文档库 最新最全的文档下载
当前位置:文档库 › 污水磷含量分析探讨

污水磷含量分析探讨

污水磷含量分析探讨
污水磷含量分析探讨

乳品企业磷排放探讨

一、标准:

根据《乳制品工业水污染物排放标准(征求意见稿)》2010版,污水排放标准如下:

其中规定磷排放标准如下:

二、磷含量超标的危害

防止淡水湖泊水华发生的主要措施是控制水中磷的浓度,使其低于富营养化危险浓度。通常需要将水中磷的浓度降低0.01-0.02mg/L 以下。经过二级处理的城市废水含磷量高达0.5-1.0mg/L,常常成为

人口密集地区湖泊中磷的主要来源。例如,德国全面调研结果表明,水生生态系统中的60%磷来自城市污水处理厂出水。美国也有类似的发展趋势。因此,在发达国家,很多污水处理厂采用三级处理,使出水总磷浓度<0.01-0.1mg/L,例如,美国Spokane 河流域要求污水处理厂出水总磷浓度低于0.01mg/L,Onondaga 湖流域要求污水处理厂

出水总磷浓度低于0.02mg/L。在很多流域治理规划中,美国政府常要求城市污水处理厂在生物脱氮除磷工艺技术基础上增加三级处理,以除去微量营养盐。

我国很多湖泊,处于人口密集和经济发达城市附近,城市污水经处理达标排放,其所含的污染物和营养盐浓度仍然过大,带来的营养盐常常使湖泊水中营养盐超过富营养化标准,很多湖泊处于严重的富营养化状态。因此,必须制定更加严格的污水处理要求和出水含磷标准,才能达到湖泊富营养化治理的目的。

三、磷含量来源

1、原料乳的损失

2、含磷类洗涤剂的使用(CIP酸、洗洁精等)

四、味全厂现状

1、污水处理量:1600t/天。

2、原料乳用量损失量:?

3、CIP酸用量:350kg/天,产生的磷为24.92kg/天

则CIP酸对污水总磷的贡献为:24.92*1000/1600=15.6ppm

4、目前工厂主要除磷措施有:生物除磷和化学除磷

五、新的酸性清洗剂

1、磷含量<0.5%,每天产生的磷为1.05kg

则对污水总磷的贡献为:1.05*1000/1600=0.66ppm

六、总结

1、《污水综合排放标准》GB 8978-1996(适用一切排污单位)

2、《乳制品工业水污染物排放标准(征求意见稿)》2010版1ppm--直接排放

6ppm--间接排放

3、防止水质富营养化的排放标准为:

