文档库 最新最全的文档下载
当前位置:文档库 › 用等效法解决带电体在匀强电场中的圆周运动问题

用等效法解决带电体在匀强电场中的圆周运动问题

用等效法解决带电体在匀强电场中的圆周运动问题
用等效法解决带电体在匀强电场中的圆周运动问题

用等效法解决带电体在匀强电场中的圆周运动问题

(1)等效思维方法就是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法。常见的等效法有“分解”“合成”“等效类比”“等效替换”“等效变换”“等效简化”等。

带电粒子在匀强电场和重力场组成的复合场中做圆周运动的问题是一类重要而典型的题型。对于这类问题,若采用常规方法求解,过程复杂,运算量大。若采用“等效法”求解,则过程比较简捷。

(2)解题思路:

①求出重力与电场力的合力,将这个合力视为一个“等效重力”。

②将a=F合

m

视为“等效重力加速度”。

③将物体在重力场中做圆周运动的规律迁移到等效重力场中分析求解。

[典例]在水平向右的匀强电场中,有一质量为m、带正电的小球,用长为l的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:

(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大?

(2)小球在B点的初速度多大?

对应练习:

1.如图所示,绝缘光滑轨道AB部分为倾角为30°的斜面,AC部分为竖直平面上半径为R的圆轨道,斜面与圆轨道相切。整个装置处于场强为E、方向水平向右的匀强电场中。现有一个质量为m的小球,

带正电荷量为q=3mg

3E

,要使小球能安全通过圆轨道,在O点的初速度应为多大?

2.(2012·合肥质检)如图所示,在竖直平面内固定的圆形绝缘轨道的圆心为O、半径为r、内壁光滑,A、B两点分别是圆轨道的最低点和最高点。该区间存在方向水平向右的匀强电场,一质量为m、带负电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过C点时速度最大,O、C连线与竖直方向的夹角

θ=60°,重力加速度为g。

(1)求小球所受到的电场力的大小;

(2)求小球在A点速度v0多大时,小球经过B点时对圆轨道的压力最小?

3.如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高h的A处由静止开始下滑,沿轨道ABC运动并进入圆环内做圆周运动。已知小球所受电场力是其重力的3/4,圆环半径为R,斜面倾角为θ=60°,s BC=2R。若使小球在圆环内能做完整的圆周运动,h至少为多少?(sin 37°=0.6,cos 37°=0.8,重力加速度为g)

补充材料:

1.如图所示,矩形区域内有水平方向的匀强电场,一个带负电的粒子从A点以某一速度v A射入电场中,最后以另一速度v B从B点离开电场,不计粒子所受的重力,A、B两点的位置如图所示,则下列判断中正确的是()

A.电场强度的方向水平向左

B.带粒子在A点的电势能小于在B点的电势能

C.粒子在电场中运动的全过程中,电势能最大处为B点

D.粒子在电场中运动的全过程中,动能最大处为B点

2.如图所示,在匀强电场中有一半径为R的圆,场强方向与圆所在平面平行,场强大小为E,电荷量为q的带正电微粒以相同的初动能沿着各个方向从A点进入圆形区域中,只在电场力作用下运动,从圆周上不同点离开圆形区域,其中从C点离开圆形区域的带电微粒的动能最大,图中O是圆心,AB是

圆的直径,AC是与AB成α角的弦,则()

A.匀强电场的方向沿AC方向B.匀强电场的方向沿CO方向

C.从A到C电场力做功为2qER cos αD.从A到C电场力做功为2qER cos2α

3.有一静电场,其电势随x坐标的改变而改变,变化的图线如图所示。若将一带负电的粒子(重力不计)从坐标原点O由静止释放,电场中P、Q两点的横坐标分别为1 mm、4 mm。则下列说法正确的是()

A.粒子将沿x轴正方向一直向前运动

B.粒子经过P点与Q点时,加速度大小相等、方向相反

C.粒子经过P点与Q点时,动能相等

D.粒子经过P点与Q点时,电场力做功的功率相等

4.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1、O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷。一带正电的粒子从很远处沿轴线飞来并穿过两环,则在带电粒子运动过程中()

A.在O1点粒子加速度方向向右

B.从O1到O2过程粒子电势能一直增加

C.轴线上O1点左侧存在一点,粒子在该点动能最小

D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1、O2连线中点对称

5.如图所示,空间存在一个竖直向下的匀强电场,一个带负电的小球以大小为v0的初速度由A端向右运动,到F端时的速度减小为v F;若以同样大小的初速

度由F端向左运动,到A端时的速度减小为v A。已知BC、

DE为两段圆弧面,从A到F是一段粗糙轨道,小球运动过

程中始终未离开该轨道,在B、C、D、E四连接处不损失能

量。比较v A、v F的大小,结论是()

A.v A>v F B.v A=v F C.v A

6.一平行板电容器长l =10 cm ,宽a =8 cm ,板间距d =4 cm ,在板左侧有一足够长的“狭缝”离子源,沿着两板中心平面,连续不断地向整个电容器射入离子,它们的比荷均为2×1010 C /kg ,速度均为4×106 m/s ,距板右端l /2处有一屏,如图甲所示,如果在平行板电容器的两极板间接上如图乙所示的交流电,由于离子在电容器中运动所用的时间远小于交流电的周期,故在离子通过电场的时间内电场可视

为匀强电场。试求:

(1)离子打在屏上的区域面积;

(2)在一个周期内,离子打到屏上的时间。

章末测验练习

一、选择题(本题共12小题,每小题5分,共60分,每小题至少有一个选项正确,选对但选不全得3分,有选错或不答的得0分)

1.下列是某同学对电场中的概念、公式的理解,其中正确的是( )

A .根据电场强度的定义式E =F q

,电场中某点的电场强度和试探电荷的电荷量成反比 B .根据电容的定义式C =Q U

,电容器的电容与所带电荷量成正比,与两极板间的电压成反比 C .根据真空中点电荷电场强度公式E =k Q r 2,电场中某点电场强度和场源电荷的电荷量无关 D .根据电势差的定义式U AB =W AB q

,带电荷量为1 C 正电荷,从A 点移动到B 点克服电场力做功为1 J ,则A 、B 点的电势差为-1 V

2.如图的四个电场中,均有相互对称分布的a 、b 两点,其中电势和场强都相同的是( )

3.如图所示,完全相同的两个金属小球A 、B 带有电荷量大小相等的电荷,相隔一定的距离,两球之间的相互吸引力大小为F ,今用第三个完全相同的不带电的金属小球C 先后与A 、B 两个球接触后移开,这时,A 、B 两个球之间的相互作用力大小是( )

