文档库 最新最全的文档下载
当前位置:文档库 › 小学最大值与最小值

小学最大值与最小值

小学最大值与最小值
小学最大值与最小值

知识网络

人们经常考虑有关"最"的问题,如最大、最小、最多、最少、最快、最慢等。这类求最大值、最小值的问题是一类重要典型的问题,我们在实际生产和生活中经常遇到。

在本书的学习中我们经常要用到以下几个重要结论:

(1)两个数的和一定,那么当这两个数的差最小时,它们的积最大。

(2)三个数a、b、c,如果a+b+c一定,只有当a=b=c时,a×b×c的积才能最大。

(3)两个数的积一定,那么当两个数的差最小时,它们的和最小。

(4)在所有周长相等的n边形中,以正n边形的面积最大。

(5)在周长相等的封闭平面图形中,以圆的面积为最大。

(6)在棱长的和一定的长方体中,以长、宽、高都相等的长方体,即正方体的体积最大。(7)在所有表面积一定的几何体中,球体体积最大。

重点·难点

本节所涉及的题型较多,但一般都要求根据一个不变量来确定另一变量的最大值或最小值。如何根据题意,灵活运用不同的方法来求出表达式,再求最值,或直接求最值是本讲的重点。这就要求我们不能太急于入手,不妨从一些比较简单的现象或数字开始,找出规律,进而解决问题。

学法指导

解决本节问题的方法和策略常常因题而异,归纳起来有以下几种常用的方法:

(1)从极端情形入手。(2)枚举比较。(3)分析推理。(4)构造。

[例1]不能写成两个不同的奇合数之和的最大偶数为多少?

思路剖析

两个最小的不同的奇合数为9和15,9+15=24,因此小于24的偶数都不能写成两个不同的奇合数之和。下面我们只需要考虑大于24的偶数即可。15后面的一个奇合数为21,9+21=30,所以比24大比30小的偶数也不能写成两个不同的奇合数之和。32也不能,34=9+25,36=9+27,38不能,40=15+25,42=15=27,44=9+35,...此时初步确定不能写成两个不同的奇合数之和的最大偶数为38。

解答

根据以上分析,我们初步确定所求的最大偶数为38,下面我们给予证明。

比38大的个位为0的数(40,50,60,...),可以用下面形式的两个奇合数表示出来:

40=15+25,50=15+35,60=15+45,...

比38大的个位为2的数(42,52,62,...),可以用下面形式的两个奇合数表示出来:

42=27+15,52=27+25,62=27+35,...

比38大的个位为4的数(44,54,64,...),可以用下面形式的两个奇合数表示出来:

44=9+35,54=9+45,64+9+55,...

比38大的个位为6的数(46,56,66,...),可以用下面形式的两个奇合数表示出来:

46=21+25,56=21+35,66=21=45,...

比38大的个位为8的数(48,58,68,...),可以用下面形式的两个奇合数表示出来:

48=33+15,58=33+25,68=33+35,...

这样就证明了比38大的任何一个偶数都可写成两个不同的奇合数之和。

所以38是不能写成两个不同的奇合数之和的最大偶数。

[例2]已知两个四位数的差是8921(如图1所示),那么这两个四位数的和的最大值是多少?

图1

思路剖析

由数字可知减数的千位上不能为零,而其对应的差为8,所以被减数与减数的千位数必定分别为9与1。同样百位上的数分别是9与0。要求两个四位数的和的最大值,在千位与百位已确定的情况下,十位,个位上的数字差一定,只需其和最大即可。

解答

据以上分析知,被减数与减数十位上的数字分别为9和7,个位上的数字为9和8,所以这两个数为9999与1078。

因为9999+1078=11077

所以,这两个四位数的和的最大值是11077。

[例3]用20米的长的篱笆围成一个长方形的鸡舍,若长方形一面靠墙,长和宽各为多少时,鸡舍面积最大,最大面积是多少?

思路剖析

我们知道,当一个长方形周长一定时,如长与宽相等则面积最大。因为此题由于靠墙部分没有篱笆,不能直接运用以上结论。通过观察,我们想到把这个长方形关于墙对称到墙的另一侧(如图2虚线所示),则这两个长方形就转化成了一个较大的长方形。问题也就转化成用40米长的篱笆围成一个长方形,当长方形的长和宽各为多少时,面积最大,最大值为多少?