0.01-0.02ppm

4、新旧酸洗剂对污水影响

城市污水处理厂化学除磷效果及运行成本研究

万方数据

万方数据

万方数据

万方数据

城市污水处理厂化学除磷效果及运行成本研究 作者:念东, 王佳伟, 刘立超, 周军, 甘一萍, 王洪臣, Nian Dong, Wang Jiawei, Liu Lichao, Zhou Jun, Gan Yiping, Wang Hongchen 作者单位:北京城市排水集团有限责任公司,北京,100022 刊名: 给水排水 英文刊名:WATER & WASTEWATER ENGINEERING 年,卷(期):2008,34(5) 被引用次数:11次 参考文献(3条) 1.邱维;张智城市污水化学除磷的探讨[期刊论文]-重庆环境科学 2002(02) 2.赵恩海;朱文亭我国污水处理的发展趋势[期刊论文]-城市环境与城市生态 2000(04) 3.Henze M;Harremoes P;国家城市给水排水工程技术研究中心污水生物处理与化学处理技术 1999 本文读者也读过(10条) 1.孔令勇.马小蕾废水化学除磷的基本原理与设计[会议论文]-2009 2.徐丰果.罗建中.凌定勋废水化学除磷的现状与进展[期刊论文]-工业水处理2003,23(5) 3.李炜炜.吴国防.丁云松.龙腾锐.LI Wei-wei.WU Guo-fang.DING Yun-song.LONG Teng-rui城市污水厂化学除磷投药点后移的生产性试验[期刊论文]-中国给水排水2010,26(10) 4.侯艳玲.刘艳臣.邱勇.何苗.施汉昌.Hou Yanling.Liu Yanchen.Qiu Yong.He Miao.Shi Hanchang化学除磷药剂中三价铁铝对生物系统污泥活性影响的研究[期刊论文]-给水排水2010,36(6) 5.唐建国.林洁梅化学除磷的设计计算[期刊论文]-给水排水2000,26(9) 6.张健.ZHANG Jian杭州七格污水处理厂化学除磷工艺探讨[期刊论文]-中国给水排水2010,26(21) 7.帖春英.TIE Chun-ying改良A2/O与化学除磷工艺用于城市污水处理[期刊论文]-中国给水排水2010,26(20) 8.吕亚云污水化学除磷处理技术[期刊论文]-河南化工2010,27(8) 9.潘理黎.王玲.郑海军.吕伯昇.徐伟勇.Pan Lili.Wang Ling.Zheng Haijun.Lu Bosheng.Xu Weiyong城镇污水处理厂尾水深度化学除磷试验研究[期刊论文]-水处理技术2011,37(6) 10.张亚勤污水处理厂达到一级A排放标准中的化学除磷[期刊论文]-中国市政工程2009(5) 引证文献(11条) 1.孙士权.杨静.毕立俊.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-工业水处理 2010(1) 2.贾会艳.杨云龙城市污水化学辅助除磷[期刊论文]-山西建筑 2009(14) 3.孙士权.刀钟颖.郭文文.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-环境工程学报2009(7) 4.解立国太原市北郊污水净化厂深度除磷研究[期刊论文]-科技情报开发与经济 2009(20) 5.戴斌低碳源情况下氧化沟工艺除磷的方式[期刊论文]-上海建设科技 2009(5) 6.陈晓安.严福平.李旭.桂丽娟连续流砂过滤器处理城市二级出水中试研究[期刊论文]-工业用水与废水 2011(1) 7.乔莹.栗建华污水处理厂节能降耗区域性评价管理研究[期刊论文]-长治学院学报 2010(5) 8.郑育毅低碳源城市污水化学除磷的研究[期刊论文]-工业水处理 2011(9) 9.刘传伟.孙书群城市污水污水处理厂氮磷去除的研究[期刊论文]-广州化工 2011(23) 10.杨凌波.葛勇涛.谢继荣.应启锋.曾思育.何苗基于节能降耗的污水处理厂绩效评估体系研究[期刊论文]-给水排水 2009(z1)

煤中磷的测定方法

煤中磷的测定方法 实 习 报 告 师傅:辛宇 实习人:黄泽龙 2011年2月

煤中磷的测定方法实习报告 一、煤中磷测定的意义 煤中磷是有害元素之一,在炼焦时煤中磷进入焦炭,炼铁时磷又从焦炭进入生铁,当其含量超过0.05%时就会使钢铁产生冷脆性,因此,磷含量是煤质的重要指标之一。 二、基本原理 煤中的磷主要以无机磷存在,如磷灰石[3Ca3(PO4)2CaF2],也有微量的有机磷。由于无机磷的沸点很高,(一般为1700℃以上),所以在煤灰化过程中磷不会挥发损失,而含量甚微的有机磷,虽然挥发,但对结果影响不大。国际标准和我国现行标准都采用还原磷钼酸分光光度法,其优点是,灵敏度高,结果可靠,实验简便快速,干扰元素易于分离和消除,它试用于微量磷的分析。 磷钼蓝的反应机理 在酸性溶液中正磷酸与钼酸作用生成磷钼酸,然后抗坏血酸还原成蓝色的磷钼酸络合物。其反应及磷钼蓝的组成,至今尚无统一的意见,其中的一种观点认为: H3PO4+12H2MoO4→H3[P(Mo3O10)4]+12H2O H3[P(Mo3O10)4]+4C6H8O6→(2Mo24MoO3)2H3PO4+4C6H6O6+4H2O 当磷含量较低时,其蓝色强度与磷含量成正比。 三、方法提要 将煤样灰化后用氢氟酸—硫酸分解,脱除二氧化硅,然后加入钼酸铵和抗坏血酸,生成磷钼蓝后,用分光光度计测定吸光度。 四、实验步骤 1、试样处理 煤样灰化:按GB/T212中规定的慢速灰化煤样,然后研细到全部通过0.1mm的筛子。 灰的酸解:准确称取0.05-1g(准确至0.0002g)于聚四氟乙烯(或铂)坩埚中,加硫酸2mL,氢氟酸5mL,放在电热板上缓慢加热蒸发(温度约