A.18F

B.14F

C.38F

D.34

F 4.某电场的电场线分布如图所示,电场中有A 、B 两点,则以下判断正确的是( )

A .A 点的电场强度大于

B 点的电场强度,B 点的电势高于A 点的电势

B .若将一个电荷由A 点移到B 点,电荷克服电场力做功,则该电荷一定为负电荷

C .一个负电荷处于A 点的电势能大于它处于B 点的电势能

D .若将一个正电荷由A 点释放,该电荷将在电场中做加速度减小的加速运动

5.一带正电的粒子在电场中做直线运动的v -t 图象如图所示,t 1、t 2时刻分别经过M 、N 两点,已知运动过程中粒子仅受电场力作用,则下列判断正确的是( )

A .该电场可能是由某正点电荷形成的

B .M 点的电势高于N 点的电势

C .从M 点运动到N 点的过程中,电势能逐渐增大

D .粒子在M 点所受到的电场力大于在N 点所受到的电场力

6.如图所示,平行板电容器的两极板A 、B 接在电池的两极,一带正电的小球悬挂在电容器的内部,闭合开关S ,给电容器充电,稳定后悬线偏离竖直方向的夹角为θ,则( )

A .若保持开关S 闭合,A 板向

B 板靠近,则θ增大

B .若保持开关S 闭合,A 板向B 板靠近,则θ不变

C .若开关S 断开,A 板向B 板靠近,则θ不变

D .若开关S 断开,A 板向B 板靠近,则θ增大

7.绝缘水平面上固定一正点电荷Q ,另一质量为m 、电荷量为-q (q >0)的滑块(可看做点电荷)从a 点以初速度v 0沿水平面向Q 运动,到达b 点时速度减为零。已知a 、b 间距离为x ,滑块与水平面间的动摩擦因数为μ,重力加速度为g 。以下判断正确的是( )

A .滑块在运动过程中所受Q 的库仑力有可能大于滑动摩擦力

B .滑块在运动过程的中间时刻,速度的大小等于v 02

C .此过程中产生的内能为m v 2

02

D .Q 产生的电场中,a 、b 两点间的电势差为U ab =m (v 20-2μgx )2q

8.如图所示,以O 为圆心的圆周上有六个等分点a 、b 、c 、d 、e 、f 。等量正、

负点电荷分别放置在a 、d 两处时,在圆心O 处产生的电场强度大小为E 。现改变

a 处点电荷的位置,使O 处的电场强度改变,下列叙述正确的是( )

A .移至c 处,O 处的电场强度大小不变,方向沿Oe

B .移至b 处,O 处的电场强度大小减半,方向沿Od

C .移至e 处,O 处的电场强度大小减半,方向沿Oc

D .移至f 处,O 处的电场强度大小不变,方向沿Oc

9.如图所示,实线为电视机显像管主聚焦电场中的等势面。a 、b 、c 、d 为圆上的四个点,则下列说法中正确的是( )

A .a 、b 、c 、d 四点电势不等,但电场强度相同

B .一电子从b 点运动到c 点,电场力做的功为0.6 eV

C .若一电子从左侧沿中心轴线穿越电场区域,将做加速度先

增大后减小的加速直线运动

D .一束电子从左侧平行于中心轴线进入电场区域,将会从右侧平行于中心轴线穿出

10.如图所示,A 、B 、C 三个小球(可视为质点)的质量分别为m 、2m 、3m ,B 小球带负电,电荷量为q ,A 、C 两小球不带电(不考虑小球间的电荷感应),不可伸长的绝缘细线将三个小球连接起来悬挂在O 点,三个小球均处于竖直向上的匀强电场中,电场强度大小为E 。则以下说法正确的是( )

A .静止时,A 、

B 两小球间细线的拉力为5mg +qE

B .静止时,A 、B 两小球间细线的拉力为5mg -qE

C .剪断O 点与A 小球间细线瞬间,A 、B 两小球间细线的拉力为13

qE D .剪断O 点与A 小球间细线瞬间,A 、B 两小球间细线的拉力为16

qE 11.如图所示,在O 点处放置一个正电荷。在过O 点的竖直平面内的A 点,自由释放一个带正电的小球,小球的质量为m 、电荷量为q 。小球落下的轨迹如图中虚线所示,它与以O 为圆心、R 为半径的圆(图中实线表示)相交于B 、C 两点,O 、C 在同一水平线上,∠BOC =30°,A 距离OC 的竖直高度为h 。若小球通过B 点的速度为v ,则下列说法正确的是( )

A .小球通过C 点的速度大小是2gh

B .小球在B 、

C 两点的电势能不等

C .小球由A 点到C 点的过程中电势能一直都在减少

D .小球由A 点到C 点机械能的损失是mg (h -R 2-12

m v 2 12.如图所示,a 、b 、c 、d 是某匀强电场中的四个点,它们正好是一个矩形的四个顶点,ab =cd =L ,ad =bc =2L ,电场线与矩形所在平面平行。已知a 点电势为20 V ,b 点电势为24 V ,d 点电势为12 V ,一个质子从b 点以v 0的速度射入此电场,入射方向与bc 成45°角,一段时间后经过c 点。不计质子的重力,下列判断正确的是( )

A .c 点电势低于a 点电势

B .电场强度的方向由b 指向d

C .质子从b 运动到c ,所用的时间为2L v 0

D .质子从b 运动到c ,电场力做功为4 eV

二、非选择题(本题共4小题,共40分,按题目要求作答,解答题应写出必要的文字说明、方程式和演算步骤,有数值计算的要注明单位)

13.如图所示,分别在A、B两点放置点电荷Q1=+2×10-14C和Q2=-2×10

-14C。在AB的垂直平分线上有一点C,且AB=AC=BC=6×10-2 m。

(1)试求C点的电场强度。

(2)如果将一个电子放置在C点,它所受的库仑力的大小和方向如何?

14.如图所示,板长L=4 cm的平行板电容器,板间距为d=3 cm,板与水平夹角α=37°,两板所加电压为U=100 V。有一带负电液滴,带电量为q=3×10-10 C,以v0=1 m/s的水平速度自A板边缘水平进入电场,在电场中仍沿水平方向并恰好从B板边缘水平飞出,g取10 m/s2。求:

(1)液滴的质量;

(2)液滴飞出时的速度。

15.如图所示,两平行金属板A、B长8 cm,两板间距离d=8 cm,A板比B板电势高300 V,一带正电的粒子电荷量q=10-10 C,质量m=10-20 kg,沿电场中心线RO垂直电场线飞入电场,初速度v0=2×106m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域,然后进入固定在O点的点电荷Q形成的电场区域(设界面PS右侧点电荷的电场分布不受界面的影响),已知两界面MN、PS相距为12 cm,D是中心线RO与界面PS的交点,O点在中心线上,距离界面PS为9 cm,粒子穿过界面PS做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏bc上。(静电力常量k=9.0×109 N·m2/C2,粒子的重力不计)

(1)求粒子穿过界面MN时偏离中心线RO的距离为多

远?到达PS界面时离D点多远?

