文档库 最新最全的文档下载
当前位置:文档库 › 基于PCA及SVM的运动想象脑电信号识别研究

基于PCA及SVM的运动想象脑电信号识别研究

基于PCA及SVM的运动想象脑电信号识别研究
基于PCA及SVM的运动想象脑电信号识别研究

ANN MNIST手写数字识别总结

由于第十四周除了正常上课外,其余时间在整理机器学习的笔记,做中特社会调查报告,然后就是元旦放假,故第十四周没提交周报。 本周正常上课,继续完成老师都布置的课业任务,总结通信系统仿真结果,并且完成报告的撰写,分析社会调查结果,做好报告,查阅物理层安全方面的资料,翻译和整理论文。其余时间是开始学习深度学习理论和编程实践,人工神经网络(ANN)和卷积神经网络,了解深度学习几个框架(Caffe 、Torch、TensorFlow、MxNet),最主要还是TensorFlow,学习和查找了一下深度学习优化算法,并且利用人工神经网络做手写数字识别。 心得体会:第一个感受是时间过得很快,已然是15周了,要加快各方面进程。神经网络从线性分类器开始,线性分类器是产生一个超平面将两类物体分开。一层神经网络叫做感知器,线性映射加激励输出,每个神经元对输入信号利用激励函数选择输出,就像大脑神经元的兴奋或抑制,增加神经元数量、隐层数量,就可以无限逼近位置函数分布的形态,过多会出现过拟合算法。ANN的学习方法是BP后向传播算法,其主要思想是每一层的带来的预测误差是由前一层造成的,通过链式求导法则将误差对每一层的权重和偏置进行求导更新权重和偏置,以达到最优结果。因为ANN每一层神经元是全连接的,对于图像这种数据就需要非常大数量的参数,所以就出现了卷积神经网路CNN,利用一些神经元以各种模版在图像上滑动做卷积形成几张特征图,每个神经元的滑动窗口值不一样代表其关注点不一样,单个神经元对整张图的窗口权重是一样的即权值共享(这就是减少参数和神经元数量的原因),这么做的依据是像素局部关联性。CNN主要有数据数据输入层、卷积计算层、激励层、池化层(下采样层)、全连接层、Batch Normalization层(可能有)CNN学习方法也是BP算法迭代更新权重w和偏置b。CNN优点是共享卷积核,对高维数据处理无压力,无需手动选取特征,训练好权重,即得特征,深层次的网络抽取,信息丰富,表达效果好,缺点是需要调参,需要大样本量,训练最好要GPU,物理含义不明确。主要采用随机失活的方法解决过拟合问题,因为CNN网络学习能力强,如果样本量小,容易让网络将样本的所有细节记忆下来而不是学习到样本的共性规律,所以随机失活神经元让部分神经元工作就可以缓解过拟合问题。个人觉得深度学习理论不是很难,就是对硬件的要求很高,GPU真是其必备工具。深度学习学习最主要的学习框架觉得是TensorFlow,因为Google大力支持,社区很庞大,就是依赖硬件能力强。 以下是ANN MNIST手写数字识别程序和结果,数据集是经典的Yann LeCun(人工智能界大佬)MNIST数据集,每张照片大小是28 * 28的灰度图,训练集5000张图片,验证集1000张图片,测试集10000张:

开题报告-基于SVM的手写数字识别的应用与实现

毕业设计开题报告 计算机科学与技术 基于SVM的手写数字识别的应用与实现 一、综述本课题国内外研究动态,说明选题的依据和意义 阿拉伯数字作为唯一被世界各国通用的符号,是人类文明发展的标志之一,也是人类交流沟通的主要媒介。在人们日常生活当中,离不开数字的使用,我们每天都要进行大量的数字工作处理,比如邮政编码、统计报表、财务报表、银行汇款转账等等,如此繁琐的数字工作处理占去了我们很大一部分时间,空间。而对于,计算机大范围普及,人工智能高度发展的当今社会,利用手写数字识别系统代替人们进行这样繁重的手工劳动,备受国内外人士的高度重视。 由于手写数字识别本身的一些特点,对它的研究有及其重要的理论价值: ⑴阿拉伯数字是唯一被世界各国通用的符号,对手写体数字识别的研究基本上与文化背景无关,各地的研究工作者基于同一平台开展工作,有利于研究的比较和探讨。 ⑵手写数字识别应用广泛,如邮政编码自动识别,税表系统和银行支票自动处理等。这些工作以前需要大量的手工录入,投入的人力物力较多,劳动强度较大。手写数字识别的研究适应了无纸化办公的需要,能大大提高工作效率。 ⑶由于数字类别只有10个,较其他字符识别率较高,可用于验证新的理论和做深入的分析研究。许多机器学习和模式识别领域的新理论和算法都是先用手写数字识别进行检验,验证理论的有效性,然后才应用到更复杂的领域当中。这方面的典型例子就是人工神经网络和支持向量机(Support Vector Machine)。 ⑷手写数字的识别方法很容易推广到其它一些相关问题,如对英文之类拼音文字的识别。事实上,很多学者就是把数字和英文字母的识别放在一起研究的。 手写数字识别的一般原理为:首先把数字图像经过预处理,然后得到的数据进行特征提取或不用进行特征提取就可以直接输入识别器进行识别得到结果。手写数字识别的预处理通常包括数字图像的二值化处理、细化处理等步骤。数字图像的二值化处理是将上一步骤所得到的灰度数字图像转化为二值数字图像,即在数字图像中区分出字符和背景。二值化处理方法很多,但考虑到大量数字识别的需要,一般只能采用一维的阈值分割算法进行处理以获得二值化数字图像,预处理技术在当前比较成熟。 基于SVM的手写数字识别系统主要是利用支持向量机在识别领域良好的识别性能。对于一个完整的识别系统应包括从图像采集到得出识别结果的过程,由于本系统主要是用来检验支持向量机在手写数字识别系统中的应用,所以在本系统中图像采集、样本预处理等就不在

脑电信号特征提取及分类

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴脑和兔脑上记录

睡意状态脑电信号分析

睡意状态脑电信号分析

摘要 (2) 第一章绪论 (3) 1.1 睡意状态脑电信号分析课程设计的意义 (3) 1.2睡意状态脑电信号分析课程设计要求 (3) 1.3基本步骤 (3) 第二章实验方案设计及论证 (4) 2.1 设计理论依据 (4) 2.1.1 脑电信号的产生机理 (4) 2.1.2 脑电信号的生理特点 (4) 2.1.3 脑电信号的频率和分类 (5) 2.2 脑电信号的分析及处理方法 (5) 2.2.1 信号的加载 (5) 2.2.2 滤波器的设计原理 (6) 2.2.3滤波器设计步骤 (6) 2.2.4 脑电信号的功率谱分析 (6) 2.2.5脑电信号的非线性分析——Tsallis熵 (6) 2.3实验方案设计及论证 (7) 2.3.1实验方案 (7) 2.3.2方案论证 (7) 第三章各功能模块设计及结果分析 (7) 3.1载入原始数据 (7) 3.2高通滤波器的设计 (8) 3.3带通滤波器的设计及节律波的提取 (9) 3.3.1Alpha节律 (9) 3.3.2Beta节律 (11) 3.3.3Theta节律 (14) 3.3.4.Delta节律 (16) 3.4实验结果分析 (19) 第四章设计收获及心得体会 (19) 参考文献 (21) 附录:程序清单 (22)

信号处理综合训练课程设计是基于数字信号处理,信号与线性系统的一门综合性课程设计。 信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。 在本课程设计中,是基于对MATLAB的编程,以实现对睡意及清醒时的脑电信号分析,以实现提取睡意状态的脑电信号的Alpha节律,Beta节律,Theta 节律,Delta节律,并分别对其进行幅度平方特征,功率谱,Tsallis熵的分析。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,其强大的扩展功能为各个领域提供了有力的工具。信号处理工具箱是MATLAB的一个有力工具。信号处理工具箱中,MATLAB 提供了滤波器分析,滤波器实现,FIR滤波器的设计,IIR的滤波器设计,IIR 滤波器阶次估计,模拟低通滤波器原型设计,模拟滤波器设计,模拟滤波器变换,滤波器离散化,线性系统变换等方面的函数命令。