【推荐下载】污水生物除磷技术的现状与研究进展

[键入文字] 污水生物除磷技术的现状与研究进展 阐述了生物除磷原理和各种生物除磷技术的研究与应用现状,对传统工艺如A/O 工艺、A2/O 工艺、Bardenpho 工艺、UCT 工艺、Orbal 氧化沟、改良型UCT 工艺、序批式活性污泥法(SBR)工艺、VIP 除磷工艺等进行了简单的原理介绍和细致的应用描述,并作出了分析与评价。最后,提出单级活性污泥法除磷系统的优化与加强对生物除磷机制 的研究是生物除磷技术的主要发展方向。 近年来随着工农业生产快速增长、人口剧增、含磷洗涤剂和农药化肥大量使用致使 磷在环境中的过量导致水环境污染和水体的富营养化日益严重,而磷是引起水体富营 养化的主要因素。随着环境意识的提高和国内外对磷排放的限制标准越来越严格,研 究开发经济、高效的去除磷的污水处理技术已成为水污染控制工程领域的研究重点和 热点。 本文系统概述了当前污水生物除磷技术的现状。在分析、评价的基础上探讨了污水 生物除磷技术的发展趋势。 1 生物除磷的原理 所有生物除磷工艺皆为活性污泥法的修改,即在原有活性污泥工艺的基础上,通过 设置一个厌气阶段,选择能过量吸收并贮藏磷的微生物(称为聚磷微生物),以降低出水的磷含量。活性污泥中的细菌,如不动杆菌属(Acinetobacter)、气单胞菌(Aeromonas)、棒杆菌属(Corynebacterium)、微丝菌(Microthrixsp.)等,当生活在营养丰富的环境中,在即将进入对数生长期时,为大量分裂作准备,细胞能从外界大 量吸收可溶性磷酸盐,在体内合成多聚磷酸盐而积累起来,供下阶段对数生长时期合 成核酸耗用磷素之需。 另外,细菌经过对数生长期而进入静止期时,这时大部分细胞已停止繁殖,核酸的 合成虽已停止,对磷的需要量也已很低,但若环境中的磷源仍有剩余,细胞又有一定 1

污水的除磷技术研究与分析

SHANGHAI JIAO TONG UNIVERSITY 环境生态工程课程论文 学生姓名:罗涛 学生学号:115160910019 专业:环境科学与工程 任课教师:吴德意龙明策

污水的除磷技术研究与分析 环境科学与工程学院罗涛115160910008 摘要:本文对污水中磷的来源和水体富营养化的危害做了简要阐释。并主要介绍污水生物除磷工艺的发展,对生物脱氮除磷特别是反硝化脱氮除磷原理和新工艺进行讨论,总结它们的运行特点。最后对国内外除磷技术的研究进行了展望,提出物化除磷法与生物除磷法相结合必将成为今后的研究趋势,研究开发生物脱氮除磷新技术是今后污水处理研究的重要课题。 关键词:除磷;物化除磷;生物除磷;反硝化除磷;反硝化聚磷菌 Technology research and analysis of phosphorus removal from wastewater Abstract:In this paper,the source of phosphorus in sewage and the harm of water eutrophication are briefly explained.This paper mainly introduces the development of biological phosphorus removal process,discusses the principle and new technology of biological nitrogen and phosphorus removal, especially the denitrification and denitrification,and summarizes their operating characteristics.Finally phosphorus removal technology of domestic and foreign research is prospected,and this paper extract denitrifying phosphorus removal method and biological phosphorus removal method combination will surely become the trend of future research.And the research put that to study the development of biological removal nitrogen and phosphorus removal technology is an important task for future research on the treatment of wastewater. Key words:Phosphorus removal;Physical and chemical phosphorus removal;Biological phosphorus removal;Denitrifying phosphorus removal;DPB 磷是生物圈内重要的营养元素,有正磷酸盐、偏磷酸盐、有机磷等多种存在形式。水中含磷量过高会引起水体富营养化问题。随着城市人口的增加、工农业的增长和污水排放总量的不断增加,以及各种含磷洗涤剂和化肥农药的大量使用,含有大量营养成分的污水流人湖泊等封闭性水域,加速了水域的富营养化。这种现象在世界各地,包括我国都不断发生,给工农业、生活用水、水产业以及旅游业都带来了极大的危害。“十二五”期间,我国在COD和SO2两项主要污染物的基础上,将氨氮的氮氧化物纳入总量控制指标体系。然而,影响水环境质量的主要污染物并不仅仅是COD和氨氮,氮、磷已经成为威胁水质的主要污染物,尤其是磷对水体富营养化的贡献要远远大于氮。近几年,我国[1,2]和北美的研究共同表明,淡水富营养化无需控氮只需控磷。其中最重要的一个理由为氮、磷的循环特点决定水生生态系统的限制因子是磷而非氮。与气体性氮循环相比,沉积型磷循环较慢。由于磷来源有限,且更容易沉积,磷对湖泊初级生产的限制作用必然比氮更强。因此,通过控制磷进入水体可能是最有效的富营养化防治对策#相较于控制农业面源、城市径流和底泥释放中的磷,控制城镇污水处理厂出水中的磷是最经济、最可行的总量控制