解答

作出这个长方形关于墙对称到墙另一侧的部分,得到一个新的长方形,此时大长方形周长为40米,大长方形的长+宽=20米。

我们知道当长方形周长一定时,长和宽相等时,面积最大。

所以当大长方形长、宽均为10米时,大长方形面积最大。也就是说原长方形长为10米,宽为5米时,鸡舍面积最大,这个最大面积是50平方米。

[例4]有一路公共汽车,包括起点站和终点站共有10个停车站。如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中,恰好各有一位乘客从这一站坐到以后的每一站。为了使乘客都有座位,那么这辆公共汽车上至少要有多少个座?

思路剖析

根据题意,在起点有9个乘客上了车,第二站又上来8个乘客,下去一个乘客,我们列表写出具体情况:

站次

1

(起点)

2

3

4

5

6

7

8

9

10

(终点)

上车人数

9

8

7

6

5

4

3

2

1

下车人数

1

2

3

4

5

6

7

8

9

因此,这辆车至少应有的座位数应该按上车人数最少的情况来考虑,也就是说按表所列上车人数的情况下,应保证每位乘客均有座位。

从表上看出,前五站上车人多下车人少,后五站上车人少下车人多,因此车上乘客最多时是在第五站乘客上下车后的人数。

解答

车上的乘客在第五站时最多,此时汽车上的乘客人数为

(9+8+7+6+5)-(1+2+3+4)=35-10=25(个)

因此,车上至少要有25个座位,才能保证每个乘客都有座位。

[例5]求同时满足a+b+c=6,2a-b+c=3,且b≥c≥0的a的最大值及最小值。

思路剖析

本题有三个未知量,给出了两个等式及一个不等式,而要求出a的最大值及最小值,因此要

想办法将b及c用a的代数式表示出来,然后根据b≥c≥0来求出a的取值范围。

解答

由a+b+c=6可得b+c=6-a (1)

由2a-b+c=3可得-b+c=3-2a (2)

(1)+(2)可得2c=9-3a 从而

(1)-(2)可得2b=3+a 从而

由b≥c可得

由c≥0可得,从右a≤3

由可知,符合题意的a的最大值是3,最小值是。

[例6]把从1到100的自然数如图3排列。在这个数表里,把长的方向的三个数,宽的方向的两个数,一共六个数用长方形框围起来,六个数的和为81。在数表别的地方,如上述一样地围起来的六个数的和是429,问此长方形中的最大的数是多少?

思路剖析

由于此数列有比较明显的规律,因此可以通过观察来求出最大值。同样,列方程求解也是比较常见的方法。

解答

☆解法一:我们用观察法求解。对数表中的数而言,同一行上的数,中间的一个数是它前后两个数的平均数;对同一列上的数,相邻的两个数的差是7。因此,用长方形框围起来的六个数,上行前后两数之和是上行中间数的2倍,上行三个数的和是上行中间数的3倍;同样上行三个数的和是下行中间数的3倍。因此框中六个数的和是上、下行中间数和的3倍,当这六个数和为429时,其中间上、下两数之和为429÷3=143,又因为下行中间数比上行中间数大7,那么下行中间数是(143+7)÷2=75,所以框中最大的数是75+1=76。

☆解法二:设框中下行最大的数是x,那么其他五个数分别是x-9,x-8,x-7,x-2,x-1,从而(x-9)+(x-8)+(x-7)+(x-2)+(x-1)+x=429

6x-27=429

6x=456

x=76

答:框中最大的数是76。

[例7]在一条笔直的公路上,每隔100公里有一个仓库,共有五个。一号仓库有10吨存货,五号仓库有40吨存货,三号和四号仓库是空的。现在要把所有的货物集中存放在一个仓库里。如果每吨货物运输1公里要1元运输费,那么最少多少运输费?