基于去趋势互相关的脑电信号分析 开题报告

毕业设计(论文)开题报告 题 目 基于去趋势互相关的脑电信号分析 学生姓名 班级学号 专业 提纲(开题报告2000字以上): 1. 对指导教师下达的课题任务的学习与理解 1.课题任务分析 在很多情况下,不同的信号之间存在着互相关性。在地震学中,探测器阵列的不同天线上的信号之间的互相关性可作为检测地震和火山喷发的警报信号。在金融学中,风险估计也要基于不同的资产和投资组合的互相关矩阵。本设计用去趋势互相关分析方法来评估两个非平稳时间序列(脑电信号)长期的互相关性。具体的来说,就是使用Matlab 编写读取脑电图数据、绘制脑电图程序,并了解脑电图各个波段含义。同时研究脑电图的去趋势互相关算法,并能使用Matlab 编写出计算程序。 互相关是统计学中用来表示两个随机矢量X 和Y 之间的协方差cov (X ,Y ),与矢量X 的“协方差”概念相区分,矢量X 的“协方差”是X 的各标量成分之间的协方差矩阵。在信号处理领域中,互相关(有时也称为“互协方差”)是用来表示两个信号之间相似性的一个度量,通常通过与已知信号比较用于寻找未知信号中的特性。它是两个信号之间相对于时间的一个函数,有时也称为滑动点积,在模式识别以及密码分析学领域都有应用。 2.实验方法原理 由于传统互相关的分析对需要定量描述各非平稳时间序列之间在某特定时间尺度上的互相关关系时无能为力,所以提出了基于去趋势互相关的分析方法(DCCA )。脑电信号常常都是非平稳的信号,所以我们这里采用了基于去趋势互相关的分析方法,即当两个序列是非平稳信号时,其信号中往往都带有内嵌的多项式趋势,这些趋势往往经常会掩盖信号波动中具有的真实相关性。为了能够评估两个序列之间的长期的互相关性,我们可以对上述协方差分析进行改进,称之为DCCA 。 具体的方法是我们取相同长度的两个长期互相关的时间序列}{i y 和}'{i y ,长度为N ,并用合成信号表示 ∑=≡k 1k R i i y ∑=≡k 1k 'R'i i y ,k=1,…N . 接着我们把整个时间序列用N-n 个交叉重叠的盒子覆盖,每个盒子包含n+1个值。对于两个时间序列,每个盒子起始于i ,结束于n +i ,我们用线性最小均方的方法拟合出局部趋势~,k R i 和~,k R'i 。我

基于libsvm的手写字体识别

基于libsvm的手写字体识别 程序: 用的是faruto大神的程序,在此做声明 程序有自己的注释 【思路】:整个程序的流程是:1、首先用遗传算法GA和交叉验证的方式,对参数c(损失函数系数)和参数g(核函数参数)进行寻优;2、然后将两个参数和训练样本进行训练:model = svmtrain(TrainLabel, TrainData, cmd);3、最后导入测试样本集进行测试:preTestLabel = svmpredict(TestLabel, TestData, model); 【注意:】训练和测试所使用的data和label都必须是doubel型,可以用double()函数或者是str2doubel进行转换。(不知道在哪里看到的) 如有疑问请咨询qq:778961303 -g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数) -c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1) %% close all; clear; clc; format compact; %紧凑显示 %% 载入训练数据 [FileName,PathName,FilterIndex] = uigetfile( ... {'*.bmp';'*.jpg'},'请导入训练图片','*.bmp','MultiSelect','on'); %打开文件的导向操作 if ~FilterIndex return; end num_train = length(FileName); TrainData = zeros(num_train,16*16); TrainLabel = zeros(num_train,1); for k = 1:num_train pic = imread([PathName,FileName{k}]); %读取训练用的图片 pic = pic_preprocess(pic); %将图片变成16*16的矩阵 % imshow(pic); TrainData(k,:) = double(pic(:)'); %将图片改写成一个double类型的行向量 TrainLabel(k) = str2double(FileName{k}(1)); %图片的类标签 end %% 建立支持向量机