除磷废水处理站设计方案

除磷废水处理站设计方 案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

含磷废水治理工程工艺技术设计初步方案天津普蓝环保工程有限公司 2013年3月25日

目录 一、工程概况 (2) 二、设计依据、规范、范围及原则 (2) 三、设计水量与水质 (5) 四、废水处理工艺设计 (7) 五、污水处理系统性能及技术参数 (9) 六、建筑结构设计 (29) 七、电气控制设计 (31) 八、运行费用估算 (34) 九、组织机构及人员编制 (35) 十、项目实施 (37) 十一、项目管理 (38) 十二、工程投资报价 (40) (1)主要构筑物投资估算 (40) (2)主要处理设备及材料投资报价 (40) (3)工程总投资 (42) 十三、技术服务 (43) 十四、售后服务 (44)

一、工程概况 某污水处理厂在进行污水深度处理及回用过程中,采用双膜技术所排放的RO泥水中磷酸盐含量出现超标,废水中含有不同浓度的磷酸盐,该类废水具有连续性排放、水质成份复杂,其危害性比较大,这些RO浓水如不经处理就直接排放,将对周围的生态环境造成严重的影响(对地表水、土壤、作物造成严重污染),并将影响周围居民的身心健康。 随着国家经济的发展,人民生活水平的不断提高,国家对环境保护越来越重视,已成为企业发展的重要课题。对环保的日益重视和人民环保意识的提高,废水污染解决与否直接关系企业的生存和发展。因此,无论从企业发展还是从改善水资源、保护水环境,做好该厂这类废水的治理工程建设是十分必要。 该公司领导十分重视环保工作,贯彻科学发展观,重点研究、探索循环发展经济,企业节约水资源,降低生产成本,减少污水排放量,计划实行污水综合治理,以期采用合理可靠地解决方式去除排放浓水中的磷酸盐,以供该单位领导和有关部门参阅、决策和实施。 项目名称:污水回用处理RO浓水 工程规模:14000t/d