思路剖析

将所有货物集中存放在某一仓库的情形列出来,共有五种情况,通过枚举比较,确定要选择的仓库,再求出最少运输费,这是比较容易想到的办法。除此以外,也可以用"小往大处靠"原则求解,即如果某处货物的重量大于或等于货物总重量的一半,那么,把货物往此处集中所花的运费最少。

解答

☆解法一:我们设依次计算以一、二、......、五号仓库为集中点所需要的运输费:

1×(20×100+40×400)=2000+16000=18000(元)

1×(10×100+40×300)=1000+12000=13000(元)

1×(10×200+20×100+40×200)=2000+2000+8000=12000(元)

1×(10×300+20×200+40×100)=3000+4000+4000=11000(元)

1×(10×400+20×300)=4000+6000=10000(元)

因此,把所有货物集中到五号仓库所需的运输费最少,为10000元。

☆解法二:由于,所以可以用"小往大处靠"原则解题。所以五号仓库为最佳集中仓库,此时运费最少,为

1×(10×400+20×300)=4000+6000=10000(元)

点津

对于不同的题目要用不同的方法来解答,同时还要掌握一些技巧,对于例4,用枚举法也是不错的方法,只要将在每个站时车上的人数列出来,同样可以求出人数的最大值。而对于例6,则要仔细观察这六个数之间的紧密关系,如果看不出它们之间的关系,问题就无从下手。例7要注意"小往大处靠"原则成立的前提是"某处货物的重量大于或等于货物总重量的一半",失去这个前提条件,结论便不成立。例如将一、二、五号仓库的存货分别变为30吨、10吨、30吨,那么容易算出集中到二号仓库运输费最少。

发散思维训练

1.已知A×B-1=C,其中A、B均为质数且小于100,C是奇数,那么C最大是______。2.a、b、c、d是互不相同的四个自然数,已知a×b×c×d=2002,则a+b+c+d的最大值是______。

3.操场上画了两个圆,圆心重合,半径分别为15米和20米,甲、乙两人各站在同一个圆上,要使他们的距离最远,最远距离是______米。

4.一张圆桌有12个座位,已经有n个人按某种方式就座。当某人就座时,发现无论他坐在哪个座们,都将与已经就座的人为邻,则n的最小值是______。

5.用卡片排成三位数(允许卡片颠倒),则其中最大的数与最小的数之和为______。

6.一根长72厘米的铁丝围成一个长方体,问围成一个什么形体时,体积最大?最大体积是多少立方厘米?

7.用3个不同数字(不包括0)组成六个不同的三位数,这六个三位数的和是1776,则其中最小的那个三位数是多少?

8.用1、2、3、4、5、6六个数码组成两个三位数,这两个三位数相乘,最大的乘积是多少?最小的乘积又是多少?

参考答案

发散思维训练

1.解:

C是奇数,从而A×B=C+1是偶数,因此A和B中必有一个偶质数2,要使C最大,另一个数应该是100以内最大的质数97,从而C=2×97-1=193。

2.解:

首先将2002进行分解:2002=2×7×11×13

要使这四个数的和最大,一定要使其中三个数尽可能小,从而2002=1×2×7×143,因而其和的最大值为1+2+7+143=153。

3.解:

如答图1所示,线段AB过圆心。显然当两个人位于此线段两个端点时,双方距离最远,此时最远距离为20+15=35(米)。由此图也可以看出当两个人位于B、C两点时,双方距离最远,为20-15=5(米)。

4.解:

若就座的n个人,每两个人间只空一个座位,显然是符合题意的,若空两个座位,也符合题意,但若空3个座位,则后来的人可以坐在这3个座位的中间那个。所以n至少为12÷(2+1)=4。

5.解:

要将三张卡片组成最大的三位数,应该将大的数尽可能排在高位上,所以最大的数是861;同理,要将三张卡片组成最小的三位数则应该将小的数尽可能排在高位上,所以最小的数是168。从而最大数与最小数的和为861+168=1029。

6.解:

由于长方体分别有四条高、长、宽,不妨设为a、b、c,因此,因此,问题转化为已知a+b+c=18,求abc的最大值。显然,当这三个数相等,即a=b=c =6时,即围成一个立方体时,体积最大,此时体积为6×6×6=216(立方厘米)。

7.解:

设这三个数字为a、b、c,那么由这三个数组成的六个不同的三位数分别是;

这六个数的和是:

若这六个数的和是1776。则a+b+c=1776÷222=8

因为8=1+2+5=1+3+4,因此其中最小的那个数是125。

8.解:

要使乘积最大,不仅百位上的数一定是5和6,十位上的数一定是3和4,个位上的数只能是1和2,而且要使组成的三位数的差尽可能小。由于631-542=89,632-541=91,因此最大的乘积是631×542=342002。