(2)在图上粗略画出粒子运动的轨迹。

(3)确定点电荷Q的电性并求其电荷量的大小。

16.如图所示,A、B为两块平行金属板,A板带正电荷、B板带负电荷。两板之间存在着匀强电场,两板间距为d、电势差为U,在B板上开有两个间距为L的小孔。C、D为两块同心半圆形金属板,圆心都在贴近B板的O′处,C带正电、D带负电。两板间的距离很近,两板末端的中心线正对着B板上的小孔,两板间的电场强度可认为大小处处相等,方向都指向O′。半圆形金属板两端与B板的间隙可忽略不计。现从正对B板小孔紧靠A板的O处由静止释放一个质量为m、电荷量为q的带正电的微粒(微粒

的重力不计),问:

(1)微粒穿过B板小孔时的速度多大?

(2)为了使微粒能在C、D板间运动而不碰板,C、D板间的电场强度大小

应满足什么条件?

(3)从释放微粒开始,经过多长时间微粒通过半圆形金属板间的最低点P

点?

一、带电粒子在匀强磁场中匀速圆周运动基本问题

一、带电粒子在匀强磁场中匀速圆周运动基本问题 找圆心、画轨迹是解题的基础。带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。 二、带电粒子在磁场中轨道半径变化问题 导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化。如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。②磁场变化导致半径变化。如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。③电量变化导致半径变化。如吸收电荷等。总之,由 看m、v、q、B中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。 (06年全国2)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。一个带负电的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件? 解析:粒子在整个过程中的速度大小恒为v,交替地在xy平面内B1与B2磁场区域中做匀速圆周运动,轨迹都是半个圆周。设粒子的质量和电荷量的大小分别为m和q,圆周运动的半径分别为和r2,有 r =①r2=② 1 分析粒子运动的轨迹。如图所示,在xy平面内, 粒子先沿半径为r1的半圆C1运动至y轴上离O点距离 为2 r1的A点,接着沿半径为2 r2的半圆D1运动至y轴的O1点,O1O距离 d=2(r2-r1)③ 此后,粒子每经历一次“回旋”(即从y轴出发沿半径r1 的半圆和半径为r2的半圆回到原点下方y轴),粒子y坐标就减 小d。 设粒子经过n次回旋后与y轴交于O n点。若OO n即nd满 足nd=2r1④ 则粒子再经过半圆C n+1就能够经过原点,式中n=1,2,3,……

带电体在磁场中的运动

带电在匀强磁场中的运动 (大庆实验中学2015-2016学年高二上学期期中)7.如图所示,一个带正电q 的小带电体处于一匀强磁场中,磁场垂直纸面向里,磁感应强度为B .带电体质量为m ,为了使它对水平绝缘面正好无压力,应( ) A .使 B 数值增大 B .使磁场以速率v=向上移动 C .使磁场以速率v=向右移动 D .使磁场以速率v= 向左移动 【考点】共点力平衡的条件及其应用;洛仑兹力. 【分析】小球能飘离平面的条件:竖直向上的洛伦兹力与重力平衡,由左手定则可知,当洛伦兹力竖直向上时,电荷向右运动,根据相对运动小球不动时,磁场相对小球向左运动. 【解答】解:小球能飘离平面的条件,竖直向上的洛伦兹力与重力平衡即:qvB=mg ,得: ,根据相对运动当小球不动 时,磁场相对小球向左运动.故选项D 正确,ABC 错误. 故选:D 【点评】考查了运动电荷在磁场中的运动,用左手定则判断洛伦兹力的方向,注意小球飘离地面的条件. (哈尔滨师大附属中2014-2015学年高二上学期期末)12.【多选】如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称。两导线通有大小相等、方向相反的电流。已知长直导线周围产生的磁场的磁感应强度B =k I r ,式中k 是常数,I 是导线中的电流、r 为点到导线的距离。一带负电的小球以初速度v 0从a 点出发沿连线运动到b 点。关于上述过程,下列说法正确的是 BC A .小球先做加速运动后做减速运动 B .小球一直做匀速直线运动 C .小球对桌面的压力先减小后增大 D .小球对桌面的压力先增大后减小 (大庆实验中学2015-2016学年高二上学期期末) 【多选】12. 如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够长,小球在运动过程中电荷量保持不变,杆上各处的动摩擦因数相同,则小球运动的速度v 与时间t 的关系图像可能是 BD (牡丹江一中2013-2014学年高二上学期期末)8.如图所示,空间存在垂直于纸面向里的磁感应强度为B 的匀强磁场,场内有一绝缘的足够长的直杆,它与水平面的倾角为θ,一带电量为-q 、质量为m 的带负电的小球套在直杆上,从A 点由静止沿杆下滑,小球与杆之间的动摩擦因数为μ,在小球以后运动的过程中,下列说法正确的是( B ) A .小球下滑的最大速度为v =mgsin θ μBq B .小球下滑的最大加速度为am =gsin θ C .小球的加速度一直在减小 D .小球的速度先增大后减小 (黑龙江某重点中学2014-2015届高二上学期期末) 【多选】 7. 如图所示,一带正电的滑环套在水平放置且足够长的粗糙绝缘杆上,整个装置处于方向如图所示的匀强磁场中.现给环施以一个水平向右的速度,使其运动,则滑环在杆上的运动情况可能是( ABD ) A.先做减速运动,后做匀速运动 B.一直做减速运动,直到静止 C.先做加速运动,后做匀速运动 D.一直做匀速运动 (大庆实验中学2012-2013学年高二11月月考) (安达市高级中学2013-2014学年高二下学期开学检测) 【多选】4. 如图所示,一个质量为m 、电荷量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中,不计空气阻力,现给圆环向右的初速度v 0,在以后的运动过程中,圆环运动的速度图象可能是下图中的( AD )

抛体运动与圆周运动 专题卷(全国通用)

物理二轮抛体运动与圆周运动专题卷(全国通用) 一、单项选择题 1.由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103 m/s,某次发射卫星飞经赤道上空时的速度为1.55×103m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为(B) A.西偏北方向,1.9×103 m/s B.东偏南方向,1.9×103 m/s C.西偏北方向,2.7×103 m/s D.东偏南方向,2.7×103 m/s 解析:设当卫星在转移轨道上飞经赤道上空与同步轨道高度相同的某点时,速度为v1,发动机给卫星的附加速度为v2,该点在同步轨道上运行时的速度为v.三者关系如图,由图知附加速度方向为东偏南,由余弦定理知v22=v21+v2-2v1v cos30°,代入数据解得v2≈1.9×103 m/s.选项B正确. 2.(2017·新课标全国卷Ⅰ)发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的球越过球