污水处理中的化学除磷

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,

影响污水生物除磷的因素

污水生物除磷的影响因素 排放富含氮磷的污水会导致受纳水体的富营养化,特别是湖泊和流速较小的河流(Sundblad et al., 1994; Danalewich et al., 1998)。目前,具有除磷功能的污水厂多数采用化学沉淀法,常用的混凝剂为硫酸铝或石灰(Stratful et al., 1999)。生物除磷就是利用微生物超过其正常代谢需要地聚集磷酸盐(作为细胞内的聚磷)(Brdjanovic et al., 1998; Mino et al., 1998)。BPR工艺的主要特征就是使活性污泥循环处于厌氧和好氧环境,并使进水进入厌氧区(Wagner and Loy, 2002)。在厌氧区,必须有充足的易生物降解碳源,如VFAs,诱导除磷菌吸收酸并释放磷酸盐(Morse et al., 1998)。在好氧区,发生超量吸磷,导致总磷去除率高达80-90% (Morse et al., 1998)。通过排放富含磷的剩余污泥实现磷的高效去除(Mino et al., 1998)。Mino et al.(1998)总结了BPR工艺的微生物学和生物化学过程。此外,反硝化聚磷菌(DPAO=denitrifying P-accumulating organisms)也被广泛报道与讨论((Kerm-Jespersen and Henze, 1993; Rensink et al., 1997, Meinhold et al., 1999; Hu et al., 2002)。Ekama and Wentzel(1999a)认为,在适宜的条件下,不同种类的PAO可以完成缺氧磷吸收,但除磷效果明显较低,而且与好氧吸磷PAO相比,其利用进水中易生物降解COD的效率也低。 1.1 污水水质 要使BPR成功运行,污水进水越稳定越好,应避免进水量的剧烈波动。可采取在较长时间内逐渐增加的办法来提高负荷率(Shehab et al., 1996)。BPR系统对干扰很敏感,例如暴雨时的污水稀释(Brdjanovic et al., 1998),较长时间的干扰导致长达4周的恢复时间(Okada et al., 1992)。有机碳负荷较低的时期过后的1-2d,出水磷酸盐明显升高(Carucci et al., 1999a)。当进水有机组分从VFAs变为糖类,如葡萄糖,会诱导聚糖原微生物(GAOs=glycogen accumulating organisms)的增殖(Satoh et al., 1994)。 COD负荷过高将使BPR系统除磷效果恶化。Morgenroth and Wilderer(1998)在生物膜系统中发现,当进水乙酸盐浓度增加到400mg/L时,导致高效厌氧释磷(超过100mgP/L),提高了除磷效果。但是,当进水乙酸盐浓度进一步增加到600mg/L时,厌氧释磷却停止,除磷效果恶化。较高的进水乙酸盐浓度也会给BPR带来不利影响(Randall and Chapin, 1997)。据报道,污泥的COD-SS负荷较低时,具有较高的吸磷动力(Chuang et al., 1998)。当污泥的COD-SS负荷较高时,污泥将进水中的有机物转化为贮存物3-hydroxyvalerate(3HV),导致BPR恶化(Liu et al., 1996)。3HV是可被GAO细菌利用的主要贮存物。较高的进水COD/P 比也会降低BPR效果。在厌氧区内,如果COD未被消耗完毕,剩余的基质会导致好氧区内丝状菌的生长(Chang et al., 1996)。Furumai et al.(1999)发现,当污泥具备较高的生物除磷能力后,降低有机负荷导致BPR恶化,同时出水硝酸盐浓度升高。污泥负荷升高后,除磷效果恢复。 一般认为,要使得出水P水平<1.0mg/L,要求厌氧区进水的BOD5:TP>20:1,或COD:P>40:1(Randall et al., 1992)。当COD:P低于50时,单独的BPR就不满足出水磷要求(Pitman, 1991)。进水中每增加7.5mg乙酸盐/L,将使出水中减少1.0mgP/L(Manoharan, 1988)。 1.2. VFAs Barnard(1993)发现,去除1mg磷需要7-9mgVFA。而Oldham等(1994)利用VFAs使出水磷降低至0.2-0.3mg/L。VFAs可在现场生产,且运行费用低,不存在贮存和操作问题,这使其成为具有吸引力的营养物去除碳源(Manaraj and Elefsiniotis, 2001)。除VFAs外,更多的有机化合物,包括:羧酸类(carboxylic acids),糖类,和氨基酸,也可被富含PAO的污泥在厌氧条件下利用(Satoh et al., 1996)。Carucci等(1999b)发现,用其它基质,如葡萄糖和蛋白胨,代替VFA也可实现BPR。上述作者表明,葡萄糖的厌氧吸收可能实现BPR,也可能不会出现BPR。有关PAOs和GAOs的活动的研究结果还没有取得一致。这表明,有机化合物

钢铁中磷的测定磷钼蓝吸光光度法

钢铁中磷的测定——磷钼蓝吸光光度法 实 验 报 告 班级:应121-2 姓名:曲红玲 学号:201269503222 同组人:王双孙艺 指导老师:王美兰老师

一、实验目的 1、了解钢铁中磷的测定意义。 2、掌握钢铁中磷的测定方法。 3、掌握溶液的定量转移配制,称量等基本操作。 二、实验原理 1、磷的测定是钢铁分析的一个必测指标。磷是典型的非金属元素,它在钢铁及合 金中主要以固熔体的磷化铁(Fe 2P、Fe 3 P)形式存在,还有少量的磷酸盐等夹杂物, 其来源一般从矿石带入。磷是钢铁的有害元素,它使钢铁发生冷脆,降低冲击韧性和影响锻接,一般钢材P控制不大于0.06%,高级的合金钢在0.03%以下,在某些特殊钢中,为提高其耐磨性而只允许达0.10%左右,因此,钢铁及合金中磷的测定是一项必不可少的项目。 2、工厂实用分析方法有:滴定法,分光光度法。 分光光度法有钒钼黄和钼蓝法两类。钒钼黄是磷酸与钒酸、钼酸作用形成磷钒钼黄杂多酸直接测定。钼蓝法是将磷钼杂多酸还原成钼蓝后进行测定,所用还原剂有氯化亚锡、抗坏血酸、硫酸联胺和亚硫酸盐等。 3、分析方法 4、本实验采用磷钼蓝吸光光度法