脑电信号特征提取及分类

第 1 章绪论 1.1引言 大脑又称端脑,是脊椎动物脑的高级的主要部分,由左右两半球组成及连接两个半球的中间部分,即第三脑室前端的终板组成。它是控制运动、产生感觉及实现高级脑功能的高级神经中枢[1]。大脑是人的身体中高级神经活动中枢,控制着人体这个复杂而精密的系统,对人脑神经机制及高级功能进行多层次、多学科的综合研究已经成为当代脑科学发展的热点方向之一。 人的思维、语言、感知和运动能力都是通过大脑对人体器官和相应肌肉群的有效控制来实现的[2]。人的大脑由大约1011个互相连接的单元体组成,其中每个单元体有大约104个连接,这些单元体称做神经元。在生物学中,神经元是由三个部分组成:树突、轴突和细胞体。神经元的树突和其他神经元的轴突相连,连接部分称为突触。神经元之间的信号传递就是通过这些突触进行的。生物电信号的本质是离子跨膜流动而不是电子的流动。每有一个足够大的刺激去极化神经元细胞时,可以记录到一个持续1-2ERP的沿轴突波形传导的峰形电位-动作电位。动作电位上升到顶端后开始下降,产生一些小的超极化波动后恢复到静息电位(静息电位(Resting Potential,RP)是指细胞未受刺激时,存在于细胞膜内外两侧的外正内负的电位差)。人的神经细胞的静息电位为-70mV(就是膜内比膜外电位低70mV)。这个变化过程的电位是局部电位。局部电位是神经系统分析整合信息的基础。细胞膜的电特性决定着神经元的电活动[3]。当神经元受到外界刺激时,神经细胞膜内外两侧的电位差被降低从而提高了膜的兴奋性,当兴奋性超过特定阈值时就会产生神经冲动或兴奋,神经冲动或兴奋通过突触传递给下一个神经元。由上述可知,膜电位是神经组织实现正常功能的基本条件,是兴奋产生的本质。膜电位使神经元能够接收刺激信号并将这一刺激信号沿神经束传递下去。在神经元内部,树突的外形就像树根一样发散,由很多细小的神经纤维丝组成,可以接收电信号,然后传递给细胞体。如果说树突是树根的话,那么细胞体就是树桩,对树突传递进来的信号进行处理,如果信号超过特定的阈值,细胞体就把信号继续传递给轴突。轴突的形状像树干,是一根细长的纤维体,它把细胞体传递过来的信号通过突触发送给相邻神经元的树突。突触的连接强度和神经元的排列方式都影响着神经组织的输出结果。而正是这种错综复杂的神经组织结构和复杂的信息处理机制,才使得人脑拥有高度的智慧。我们的大脑无时无刻不在产生着脑电波,对脑来说,脑细胞就像是脑内一个个“微小的发电站”。早在1857年,英国的青年生理科学工作者卡通(R.Caton)就在猴

基于matlab的脑电信号处理

航空航天大学基于Matlab的脑电信号处理 陆想想 专业领域生物医学工程 课程名称数字信号处理

二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0 引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1 实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1 脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为