网,速度较小的球没有越过球网.其原因是(C) A.速度较小的球下降相同距离所用的时间较多 B.速度较小的球在下降相同距离时在竖直方向上的速度较大C.速度较大的球通过同一水平距离所用的时间较少 D.速度较大的球在相同时间间隔内下降的距离较大 解析:发球机从同一高度水平射出两个速度不同的乒乓球,根据 平抛运动规律,竖直方向上,h=1 2gt 2,可知两球下降相同距离h所 用的时间是相同的,选项A错误;由v2y=2gh可知,两球下降相同距离h时在竖直方向上的速度v y相同,选项B错误;由平抛运动规律,水平方向上,x=v t,可知速度较大的球通过同一水平距离所用的时间t较少,选项C正确;由于做平抛运动的球在竖直方向的运动为自由落体运动,两球在相同时间间隔内下降的距离相同,选项D 错误. 3.(2018·山东潍坊统一考试)如图所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离 为x,v水与x的关系为v水=3 400x(m/s)(x的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法中正确的是(B) A.小船渡河的轨迹为直线 B.小船在河水中的最大速度是5 m/s C.小船在距南岸200 m处的速度小于其在距北岸200 m处的速

知识讲解 带电体在电场中的运动基础

物理总复习:带电体在电场中的运动 编稿:李传安审稿:张金虎 【考纲要求】 1、知道带电体在电场中的运动特点; 2、会综合力学知识分析带电体在电场中的运动问题; 3、会用能量的观点处理带电体在电场中的运动问题。 【考点梳理】 考点、带电体在电场中的运动 要点诠释: 1、在复合场中的研究方法 (1)牛顿运动的定律+运动学公式 (2)能量方法:能量守恒定律和功能关系 动量方法:动量守恒定律和动量定理 2、电场中的功能关系: (1)只有电场力做功,电势能和动能之和保持不变。 (2)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变。 (3)除重力之外,其他各力对物体做的功等于物体机械能的变化。 (4)电场力做功的计算方法 ??cosFlW?cos?qElW。①由公式计算,此公式只在匀强电场中使用,即 W?qU计算,此公式适用于任何形式的静电场。②用公式ABAB③静电场中的动能定理:外力做的总功(包括电场力做的功)等于动能的变化。 由动能定理计算电场力做的功。 【典型例题】 类型一、带电物体在静电场和重力场的复合场中运动时的能量守恒 (1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能 E?E+E?恒定值量守恒,即KPG电P(2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力 势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。 例1、地球表面附近某区域存在大小为150 N/C、方向竖直向下的电场.一质量为1.00×47--C 的小球从静止释放,在电场区域内下落10.0 m、带电荷量为-1.00×1010.对此过kg2,忽略空气阻力)((重力加速度大小取9.80 m/s) 程,该小球的电势能和动能的改变量分别为43--J ×10 J和9.95×A.-1.501043--J ×10 J和10B.1.50×9.9543--J 10和9.65×C.-1.50×10 J43--J 109.65×1.50×10 J和D.

带电粒子在圆形边界匀强磁场中的圆周运动例析

带电粒子在圆形边界匀强磁场中的圆周运动例析 (浙江永康二中 吕未寒 321300) 带电粒子以一定速度垂直射入匀强磁场中,洛伦兹力充当向心力,粒子将做匀速圆周运动。解决带电粒子在圆形匀强磁场中的偏转解题基本思路:(四项基本原则) ●画轨迹——根据初速度和受力方向画 ●定圆心——根据两条直径相交在圆心定 ●找关系——找力学关系、线度关系、角度关系 ●求变量——求半径或长度、周期或时间、其它物理量 解题时画好辅助线(半径、速度、轨迹圆的圆心、连心线)。偏转角度θ可由R r =2 tan θ求出,经历时间由qB m t θ=得出。注意:带电粒子运动具有对称性,射出线的反向 延长线必过磁场圆的圆心。 带电粒子在磁场中做匀速圆周运动的三个基本公式: ①洛伦兹力提供向心力 r m v qvB 2 = ②轨迹半径 ,qB m v r = ③周期 qB m T π2= (T 与r ,v 无关) 一、 临界值问题 例题1.如图所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向外的匀强磁场,磁感应强度为B 。圆心O 放射源,放出粒子的质量为m ,带电量为q ,假设粒子速度方向都和纸面平行。 (1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 则初速度的大小是多少? (2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少? 解:(1)如图所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得 331r R = (2分) 由1 2 11R v m B qv =(2分)

得m Bqr v 331= (2分) (2)设粒子在磁场中的轨道半径为R 2, 则由几何关系 22 222)2(r R R r +=- (1分) 得r R 4 3 2= (1分) 由 2 22 2R v m B qv = (2分) 得m Bqr v 432= (1分) 例题2.甲图为质谱仪的原理图.带正电粒子从静止开始经过电势差为U 的电场加速后,从G 点垂直于MN 进入偏转磁场.该偏转磁场是一个以直线MN 为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B ,带电粒子经偏转磁场后,最终到达照相底片上的H 点.测得G 、H 间的距离为 d ,粒子的重力可忽略不计. (1)设粒子的电荷量为q ,质量为m ,试证明该粒子的比荷为:22 8q U m B d =; (2)若偏转磁场的区域为圆形,且与MN 相切于G 点,如图乙所示,其它条件不变。要保证上述粒子从G 点垂直于MN 进 入偏转磁场后不能..打到MN 边界上(MN 足够长),求磁场区域的半径应满足的条件。 解:(1)粒子经过电场加速,进入偏转磁场时速度为v 有 221mv qU = ① (1分) 进入磁场后做圆周运动,轨道半径为r r v m qvB 2 = ② (2分) 打到H 点有 2d r = ③ (1分) 由①②③得 228d B U m q = (2)要保证所有粒子都不能打到MN 边界上,粒子在磁场中运动偏角小于90°,临界状态为90°,如图所示,磁场区半径 乙 N M G