试样用王水溶解,高氯酸冒烟以氧化磷,加钼酸铵使磷转化为磷钼配合离子。用氟化物掩蔽铁离子,以氯化亚锡还原成钼蓝.分光光度法测定。主要反应:3Fe3P+41HNO3→9Fe(NO3)3+3H3PO4+14NO↑+16H2O Fe3P+13HNO3→3Fe(NO3)3+3H3PO3+4NO↑+5H2O 4H3PO3+HClO4→4H3PO4+HCl H3PO4+12H2MoO4→H3(P(MoO10)4)+12 H2O H3(P(MoO10)4)+8H++4Sn2+→(2Mo2.4MoO3)2.H3PO4+4Sn4++4H2 生成的磷钼蓝络合物的蓝色深浅与磷的含量成正比,据此可比色测定磷的含量。 三、仪器与试剂 1、实验仪器 721分光光度计,分析天平,移液管(10ml,5ml,2ml,1ml),吸耳球,烧杯(100ml 5个,400ml 1个,500ml 1个),50ml容量瓶4个,100ml容量瓶2个,玻璃棒,电炉,量筒(10ml 4个,50ml 1个),秒表,滤纸,洗瓶。 2、实验试剂 王水(盐酸:硝酸=3:1) 高氯酸(浓) 亚硫酸钠溶液(10%) 钼酸铵溶液(5%) 6%的H2SO4溶液:量取466mL蒸馏水至500 mL烧杯中,再量取28 mL浓硫酸缓慢加入水中,用玻璃棒引流并搅拌, 6.氟化钠-氯化亚锡溶液:称取2.4g氟化钠溶解于100 mL水中,必要时加热,加入0.2g氯化亚锡,搅拌溶解,当天使用。 7.磷标准溶液(0.01mg/mL):取10 mL0.1mg/mL磷标准溶液该溶液放入100 mL 容量瓶中,并加水稀释至刻度,即得到0.01mg/mL磷标准溶液 8.铬高试样空白参比溶液(于剩余显色液中滴加3%KMnO4至呈红色放置1min 以上,滴加Na2SO3溶液至红色消退) 四、实验步骤:

污水处理生物除磷工艺.

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

污水化学除磷技术的现状和进展

收稿日期:2005-02-16 作者简介:刘云根(1978-),男,江西吉安人,硕士研究生, 研究方向为水污染控制。 污水化学除磷技术的现状和进展 刘云根1,江映翔2,周 平1 (1 昆明理工大学国土与资源工程学院,云南昆明650093;2 昆明理工大学环境科学与工程学院,云南昆明,650093) 摘 要:综述了化学除磷的各种方法,原理,特点及其在使用过程中的不足之处。在此基础上,提出了一种新的化学除磷技术 固定化活性氧化镧的化学 吸附除磷技术。通过将其和一般的化学除磷技术进行对比,介绍了该技术所具备的开发潜质。 关键词:活性氧化镧;固定化;除磷;污水处理 中图分类号:X506 文献标识码:A 文章编号:1006-947X (2005)增刊-0045-047 目前我国的水质污染情况十分严重。如何有效地进行污水治理,尤其是如何有效地控制水体中氮、磷的污染,已成为当今的一个棘手问题 [1] 。污 水除磷的方法有化学沉淀法、电解法、微生物法、水生物法、物理吸附法、膜技术处理法和土壤处理法等,但除磷效果比较好应用比较多的还是化学沉淀法和微生物法。1 化学沉淀除磷1 1 化学沉淀除磷概述 1762年发现的化学沉淀,1870年就已在英国成为一种污水处理方法。19世纪后期,英美等国广泛采用化学沉淀方法处理污水,但不久即被生物处理所取代,其原因是化学沉淀法引入新的化合物,而且该法的试剂消耗量大,运行费用高,产生大量且易造成二次污染的污泥,这些问题在当时不能得到很好的解决 [2][3] 。到20世纪80年代,为进 一步提高污水中的有机物和磷的去除程度,又开始重新重视化学沉淀。化学除磷的基本原理是通过投加化学药剂形成不溶性磷酸盐沉淀物,然后通过固液分离从污水中去除。磷的化学沉淀分为4个步骤:沉淀反应、凝聚作用、絮凝作用和固液分离。沉淀反应和凝聚过程在一个混合单元内进行,目的是使沉淀剂在污水中快速有效地混合。凝聚过程中,沉淀所形成的胶体和污水中原已存在的胶体凝 聚为直径在10~15 m 范围内的主粒子。絮凝过程中主粒子相互结合在一起形成更大的粒子 絮体,该亚过程的意义在于增加沉淀物颗粒的大小、使得这些颗粒能够通过典型的沉淀或气浮加以分离。固液分离可单独进行,也可与初沉污泥和二沉污泥的排放相结合。按工艺过程中化学药剂投加点的不同,磷酸盐沉淀工艺有前置沉淀、协同沉淀和后置沉淀3种类型。可用于化学除磷的金属盐有3种:钙盐、铁盐和铝盐。最常用的是石灰、硫酸铝、铝酸钠、三氯化铁、硫酸铁、硫酸亚铁和氯化亚铁。一般认为磷酸盐沉淀是配位基参与竞争的电性中和沉淀,即通过P0 4- 与铝离子、铁离子或钙离子的 化学沉淀作用加以去除[4]。1 2 化学沉淀除磷的特点1 2 1 除磷效果 化学沉淀法的除磷效率较高,一般高于生物除磷,可达75%~80%,且稳定可靠。一般情况下,出水TP 含量可满足1mg/L 的排放要求。1 2 2 pH 值 化学沉淀除磷过程中对水体的pH 值要求较高;如石灰沉淀法除磷过程中,pH 值在10 5左右才能使沉淀中所形成的磷酸钙溶解度降到较低的水平。石灰法除磷的pH 值通常应控制在10以上,但由于过高的pH 会抑制和破坏微生物的增殖和活性,因此石灰法不能用于协同沉淀。经过石灰法除磷的废水pH 值往往偏高,因此不利于达标排放。同样用硫酸铝、铝酸钠、三氯化铁、硫酸铁、硫酸亚铁和氯化亚铁等作为药剂在除磷过程中也会存在 45 云南环境科学 2005,24(增刊):45-48 CN53-1093/X ISSN1006-947X