基于matlab的脑电信号处理

南京航空航天大学基于Matlab的脑电信号处理 姓名陆想想 专业领域生物医学工程 课程名称数字信号处理 二О一三年四月

摘要:脑电信号属于非平稳随机信号,且易受到各种噪声干扰。本文基于Matlab仿真系统,主要研究了小波变换在脑电信号处理方面的应用,包括小波变换自动阈值去噪处理、强制去噪处理,以α波为例,提取小波分解得到的各层频率段的信号,并做了一定的分析和评价。关键词:脑电信号;小波变换;去噪重构;频谱分析 0 引言 脑电信号EEG(Electroencephalograph)是人体一种基本生理信号,蕴涵着丰富的生理、心理及病理信息,脑电信号的分析及处理无论是在临床上对一些脑疾病的诊断和治疗,还是在脑认知科学研究领域都是十分重要的。由于脑电信号的非平稳性且极易受到各种噪声干扰,特别是工频干扰。因此消除原始脑电数据中的噪声,更好地获取反映大脑活动和状态的有用信息是进行脑电分析的一个重要前提。本文的研究目的是利用脑电采集仪器获得的脑电信号,利用Fourier变换、小波变换等方法对脑电信号进行分析处理,以提取脑电信号α波的“梭形”节律,并对脑电信号进行功率谱分析和去噪重构。 1 实验原理和方法 1.1实验原理 1.1.1脑电信号 根据频率和振幅的不同,可以将脑电波分为4种基本类型[1],即δ波、θ波、α波、β波。4种波形的起源和功能也不相同,如图1所示。 图1 脑电图的四种基本波形 α波的频率为8~13Hz,振幅为为20~100μV,它是节律性脑电波中最明显的波,整个皮层均可产生α波。正常成人在清醒、安静、闭目时,波幅呈现有小变大,再由大变小,如此反复进行,形成所谓α节律的“梭形”。每一“梭形”持续时间约为1~2s。当被试者睁眼、警觉、思考问题或接受其他刺激时,α波立即消失而代之以快波,这种现象称之为“α波阻断”。一

2020年中国研究生数学建模竞赛C题--面向康复工程的脑电信号分析和判别模型

2020年中国研究生数学建模竞赛C 题 面向康复工程的脑电信号分析和判别模型 背景和意义 大脑是人体中高级神经活动的中枢,拥有着数以亿计的神经元,并通过相互连接来传递和处理人体信息。脑电信号按其产生的方式可分为诱发脑电信号和自发脑电信号。诱发脑电信号是通过某种外界刺激使大脑产生电位变化从而形成的脑电活动;自发脑电信号是指在没有外界特殊刺激下,大脑自发产生的脑电活动。 (1)诱发脑电信号(P300脑-机接口) 在日常生活中,人的大脑控制着感知、思维、运动及语言等功能,且以外围神经为媒介向身体各部分发出指令。因此,当外围神经受损或肌肉受损时,大脑发出指令的传输通路便会受阻,人体将无法正常完成大脑指令的输出,也就失去了与外界交流和控制的能力。研究发现,在外围神经失去作用的情况下,人的大脑依旧可以正常运行,而且其发出指令的部分信息可以通过一些路径表征出来。脑-机接口技术旨在不依赖正常的由外围神经或肌肉组织组成的输出通路的通讯系统,实现大脑与外部辅助设备之间的交流沟通。 P300事件相关电位是诱发脑电信号的一种,在小概率刺激发生后300毫秒范围左右出现的一个正向波峰(相对基线来说呈现向上趋势的波)。由于个体间的差异性,P300的发生时间也有所不同,图1表示的是在刺激发生后450毫秒左右的P300波形。P300电位作为一种内源性成分,它不受刺激物理特性影响,与知觉或认知心理活动有关,与注意、记忆、智能等加工过程密切相关。基于P300的脑-机接口优点是使用者无需通过复杂训练就可以获得较高的识别准确率,具有稳定的锁时性和高时间精度特性。 -+ 幅值(μV ) 图1 P300波形示意图