带电粒子在均匀电磁场中的运动

目 录 一、引言 ........................................................................................ 1 二、认识等离子体 ........................................................................ 1 三、单粒子轨道运动 .................................................................... 5 3.1带电粒子在均匀电场中的运动学特性 .. (5) 3.1.10v 与E 垂直或平行时带电粒子的运动轨迹 (5) 3.1.20v 与E 成任一夹角时带电粒子的运动轨迹 (5) 3.2带电粒子在均匀磁场中的运动学特性 .......................... 6 3.2.1洛伦兹力 .. (6) 3.2.2粒子的初速度0v 垂直于B ...................................... 7 3.2.3粒子的初速度0v 与B 成任一夹角时 (8) 3.3带电粒子在均匀电磁场中的运动学特性 (10) 3.3.10v 、E 和B 两两相互垂直 (10) 3.3.20v 与E 成任一夹角,B 垂直它们构成的平面 (12) 四、小结 ...................................................................................... 16 参考文献 .. (16)

主题三抛体运动和圆周运动

主题三 抛体运动与圆周运动 (第1课时 运动的合成与分解) Ⅰ.考点解读 [考纲要求] 1.认识认识曲线运动的性质和物体做曲线运动的条件。 2.理解和掌握运动的合成和分解的规律和方法。 [要点精析] 一、曲线运动 1.物体做曲线运动的条件: ⑴物体具有初速度; ⑵一定受到合外力的作用; ⑶合外力的方向必需与速度的方向不在同一直线上. 2.曲线运动的速度方向: ⑴在某时刻(或某位置)的速度方向沿着运动轨迹的切线方向; ⑵曲线运动的速度方向时刻改变. 3.曲线运动的运动性质: ⑴曲线运动所受合力不为零,故曲线运动是 变速 运动; ⑵曲线运动物体受的合力(或加速度)的方向总是指向运动轨迹曲线的内侧.当合力与速 度方向夹角小于900时,速度增加;当合力与速度方向夹角大于900时,物体运动的速度减小。 二、运动的合成与分解 1.合运动与分运动:在物理学上,如果一个物体实际发生的运动产生的效果跟另外两个运动共同产生的效果相同,我们就把这一物体实际发生的运动叫做这两个运动的合运动;这两个运动叫做这一实际运动的分运动. 2.合运动与分运动的特性: ⑴分运动具有独立性:一个物体同时参与几个分运动.任一个分运动的存在,对其它分运动的规律没有干扰和影响; ⑵分运动与合运动具有等时性:合运动与分运动是在同一时间内进行的,即经历时间相等; ⑶分运动与合运动具有等效性:合运动跟几个分运动共同叠加的效果相同。 3.运动的合成与分解: ⑴求几个已知分运动的合运动的过程叫运动的合成 ;已知合运动求分运动的过程叫运动的分解; ⑵运动的合成与分解包括位移、速度、加速度的合成与分解; ⑶位移、速度、加速度的合成与分解,都遵循平行四边形定则. 三、方法与思路 1.结合曲线运动的条件正确理解力和运动的关系: ⑴若0=合F (即0=a ),则物体静止或做匀速直线运动; ⑵若0≠合F (即0≠a ),且与0v 同一直线,则物体做变速直线运动:

64知识讲解 带电体在电场中的运动(提高)

物理总复习:带电体在电场中的运动 【考纲要求】 1、知道带电体在电场中的运动特点; 2、会综合力学知识分析带电体在电场中的运动问题; 3、会用能量的观点处理带电体在电场中的运动问题。 【考点梳理】 考点、带电体在电场中的运动 要点诠释: 1、在复合场中的研究方法 (1)牛顿运动的定律+运动学公式 (2)能量方法:能量守恒定律和功能关系 动量方法:动量守恒定律和动量定理 2、电场中的功能关系: (1)只有电场力做功,电势能和动能之和保持不变。 (2)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变。 (3)除重力之外,其他各力对物体做的功等于物体机械能的变化。 (4)电场力做功的计算方法 ①由公式cos W Fl θ=计算,此公式只在匀强电场中使用,即cos W qEl θ=。 ②用公式AB AB W qU =计算,此公式适用于任何形式的静电场。 ③静电场中的动能定理:外力做的总功(包括电场力做的功)等于动能的变化。 由动能定理计算电场力做的功。 【典型例题】 类型一、带电物体在静电场和重力场的复合场中运动时的能量守恒 (1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能 量守恒,即 +PG K P E E E +=电恒定值 (2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力 势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。 例1、如图所示,实线为电场线,虚线为等势面,且相邻两等势面的电势差相等,一个正电荷在等势面U 3上时具有动能4 210J -?,它运动到等势面U 1时,速度为零,令U 2=0,那么该点电荷的电势能为5 410J -?时,其动能大小是多少?(设整个运动过程中只有电场力做功) 【思路点拨】(1)确定每两个等势面之间的电势能的差值,(2)根据零势面,确定电势能零点,这是同一个等势面;(3)根据有一个已知量的等势面(零势面)确定总能量,(4)所求任意点的某能量就等于总能量减去这点的一个已知能量。 【答案】5 610J -?

等效法处理电场中的圆周运动

例1 光滑绝缘的圆形轨道竖直放置,半径为R ,在其最低点A 处放一质量为m 的带电小球,整个空间存在匀强电场,使小球受到电场力的大小为m g 33,方向水平向右,现给小球一个水平向右的初速度0v ,使小球沿轨道向上运动,若 小球刚好能做完整的圆周运动,求0v . 例2如图所示,半径R = 0.8m 的光滑绝缘导轨固定于竖直平面内,加上某一方向的匀强电场时,带正电的小球沿轨道内侧做圆周运动.圆心O 与A 点的连线与竖直成一角度θ,在A 点时小球对轨道的压力N = 120N ,此时小球的动能最大.若小球的最大动能比最小动能多32J ,且小球能够到达轨道上的任意一点(不计空气阻力).则: (1)小球的最小动能是多少? (2)小球受到重力和电场力的合力是多少? (3)现小球在动能最小的位置突然撤去轨道,并保持其他量都不变, 若小球在0.04s 后的动能与它在A 点时的动能相等,求小球的质量. 例3、如图12所示为一真空示波管的示意图,电子从灯丝K 发出(初速度可忽略不计),经灯丝与A 板间的电压U 1加速,从A 板中心孔沿中心线KO 射出,然 后进入两块平行金属板M 、N 形成的偏转电场中(偏转电场可视为匀强电场),电子进入M 、N 间电场时的速度与电场方向垂直,电子经过电场后打在荧光屏上的P 点。 已知M 、N 两板间的电压为U 2,两板间的距离为d ,板长为L ,电子的 质量为m ,电荷量为e ,不计电子受到的重力及它 们之间的相互作用力。 (1)求电子穿过A 板时速度的大小; (2)求电子从偏转电场射出时的侧移量; (3)若要使电子打在荧光屏上P 点的上方,可采 取哪些措施?

