胜枚举:例子很多,无法——列出。胜,能够承担或承受。 43.雅俗共赏:文化高的人和文化低的人都能欣赏。

44■无稽之谈:毫无根据的说法。稽,杳考。 45.可望而不可即:只能够望见而不可能接近。即,靠近,接触。 46.絮叨:翻来覆去地说。 47.撺掇:从旁鼓动别人做某事。 48.依稀:隐隐约约。 49.宛转悠扬:形容笛声的曲折飘荡,优美动听。 50.弥散:弥漫消散。 51.漂渺:隐隐约约,若有若无。 52.晦暗:昏暗,这里是迷惘,糊涂的意思。 54.叹为观止:赞美看到的事物好到了极点。 55.谐谑:滑稽而略带戏弄。 56.粗犷:豪爽,直率。 57.左右逢源:比喻做事情得心应手,怎样进行都很顺利。 58.丰赡:内容丰富。 第三册 1.锐不可当:不可抵挡。 2.业已:已经。 3.路漫漫其修远「兮,吾将上下而求索:修远,漫长。修。长。 4.座右铭:放在座位右边的用以自警的文字。 5.淳朴:朴实, 6.豁亮:宽敞明亮。

相关文档
相关文档 最新文档