脑电信号识别方法的研究

2017年11月论述;317脑电信号识别方法的研究 魏晓熙(南开大学软件学院,00350) 【摘要】人类对大脑的探索已进入了数字化时代,随着脑信号检测技术的日益成熟以及人工智能算法的研究进展,脑信号的解读研究也展现 出越来越多的成果。本文首先介绍当下大脑信号获取的医学方法,而后简述脑电信号的特征提取以及分类识别方法,接着列举脑电识别的前沿 研究,最后对脑电信号识别的数据应用领域进行展望。 【关键词】脑电信号分类;机器学习;深度学习;脑机接口;脑控 【中图分类号】TP391.4 【文献标识码】A【文章编号】1006-4222(2017)21-0317-03 1引言 当今世界,随着利用EEG、M R I等神经成像技术提取大脑中信号的技术愈加成熟,更多的诸如OpenViBE、BCILAB的 脑机接口分析软件的出现,以往难以进行的人脑中信号提取与分析在当下变得可能。同时,随着机器学习与深度学习算法对信号分类领域技术的推进,大脑中信号的识别也变得更加准确。因此,近年来关于大脑信号的研究也越来越多,全球脑机接口研究机构数量已经发展到10年前的10倍以上,而且 持有脑机接口技术的企业已达数十家||]。本文综述当下前沿的大脑信号提取、特征选择及分类领域的研究,做出总结分析并给出该领域的前沿应用方向以供研究者参考。 2神经成像方法概述以及脑电信号的胜出人的行为引发大脑的激励活动,这些活动会引发大脑中血流以及电信号的变化,从这些变化中提取信号的过程叫做神经成像。目前神经成像方法从是否侵入人体的角度可划分为侵入式、非侵入式以及半侵入式。从原理上可划分为电生理学和血液代谢学方法。本文主要介绍皮质电描记、脑电描记、脑磁图技术和单光子发射计算机断层成像术等几种医学领域常用的神经成像方法,并叙述脑电描记法提取脑电信号用于大脑信号识别相对于其他方法的优势。 皮质电描记法(ECoG)是一种侵入式大脑信号检测方法,基于电信号原理将电极片直接植入颅内检测,提取信号清晰且具有良好的信噪比,但几乎不可用于非手术环境。脑电描记法(EEG)是一种非侵入式神经成像方法,将电极片置放于头皮特定位置,无需手术,具有高时间分辨率、易用、价格便宜以及安全等特性,是目前脑电信号识别最常用的信号提取方法。脑磁图技术(MEG)是对脑内神经电流发出的极其微弱的生物磁场信号的直接测量,可以与E E G互补,具有良好的时间和空间分辨率,但是需要SQUID等特殊装置。单光子发射计算机断层成像术(SPECT)是一种基于血液代谢学的方法,被测 需要摄入含有半衰期适当的放射性同位素药物,当药物达到 性别、年龄、职业等消费者的基本信息更加准确地定位适合消费者的商品,实现精准营销。还可以根据这些信息,提前向消费者推荐他们可能喜欢的商品,从消费者选择商品的被动营销模式转化为向消费者主动推荐商品的主动营销模式。利用 对数据的描述和刻画,使消费者用更短的时间、消耗更少的精力就可以准确的定位商品。