高三物理 抛体运动和圆周运动二轮专题复习:1.运动的合成与分解Word版含解析

1.运动的合成与分解 一、基础知识 1.物体做曲线运动的条件:F合与v不共线. 2.研究曲线运动的方法:运动的合成与分解. 3.运动的合成与分解的运算法则:平行四边形定则或三角形定则. 4.合运动与分运动的三个特性:等时性、独立性、等效性. 5.特别注意:合运动就是物体的实际运动. 二、解决运动的合成与分解的一般思路 1.明确合运动或分运动的运动性质. 2.确定合运动是在哪两个方向上的合成或分解. 3.找出各个方向上已知的物理量(速度、位移、加速度等). 4.运用力与速度的关系或矢量的运算法则进行分析求解. 三、典型例题 考点1 运动的合成与分解的理解 [例1] 如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成θ角的斜面向右上以速度v匀速运动,运动中始终保持悬线竖直,橡皮的速度方向与水平方向的夹角为α,则( ) A.若θ=0,则α随钉尖的速度v的增大而增大 B.若θ=0,则α随钉尖的速度v的增大而减小 C.若θ=45°,钉尖的速度为v,则橡皮速度为22v D.若θ=45°,钉尖的速度为v,则橡皮速度为2+2v 解析若θ=0,则橡皮的运动可视为水平方向随钉尖一起匀速,竖直方向细线的缩短长度等于水平方向细线增加的长度,即竖直方向也做与钉尖运动速率相同的匀速运动,所以橡皮的速度方向与水平方向的夹角α=45°,与钉尖的速度v无关,选项A、B错;若θ=45°, 钉尖的速度为v,则橡皮在水平方向的分速度为 2 2 v,而在t时间内沿竖直方向向上运动的距 离为y=vt+ 2 2 vt,即竖直方向的分速度为 ? ? ? ? ? 1+ 2 2 v,所以橡皮速度为2+2v,C错、D

带电粒子在磁场中的运动习题含答案

带电粒子在磁场中的运动 练习题 1. 如图所示,一个带正电荷的物块m 由静止开始从斜面上A 点下滑,滑到水平面BC 上的D 点停下来.已知物块与斜面及水平面间的动摩擦因数相同,且不计物块经过B 处时的机械能损失.先在ABC 所在空间加竖直向下的匀强电场,第二次让物块m 从A 点由静止开始下滑,结果物块在水平面上的D′点停下来.后又撤去电场,在ABC 所在空间加水平向里的匀强磁场,再次让物块m 从A 点由静止开始下滑,结果物块沿斜面滑下并在水平面上的D″点停下来.则以下说法中正确的是( ) A .D′点一定在D 点左侧 B .D′点一定与D 点重合 C .D″点一定在 D 点右侧 D .D″点一定与D 点重合 2. 一个质量为m 、带电荷量为+q 的圆环,可在水平放置的足够长的粗 糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中.现给圆环向右初速度v 0,A . B . C . D . 子从ad 的中点垂直于电场和磁场方向射入,恰沿直线从bc 边的中点P 射出,若撤去磁场,则粒子从c 点射出;若撤去电场,则粒子将(重力不计)( ) A .从b 点射出 B .从b 、P 间某点射出 C .从a 点射出 D .从a 、b 间某点射出 4. 如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a 、b 、c 带有等量同种电荷,其中a 静止,b 向右做匀速运动,c 向左匀速运动,比较它们的重力Ga 、Gb 、Gc 的大小关系,正确的是( ) A .Ga 最大 B .Gb 最大 C .Gc 最大 D .Gb 最小 5. 如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。现将带电粒子的速度变为v /3,仍从A 点射入磁场,不计重力,则粒子在磁场中的运动时间变为 ( ) A.t ?2 1 B. t ?2 C. t ?3 1 D. t ?3 6. 如图所示,在xOy 平面内存在着磁感应强度大小为B 的匀强磁场,第一、二、四象限内的磁场方向垂直纸面向里,第三象 限内的磁场方向垂直纸面向外.P (-L 2,0)、Q (0,-L 2)为坐标轴上的两个

第三章 《抛体运动》全章测试题

第三章 《抛体运动》全章测试题 一、选择题:(共10小题,每小题4分,共40分) 1.一质点在某段时间内做曲线运动,则在这段时间内 ( ) A .速度一定在不断地改变,加速度也一定在不断地改变 B .速度一定在不断地改变,加速度可以不变 C .速度可以不变,加速度一定在不断改变 D .速度和加速度都可以不变 2.如图3-3所示,质点通过位置P 时的速度、加速度及P 附近的一段轨迹都在图上标出,其中可能正确的是 ( ) A .①② B .③④ C .①③ D .②④ 3.下列说法中错误的是 ( ) A .两个分运动是直线运动,则它们的合运动也一定是直线运动 B .两个分运动是匀速直线运动,则它们的合运动也一定是匀速直线运动 C .两个分运动是初速度为零的匀加速直线运动,则它们的合运动也一定是初速度为零的 匀加速直线运动 D .两个分运动是初速度不为零的匀加速直线运动,则它们的合运动可能是匀加速曲线运 动 4.在抗洪抢险中,战士驾驶摩托艇救人,假设江岸是平直的,洪水沿江向下游流去的速度为v 1,摩托艇在静水中的速度为v 2,如图3-4所示.战士救人地点A 离岸边最近处的距离为d .如战士想在最短时间内将人送上岸,则摩托艇登陆的地点离O 点的距离为 ( ) 图3-3 ③ ④ ① ② A O 图3-4

A . 21 22 2v v dv B .0 C .21/v dv D .12/v dv 5.一个小孩在蹦床上做游戏,他从高处落到蹦床上后,又被弹起到原高度.小孩从高处开始下落到弹回的整个过程中,他的运动速度随时间变化的图象如图3-5所示.图中oa 和cd 段为直线.则根据此图象可知,小孩和蹦床相接触的时间为( ) A .t 2~t 4 B .t 1~t 4 C .t 1~t 5 D .t 2~t 5 6.从距地面高为h 处水平抛出质量为M 的小球,小球落地点与抛出点的水平距离刚好等于h .不计空气阻力,抛出小球的速度大小为( ) A .2/gh B .gh C .gh 2 D .gh 3 7.甲、乙两球在同一时刻从同一高度,甲球水平抛出,乙球自由下落.则下列说法中正确的是( ) A .甲球先落到地面 B .落到地面时两球的速率一样大 C .落到地面时两球的速度方向相同 D .两球的加速度相同,且同时落到地面上 8.在距水平地面不同高度以相同的水平初速度分别抛出甲、乙两物体,若两物体由抛出点到落地点的水平距离之比为1:3,则甲、乙两物体抛出点到地面的高度之比为( ) A .1:1 B .2:1 C .3:1 D .4:1 9.消防队员手持水枪灭火,水枪跟水平面有一仰角.关于水枪射出水流的射高和射程下列说法中正确的是( ) A .初速度大小相同时,仰角越大,射程也越大 图3-5