总磷测定方法

总磷 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过0.2mg/L)可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1.方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷酸盐和总溶解性磷,如下图所示 消解 2.样品的采集和保存

总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进行分析。 水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1— 1.5kg/cm2)。 (2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4)50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤

(1)吸取25.00 ml混匀水样(必要时,酌情少取水样,并加水至 25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫 酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达1.0kg/cm2 (相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,待压力表指针将至零后,取出放冷。 (2)试剂空白和标准溶液系列也经同样的消解操作。 注意事项 (1)如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。 (2)一般民用压力锅,在加热至顶压阀出气孔冒气时,锅内温度为120℃。 (3)当不具备压力消解条件时,亦可在常压下进行,但操作步骤如下: 分取适量混匀水样(含磷不超过30μg)于150ml锥形瓶中,加水至50 ml,加数粒玻璃珠,加1 ml3+7硫酸溶液,5ml 5%过硫酸钾溶液,置电炉上加热煮沸,调节温度使保持微沸30—40min,至最后体积为10ml 止。放冷,加1滴酚酞指示剂,滴加氢氧化钠溶液至刚呈微红色,再滴加1mol/L硫酸溶液使红色腿去,充分摇匀。如溶液不澄清,则用滤纸过滤于50 ml比色管中,用水洗锥形瓶及滤纸,一并移入比色管中,加水至标线,供分析用。

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

钢铁中磷的测定磷钼蓝吸光光度法

钢铁中磷的测定磷钼蓝 吸光光度法 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

钢铁中磷的测定——磷钼蓝吸光光度法 实 验 报 告 班级:应121-2 姓名:曲红玲 学号:3222 同组人:王双孙艺

指导老师:王美兰老师 一、实验目的 1、了解钢铁中磷的测定意义。 2、掌握钢铁中磷的测定方法。 3、掌握溶液的定量转移配制,称量等基本操作。 二、实验原理 1、磷的测定是钢铁分析的一个必测指标。磷是典型的非金属元素,它在钢铁及 合金中主要以固熔体的磷化铁(Fe 2P、Fe 3 P)形式存在,还有少量的磷酸盐等夹杂 物,其来源一般从矿石带入。磷是钢铁的有害元素,它使钢铁发生冷脆,降低冲击韧性和影响锻接,一般钢材P控制不大于%,高级的合金钢在%以下,在某些特殊钢中,为提高其耐磨性而只允许达%左右,因此,钢铁及合金中磷的测定是一项必不可少的项目。 2、工厂实用分析方法有:滴定法,分光光度法。 分光光度法有钒钼黄和钼蓝法两类。钒钼黄是磷酸与钒酸、钼酸作用形成磷钒钼黄杂多酸直接测定。钼蓝法是将磷钼杂多酸还原成钼蓝后进行测定,所用还原剂有氯化亚锡、抗坏血酸、硫酸联胺和亚硫酸盐等。 3、分析方法