本文中先通过用户画像实现数据库的构建,再借助用户画像建立模型,然后是消费者的细分,进行应用后,还可以根据消费者的反馈继续更新、迭代、优化数据库和模型。 通过不断的迭代和优化,可以得到更加完善和健全的用户画像。并且利用用花画像从更多角度、更全面地满足消费者 目标位置时由于衰变释放酌光子,被仪器所检测到,从而收集 到光信号。此外,其他人脑信号提取的方法还包括正电子发射 型计算机断层显像(PET)、功能性磁共振成像(MRI)、功能性 近红外光谱技术(刑IR)[1~21等。 在诸多的大脑信号提取方法中,脑电描记法目前在脑机 接口领域的研究中最为常用。脑电信号(EEG)提取不用像ECoG等方法需要进行侵入式手术,而直接使用电极片紧贴于 头皮特定位置即可,也不用像MEG、SPECT等方法需要非常 昂贵的医疗器械或特殊药品,同时也可以采集到信噪比可用、时间分辨率良好的信号。因此,E E G是当下大脑中信号识别最 热门的研究方向。 3脑电信号的类别及数据集 脑电信号(EEG)在脑机接口研究中有着重要地位,除上 述特点外,其优点还包括实验中该信号产生容易、不用进行侵 入式的刺激、采集脑电信号的时间比较短等。脑电信号整体可 划分为激励信号、自发信号以及混合信号,以下详细介绍各类 研究中常用的E E G信号和现有开源的E E G数据集。 常见的各种E E G信号包括:①稳态诱发电位(SSEP)是一 种当被试被施加周期性刺激时产生的E E G激励信号,如周期 性光源闪烁、声音、震动等。稳态视觉诱发电位(SSVEP)是其 中一种常用的视觉周期性刺激诱发的电位信号;②P300是当 被试受到一个突然或者不常见的外部激励时延迟300m s后产 生的一种E E G信号,刺激源在被试感知时出现的概率越低,则刺激产生的信号强度就越大;③慢皮层电位(SCP)可以反映 出皮层的电位变化的状况,被试通过一定时间的训练,可对 S C P的正反向进行控制|3|曰④E R D是指人在进行某一意识活动时,大脑皮层对应的处于激活状态的区域产生的脑电信号中 琢波和茁波(见表1)的低频部分将出现幅值衰减;⑤E R S则是 指大脑皮层的部分区域在没有受到刺激的情况下,该区域的 脑电信号中琢波和茁波出现幅值增加的情况。上述信号模式 可以组合成为混合信号,往往用于提高相应时间、B C I性能、的需求,使得电商与消费者都共同获利,实现良性循环和发展。 参考文献 [1]佚名.2016中国电商消费行为报告:电商交易超20万亿[J].中国眼 镜科技杂志,2017(3):46. [2] 刘海,卢慧,阮金花,等.基于“用户画像”挖掘的精准营销细分模 型研究[J].丝绸,2015,52( 12): 37~42. [3] 胡媛,毛宁.基于用户画像的数字图书馆知识社区用户模型构建 [J].图书馆理论与实践,2017(4):82~85. 收稿日期:2017-8-1