带电粒子在电场中的运动知识点精解

带电粒子在电场中的运动知识点精解 1.带电粒子在电场中的加速 这是一个有实际意义的应用问题。电量为q的带电粒子由静止经过电势差为U的电 场加速后,根据动能定理及电场力做功公式可求得带电粒子获得的速度大小为 可见,末速度的大小与带电粒子本身的性质(q/m)有关。这点与重力场加速重物是不 同的。 2.带电粒子在电场中的偏转 如图1-36所示,质量为m的负电荷-q以初速度v0平行两金属板进入电场。设 两板间的电势差为U,板长为L,板间距离为d。则带电粒子在电场中所做的是类似 平抛的运动。 (1)带电粒子经过电场所需时间(可根据带电粒子在平行金属板方向做匀速直线 运动求) (2)带电粒子的加速度(带电粒子在垂直金属板方向做匀加速直线运动) (3)离开电场时在垂直金属板方向的分速度 (4)电荷离开电场时偏转角度的正切值 3.处理带电粒子在电场中运动问题的思想方法 (1)动力学观点

这类问题基本上是运动学、动力学、静电学知识的综合题。处理问题的要点是要注意区分不同的物理过程,弄清在不同物理过程中物体的受力情况及运动性质,并选用相应的物理规律。 能用来处理该类问题的物理规律主要有:牛顿定律结合直线运动公式;动量定理;动量守恒定律。 (2)功能观点 对于有变力参加作用的带电体的运动,必须借助于功能观点来处理。即使都是恒力作用问题,用功能观点处理也常常显得简洁。具体方法常用两种: ①用动能定理。 ②用包括静电势能、能在的能量守恒定律。 【说明】该类问题中分析电荷受力情况时,常涉及“重力”是否要考虑的问题。一般区分为三种情况: ①对电子、质子、原子核、(正、负)离子等带电粒子均不考虑重力的影响; ②根据题中给出的数据,先估算重力mg和电场力qE的值,若mg<

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

电场中的圆周运动.

《电场中的圆周运动》 一、带电粒子在电场中的偏转(重点知识回顾) 设带电粒子质量为m,带电荷量为q,以速度v0垂直于电场线方向射入匀强偏转电场,偏转电压为U,两极板间距为d,若粒子飞离偏转电场时的偏距为y,偏转角为θ,求:速度的偏转角的tan θ,侧位移y,电荷飞出电场时的动能E K (1)方法一:用运动的分解 tan θ= y=E K= (2)方法二:动能定理求E K 二、怎样求带电粒子在电场中的圆周运动? 练习:1、如图所示,一条长为l的细线,上端固定,下端拴一质量为m的带电小球,将它置于一匀强电场中,电场强度大小为E,方向是水平的,已知当细线离开竖直位置的偏角为α时,小球处于平衡. (1)小球带何种电荷?求出小球所带电量. (2)如果使细线的偏角由α增大到?,然后将小球由静止开始释放,则?应为多大,才能使细线到达竖直位置时小球的速度刚好为零? 2、如图,半径为R的光滑圆环,竖直置于场强为E的水平方向的匀强电场中,今有质量为m,带电量为+q的空心小球穿在环上,求当小球由顶点A从静止开始下滑到与圆心O等高的位置B时,小球对环的压力?.N=2mg+3qE 方向水平向右

3、如图所示,质量为m,带电量为q(q>0)的小球,用一长为L 的绝缘细线系于一足够大的匀强电场中的O 点,电场方向竖直向下,电场强度为E ,为使带电小球能在竖直面内绕O 点作完整的圆周运动,求:(1)在最低点时施给小球水平初速度v 0至少是多少?(2)小球在运动中细线受到的最大拉力是多少?(3)小球从B 点运动到A 点的过程中电势能和机械能的改变量。 4、如图所示,在竖直向下的匀强电场中有一绝缘的光滑轨道,一个带负电的小球从斜轨道上的A 点由静止释放,沿轨道下滑,已知小球的质量为m 、电荷量为-q ,匀强电场的场强大小为E ,斜轨道的倾角为α(小球的重力大于其所受的电场力) (1)求小球沿斜轨道下滑的加速度的大小; (2)若使小球通过圆轨道顶端的B 点,A 点距水平地面的高度h 至少应为多大? (3)若小球从斜轨道h =5R 处由静止释放,假设其能够通过B 点,求在此过程中小球机械能的改变量。 5、如图所示,BCDG 是光滑绝缘的34 圆形轨道,位于竖直平面内,轨道半径为R ,下端与水平绝缘轨道在B 点平滑连接,整个轨道处在水平向左的匀强电场中.现有一质量为m 、带 正电的小滑块(可视为质点)置于水平轨道上,滑块受到的电场力大小为34 mg ,滑块与水平轨道间的动摩擦因数为0.5,重力加速度为g. (1)若滑块从水平轨道上距离B 点x =3R 的A 点由静止释放,滑块到达与圆心O 等高的C 点时速度为多大? (2)在(1)的情况下,求滑块到达C 点时受到轨道的作用力大小.

抛体运动 知识要点

抛体运动知识要点 一、匀变速直线运动的特征和规律: 匀变速直线运动:加速度是一个恒量、且与速度在同一直线上。 基本公式:、、 (只适用于匀变速直线运动)。 当v0=0、a=g(自由落体运动),有 v t=gt 、、、。 当V0竖直向上、a= -g(竖直上抛运动)。 注意:(1)上升过程是匀减速直线运动,下落过程是匀加速直线运动。 (2)全过程加速度大小是g,方向竖直向下,全过程是匀变速直线运动 (3)从抛出到落回抛出点的时间:t总= 2V0/g =2 t上=2 t下 (4)上升的最大高度(相对抛出点):H=v02/2g (5)*上升、下落经过同一位置时的加速度相同,而速度等值反向 (6)*上升、下落经过同一段位移的时间相等。 (7)*用全程法分析求解时:取竖直向上方向为正方向,S>0表示此时刻质 点的位置在抛出点的上方;S<0表示质点位置在抛出点的下方。v t >0表示方向向上;v t <0表示方向向下。在最高点a=-g v=0。 二、运动的合成和分解: 1.两个匀速直线运动的物体的合运动是___________________运动。一般来说,两个直线运动的合运动并不一定是____________运动,也可能是_____________运动。合运动和分运动进行的时间是__________的。 2.由于位移、速度和加速度都是______量,它们的合成和分解都按照_________法则。 三、曲线运动: 曲线运动中质点的速度沿____________方向,曲线运动中,物体的速度方向随时间而变化,所以曲线运动是一种__________运动,所受的合力一定. 必具有_________。物体做曲线运动的条件是________ ________ 。 四、平抛运动(设初速度为v0): 1.特征:初速度方向____________,加速度____________。是一种。。。2.性质和规律: 水平方向:做______________运动,v X=v0、x=v0t。 竖直方向:做______________运动,v y=gt=、y=gt2/2=。 合速度:V= ,合位移S= 。 3.平抛运动的飞行时间由决定,与无关。 五、斜抛运动(设初速度为v0,抛射角为θ):