4、本实验采用磷钼蓝吸光光度法 试样用王水溶解,高氯酸冒烟以氧化磷,加钼酸铵使磷转化为磷钼配合离子。用氟化物掩蔽铁离子,以氯化亚锡还原成钼蓝.分光光度法测定。主要反应: 3Fe 3P+41HNO 3 →9Fe(NO 3 ) 3 +3H 3 PO 4 +14NO↑+16H 2 O Fe 3P+13HNO 3 →3Fe(NO 3 ) 3 +3H 3 PO 3 +4NO↑+5H 2 O 4H 3PO 3 +HClO 4 →4H 3 PO 4 +HCl H 3PO 4 +12H 2 MoO 4 →H 3 (P(MoO 10 ) 4 )+12 H 2 O H 3(P(MoO 10 ) 4 )+8H++4Sn2+→()+4Sn4++4H 2 生成的磷钼蓝络合物的蓝色深浅与磷的含量成正比,据此可比色测定磷的含量。 三、仪器与试剂 1、实验仪器 721分光光度计,分析天平,移液管(10ml,5ml,2ml,1ml),吸耳球,烧杯(100ml 5个,400ml 1个,500ml 1个),50ml容量瓶4个,100ml容量瓶2个,玻璃棒,电炉,量筒(10ml 4个,50ml 1个),秒表,滤纸,洗瓶。 2、实验试剂 王水(盐酸:硝酸=3:1) 高氯酸(浓) 亚硫酸钠溶液(10%) 钼酸铵溶液(5%) 6%的H 2SO 4 溶液:量取466mL蒸馏水至500 mL烧杯中,再量取28 mL浓硫酸缓 慢加入水中,用玻璃棒引流并搅拌, 6.氟化钠-氯化亚锡溶液:称取氟化钠溶解于100 mL水中,必要时加热,加入氯化亚锡,搅拌溶解,当天使用。

脱氮除磷工艺发展

污水脱氮除磷工艺的概述与展望 摘要:近年来,城市污水(以城市生活污水为主)中氮磷营养物的排放使受纳水体中藻类等植物大量繁殖,导致水体富营养化问题越来越严重,对城市污水进行脱氮除磷处理是防止水体富营养化的一种重要措施。目前来看,污水脱氮除磷的主要方法有物理方法、化学方法及生物方法。与物理法、化学法相比,生物法具有适用范围广、投资及运行费用低、效果稳定、综合处理能力强等优点,已成为污水脱氮除磷的最佳选择。本文对现有的生物脱氮除磷工艺进行了系统的介绍和分析,并对今后的发展方向作了展望。 关键词:城市污水,脱氮除磷,工艺技术 1.城市污水脱氮除磷现状 据近年来环境质量公报发布的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法。由于化学法与物理化学法成本高,对环境易造成二次污染,所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。具体的生物脱氮除磷工艺主要有:A2/O法同步脱氮除磷工艺、生物转盘同步脱氮除磷工艺、SBR工艺、氧化沟工艺、亚硝酸盐生物脱氮工艺、AB法及其变型工艺等。 污水经二级生化处理后,氮的去除率仅为20%~30%左右,磷的去除率则更低。因此脱氮除磷问题在二级处理普及率较高的工业化国家中受到了高度的重视。我国污水厂大多数以二级生物处理为主。二级生物处理厂去除对象主要是和SS,仅有极少数厂(如广州犬坦沙污水厂)有脱氮除磷功能。我国水体富营BOD 5 养化日趋严重,其原因一是城市污水处理率低;二是传统的活性污泥法仅能去除城市污水中20%~40%的氮以及5%~20%的磷。因此,大量兴建城市二级生物处理厂,不但投资大,运行费用高,并且脱氮除磷的效率也并不高。 在实际的工程设计中,根据受纳水体的要求和其他一些实际情况,生物脱氮除磷工艺可以分成以下几个层次 (1)以去除有机物、氨氮为目的的工艺。因对总氮无要求,可以采用生物硝

污水处理中的化学除磷

污水处理中的化学除磷公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5

相关文档