matlab脑电信号处理

matlab脑电信号处理 matlab脑电信号处理 t=0.001:0.001:1; x=load('C:\Users\yxzhang\Desktop\rest_close.txt'); %读取文件y=load('C:\Users\yxzhang\Desktop\audio_close.txt'); xx={}; %每个导联的数据存储 yy={}; n=1000; %数据数目 sc=7; %小波包的分解尺度 for i=1:1:8 %导联的数据分离 xx{i}=x(:,i); yy{i}=y(:,i); end for i=1:1:8 %画出原始信号图像 figure subplot(2,2,1) plot(t,xx{i}) axis([min(t) max(t) 1.1*floor(min(xx{i})) 1.1*ceil(max(xx{i}))]) title('rest close 原始信号') ylabel('幅值') subplot(2,2,2) plot(t,yy{i}) axis([min(t) max(t) 1.1*floor(min(yy{i})) 1.1*ceil(max(yy{i}))]) title('audio close 原始信号') ylabel('幅值') %fft_原始信号的频谱分析 xx1=fft(xx{i},n); pxx1=xx1.*conj(xx1)/n; yy1=fft(yy{i},n); pyy1=yy1.*conj(yy1)/n; %画出0-30hz内的功率谱图像 n=60;

脑电信号中去除眼电成分

脑电信号中眨眼眼电成分的提取 摘要:眨眼伪迹是脑电信号采集过程中的常见噪声,严重影响其有用信息的提取。该文尝试采用独立成分分析中的快速算法分离脑电信号中的各个独立分量,并通过相关性分析自动识别独立分量中的眨眼伪迹干扰并去除。研究结果表明该方法能有效识别和去除眨眼伪迹,在脑电信号的处理中有重要应用价值,值得深入研究和推广。 目的利用独立分量分析方法(ICA) 将混合在观测信号中相互独立的源信号分出来。方法记录3个正常人自然眨眼和水平扫视条件下7道脑电信号和2道眼电信号,选取7道脑电信号进行处理,2道眼电信号用来指示干扰源的情况。使用扩展相似对角化算法( JADE) 将脑电信号分解成多个独立分量,同时利用伪迹脑地形图特征,判断出与眼电伪迹相关分量并将其去除。结果存在于前额电极的眼电干扰被消除,同时其他电极上的信号细节成分较好地保留下来。独立分量分析方法成功去除了脑电信号中的眼电伪迹。 本文针对脑电信号的眼电伪迹去除的问题,运用ICA(独立分量分析)和小波去噪两种方法实现了眼电伪迹去除,并比较分析了两种方法各自的优点和缺点。 关键词:脑电信号眨眼眼电ICA 小波去噪 1 引言 脑电( electroencephalogram ,EEG) 信号是一种微弱( μV 级) 的电生理信号,同时具有很强的随机性,极易受其他电生理信号干扰。其中,眼电伪迹是一种最主要的干扰成分。它产生于人体自身,当眨眼( blink) 或是眼球运动( eye movement)时,会在测量电极处引起较大的电位变化形成眼电 ( electro-oculogram,EOG) 。在采集EEG 时,EOG 从其源发出,弥散到整个头皮,导致采集到的EEG 信号产生明显畸变,形成伪迹,其幅度可达到100 mV。为减少EOG 伪迹影响,要求受试者长时间控制自己的眼部运动。但这通常会引起眼部不适,尤其是部分特定人群( 如患有多动症的儿童、精神分裂症患者等) 的无意运动难以控制。采集到的EEG 信号中会包含EOG 伪迹。本文采用了ICA算法和小波去噪算法这两种方法来进行脑电信号中眨眼眼电成分的提取,下文将分别

脑电信号特征分析

脑电信号特征分析 一脑电信号的概念已经研究意义 脑电信号(Electroencephalograph, EEG)中包含了大量的生理与病理信息,是进行神经系统疾病和症状,特别是癫痫病诊断的主要依据。从20世纪初,人们就开始研究人的脑电信号,多年以来,人们已经积累了一系列脑电信号处理的理论和方法,但是进展不是很快。这主要是因为人们目前对脑电信号产生的机理认识还不够,另外脑电信号的非平稳性和背景噪声等都很强,因此脑电信号的分析与处理一直是非常吸引人但又极其困难的研究课题。近年来,电子技术以及非线形分析理论的快速发展为我们提供了脑电信号处理的新手段。本文将利用快速傅立叶变换(F F T)理论来分析脑电序列信号的频谱和功率谱。 脑电图是脑神经细胞电生理活动在大脑皮层或头皮表面的总体反映。临床实践表明,脑电信号中包含了大量生理与疾病信息,所以我们通过对脑电信号的处理,不仅可以为医生提供临床诊断依据,而且可以为某些脑疾病(比如癫痫、脑肿瘤、智力状况等)提供有效的治疗手段。 二脑电信号特征提取的内容 研究脑电图信号(EEG)在时域、频域方面所具有的特征,计算出人的大脑在不同状态下的功率频特征。就是利用快速傅立叶变换(FFT)来研究脑电序列信号的谱值。脑电信号可以视作为一组时间序列,时间序列的时域是指是描述数学函数或物理信号对时间的关系。例如一个信号的时域波形可以表达信号随着时间的变化。若考虑离散时间,时域中的函数或信号,在各个离散时间点的数值均为已知。若考虑连续时间,则函数或信号在任意时间的数值均为已知。而其对应的频谱是是描述信号在频率方面特性时用到的一种坐标系。对任何一个事物的描述都需要从多个方面进行,每一方面的描述仅为我们认识这个事物提供部分的信息。功率谱是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。常用于功率信号(区别于能量信号)的表述与分析,其曲线(即功率谱曲线)一般横坐标为频率,纵坐标为功率。 三特征分析的软件实现及结果分析 通过信号的时域波形,可以得出信号的幅值变换范围,信号的波动情况以及可以求出信号的均值方程等特征值。基于MATLAB实现数据的提取,采样load函数提取采集后的脑电信号数据,绘制脑电信号时域波形如图1所示:

相关文档