《带电粒子在磁场中的运动》教案示例

《带电粒子在磁场中的运动》教案示例 设计思想 本节课是一节新常规课,组织方式为课堂教学。在设计本课时,遵循了新课程理念中“学生为主体、教师为主导”的原则,体现了传统媒体、现代媒体与课堂教学恰当整合的思想。 一.学生主体、教师主导的实现 主要通过恰当地创设教学情景来体现学生的主体地位。本节课共创设了以下几个情景: 1.在观察电子射线管中电子在磁场中的圆周运动的基础上,提出:从理论上如何分析、论证带电粒子垂直射入匀强磁场中时,为什么是匀速圆周运动?引导学生分析、推理、论证。 2.在得出带电粒子做匀速圆周的结论后,提出:粒子在多大的圆周上运动?运动一周的时间是多少?引导学生运用牛顿第二定律,结合圆周运动的知识,推导带电粒子运动的轨道半径和运动周期。 3.最后,提出:带电粒子在磁场中运动规律在实际中有什么应用?引导学生运用所学知识,分析质谱仪、回旋加速器的原理。 在整个课堂教学过程中,通过教师的引导,学生观察实验;思考回答问题;分析、推理、论证;完成实验原理设计,在这一系列的活动中,学生始终处于主体地位,是活动的主体。应用所学知识解决实际问题的过程,充分调动了学生的主体参与,而教师则始终主导着课堂的进行,体现教师的主导作用。 二.现代媒体与课堂教学的整合 在现代课堂教学中,现代媒体已经成为一个重要的支持教学的工具,媒体与课堂教学的整合一般有以下几种方式: 1.模拟演示/多媒体展示 2.情境化学习 3.微型世界 4.虚拟实验 具体采用哪种整合方式应视教学目标而定。在本课的教学中,目标是让学生建立带电粒子垂直进入匀强磁场时的运动图景,掌握带电粒子的运动规律及其应用。图景的建立是难点,为了突破这个难点,我设计了一个模拟带电粒子在磁场中运动的软件,在学生观察了电子射线管中电子的圆周运动后,再让学生观察模拟运动,帮助学生建立动态图景,突破了思维障碍。为了展示质谱仪和螺旋加速器的原理,我制作了相应的课件,动态演示它们的工作原理,帮助学生建立直观的图景,降低了教学难度。在整堂的教学过程中,传统媒体、现代媒体有机融合,相辅相成,使课堂教学行云流水,提高了课堂教学质量和教学效果。 教学设计

高考物理二轮复习专题抛体运动和圆周运动圆周运动问题学案

3.圆周运动问题 一、基础知识 1.解决圆周运动力学问题的关键 (1)正确进行受力分析,明确向心力的来源,确定圆心以及半径. (2)列出正确的动力学方程F =m v 2r =mr ω2 =m ωv =mr 4π2 T 2.结合v =ωr 、T =2πω=2πr v 等 基本公式进行求解. 2.抓住“两类模型”是解决问题的突破点 (1)模型1——水平面内的圆周运动,一般由牛顿运动定律列方程求解. (2)模型2——竖直面内的圆周运动(绳球模型和杆球模型),通过最高点和最低点的速度常利用动能定理(或机械能守恒)来建立联系,然后结合牛顿第二定律进行动力学分析求解. 3.竖直平面内圆周运动的两种临界问题 (1)绳球模型:小球能通过最高点的条件是v ≥gR . (2)杆球模型:小球能通过最高点的条件是v ≥0. 二、典型例题 考点1 水平面内的圆周运动问题 [例1] (多选)如图,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上, a 与转轴OO ′的距离为l , b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重 力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( ) A .b 一定比a 先开始滑动 B .a 、b 所受的摩擦力始终相等 C .ω= kg 2l 是b 开始滑动的临界角速度 D .当ω= 2kg 3l 时,a 所受摩擦力的大小为kmg 解析 本题从向心力来源入手,分析发生相对滑动的临界条件.小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =m ω2 R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =m ω2 a l ,当f a =kmg 时,即kmg =m ω2 a l ,ωa

物理 带电体在电场中的运动 提高篇

物理总复习:带电体在电场中的运动 【考纲要求】 1、知道带电体在电场中的运动特点; 2、会综合力学知识分析带电体在电场中的运动问题; 3、会用能量的观点处理带电体在电场中的运动问题。 【考点梳理】 考点、带电体在电场中的运动 要点诠释: 1、在复合场中的研究方法 (1)牛顿运动的定律+运动学公式 (2)能量方法:能量守恒定律和功能关系 动量方法:动量守恒定律和动量定理 2、电场中的功能关系: (1)只有电场力做功,电势能和动能之和保持不变。 (2)只有电场力和重力做功,电势能、重力势能、动能三者之和保持不变。 (3)除重力之外,其他各力对物体做的功等于物体机械能的变化。 (4)电场力做功的计算方法 ①由公式cos W Fl θ=计算,此公式只在匀强电场中使用,即cos W qEl θ=。 ②用公式AB AB W qU =计算,此公式适用于任何形式的静电场。 ③静电场中的动能定理:外力做的总功(包括电场力做的功)等于动能的变化。 由动能定理计算电场力做的功。 【典型例题】 类型一、带电物体在静电场和重力场的复合场中运动时的能量守恒 (1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能 量守恒,即 +PG K P E E E +=电恒定值 (2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力 势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。 例1、如图所示,实线为电场线,虚线为等势面,且相邻两等势面的电势差相等,一个正电荷在等势面U 3上时具有动能4 210J -?,它运动到等势面U 1时,速度为零,令U 2=0,那么该点电荷的电势能为5 410J -?时,其动能大小是多少?(设整个运动过程中只有电场力做功) 【思路点拨】(1)确定每两个等势面之间的电势能的差值,(2)根据零势面,确定电势能零点,这是同一个等势面;(3)根据有一个已知量的等势面(零势面)确定总能量,(4)所求任意点的某能量就等于总能量减去这点的一个已知能量。 【答案】5 610J -? 【解析】在静电场中运动的电荷,它的机械能和电势能之和保持不变,即能量守恒,由此出

相关文档
相关文档 最新文档