同理,要使乘积最小,必须百位上为1和2,十位上为3和4,个位数上为5和6,并且这两个数的差尽可能大,这两个数为135和246,此时最小乘积为33210。

函数的最大值与最小值

课题:函数的最大值和最小值 教学目的: ⒈使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; ⒉使学生掌握用导数求函数的极值及最值的方法和步骤 教学重点:利用导数求函数的最大值和最小值的方法. 教学难点:函数的最大值、最小值与函数的极大值和极小值的区别与联系. 教学过程: 一、复习引入: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有 ,就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有 .就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点 3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小 (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个 即一个函数的极大值未必大于极小值, (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 二、讲解新课: 1.函数的最大值和最小值 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象.图中)(1x f 与3()f x 是极小值, 2()f x 是极大值.函数)(x f 在[]b a ,上的最大值 是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明:

六年级奥数第13讲:最大值与最小值

六年级奥数第13讲:最大值与最小值 【知识要点】 解决最大最小问题,常用的方法和思路有以下几种: 1.枚举比较。在有限的情况下,通过计算,将所有情况的结果列举出来,然后比较出最大值或最小值。 2.运用规律。 ①和一定的两个数,差越小,积越大。 ②积一定的两个数,差越小,和越小。 ③两点之间直线段最短。 3.解答最大最小问题,还要考虑极端的情形。即可以从最特殊的情况入手,即可能出现的最大值或最小值考虑。 [例1] 两个数的和为198,这两个数的积最大是多少? 点拨:和为198的两个数(整数或分数)有无穷多组,将每组的积计算出来再比较是不可能的。我们先通过特例来寻求积的变化规律。 如果两数都是自然数,积的情况如下: 197×1=197,196×2=392,195×3=585,194×4=776,…… 可以猜想,和为198的两个数,一定可以写成: 99 + a与99 - a(0 ≤a ≤ 99),而(99 + a)×(99 - a)=992 - a2 可见,由此可以得出,两个数的和一定,则当它们的差越来越小时,乘积越来越大;当它们相等时(差为0时),乘积最大。 解答:当a = 0时,积最大,最大值即为99×99=9801 [试一试1] 两个数的和为15,积的最大值是多少?(答案:56.25)

[例2] 将1、2、3、4、5、6这六个数字分成两组,分别排成两个三位数,并且使这两个数的乘积最大。这个乘积是多少? 点拨:要使两个数的乘积最大,应把6和5两个数放在千位,4和3两个数放在百位。但4和3分别放在哪一个数字后面呢? 由例1我们可以知道,当两个数的和一定时,两个数的差越小,积就越大。64和53相差11,63和54相差9,所以3应放在6的后面,4应放在5的后面。 同样道理,1应放在3的后面,2应放在4的后面。 解答:631×542=342002,乘积最大。 [试一试2] 用2~9这八个数字分别组成两个四位数,使这两个四位数的乘积最大。(答案:9642×8753=84396426) [例3] 把17拆成几个自然数的和,再求出这些数的乘积,如何拆可以使乘积最大? 点拨:我们先分析一些隐含的限制条件: ①要使17拆成的自然数的乘积最大,所拆成的数的个数要尽可能多,多一个可以多乘一次,但1不应出现,因为1与任何数的积仍为原数。 ②由于4=2+2,又4=2×2,因此拆出的加数中要以不出现4。 ③拆出的加数不要超过4,例如5,它还可以拆成2和3,而2×3?5,所以加数大于4的数还要继续拆小。 ④拆出的加数中2的个数不能多于两个。例如拆成三个2,不如拆成两个3。因为三个2的积为8,两个3的积为9,这就是说,应尽可能多拆出3。 解答:因为17=3×5+2,所以把17拆成3、3、3、3、3、2时,积为3×3×3×3×3×2=486最大。

最大值与最小值教案

班级:高二( )班 姓名:____________ 教学目标: 1.使学生理解函数的最大值和最小值的概念,掌握可导函数f (x )在闭区间上所有点(包括端点a ,b )处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点: 利用导数求函数的最大值和最小值的方法. 教学过程: 一、问题情境 1.问题情境.函数极值的定义是什么? 2.探究活动.求函数f (x )的极值的步骤. 二、建构数学 1.函数的最大值和最小值. 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象. 图中)(1x f ,35(),()f x f x 是极小值,24(),()f x f x 是极大值. 函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明: (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值; (2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的; (3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 2.利用导数求函数的最值步骤: 由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:

正弦函数的最大值与最小值

正弦函数的最大值与最 小值 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

正弦函数的最大值与最小值: (1) 当sinx =1,即x =2k π+2 π(k ∈Z)时,y max =1; (2) 当sinx =-1,即x =2k π-2 π(k ∈Z)时,y max =-1。 余弦函数的最大值与最小值:——让学生研究得出结论。 (1) 当cosx =1,即x =2k π(k ∈Z)时,y max =1; (2) 当cosx =-1,即x =2k π+π(k ∈Z)时,y max =-1。 [例1] 求下列函数的定义域。 (1) y =12sin x 1 - 解:2sinx -1≠0,即sinx ≠12,则x ≠2k π+6π且x ≠2k π+56π(k ∈Z) 所求函数的定义域为{x| x ≠2k π+6π且x ≠2k π+56 π,k ∈Z} (2) y 解:cosx ≥0,则x ∈[2k π-2π,2k π+2 π],k ∈Z [例2] 求下列函数的值域。 (1) y =2sinx -3 解:∵-1≤sinx ≤1 ∴-5≤2 sinx -3≤-1,则所求函数的值域为[-5,-1] (2) y =sin 2 x -sinx -2 解:y =sin 2x -sinx -2=(sinx -12) 2-94 ∵-1≤sinx ≤1 ∴当sinx =12时,y min =-94 ;当sinx =-1时,y max =0。 则所求函数的值域为[-94 ,0] (3) y =cos 2x -4cosx -2 解:y =cos 2x -4cosx -2=(cos x -2) 2-6 ∵-1≤cosx ≤1 ∴当cosx =1时,y min =-5;当cosx =-1时,y max =3。 则所求函数的值域为[-5,3] [例3] 写出下列函数取到最大值与最小值时的x 值。 (1) y =cos (x -4 π) 解:① 当cos (x -4π)=1,即x -4π=2k π,得x =2k π+4 π(k ∈Z)时,y max =1; ② 当cos (x -4π)=-1,即x -4π=2k π+π,得x =2k π+54 π(k ∈Z)时,y min =-1。

方法技巧练——最大值与最小值问题

方法技巧练——最大值与最小值问题 1.数字排列中的最大值与最小值。 解决数字排列中的最大值与最小值问题,要清楚:一个自然数,数位越多,这个数越大;数位越少,这个数 越小。 (1)一个六位的自然数,各个数位上的数字之和是13,这个自然数最大是( 940000),最小是( 100039)。 (2)一个八位的自然数,各个数位上的数字之和是21,这个自然数最大是( 99300000),最小是( 10000299)。 2.根据近似数推断精确数的最大值与最小值。 根据近似数推断精确数的最大值与最小值,要把两种情况考虑完整:这个精确数可能比近似数大,是经过“四舍”得到的;这个精确数也可能比近似数小,是经过“五入”得到的。再结合数值最大与最小的原则确定每一位上的数字。 (1)一个自然数,省略万位后面的尾数得到的近似数是93万,最大是多少?最小是多少? 最大:934999 最小:925000 【提示】“四舍五入”后是93万,“四舍”→万位上的数是3→千位上最大是4,其余各位最大是9→最大数。“五入”→万位上的数是2→千位上最小是5,其余各位最小是0→最小数。 (2)一个整数的近似数是200万,这个数最大是多少?最小是多少? 最大:2004999 最小:1995000 3.两个数的和一定,积的最大值与最小值。 (1)两个数的和是26,这两个数分别是多少时,积最大? 13+13=26 13×13=169 答:积最大是169。

(2)两个数的和是43,这两个数相乘,积最大是多少? 21+22=43 并且两个加数最接近 21×22=462 答:积最大是462。 (3)两个数的和是52,这两个数相乘,积最大是多少? 26+26=52 26×26=676 答:积最大是676。 (4)用1,4,5,8这四个数字组成两个无重复数字的两位数,再把这两个数相乘,积最大是多少?最小是多少? 积最大:先确定两个因数的十位8,5,再根据两个因数的相近原理确定个位81×54=4374 积最小:先确定两个因数的十位1,4,再根据两个因数的相近原理确定个位15×48=720 答:积最大是4374,最小是720。

小学奥数最大值最小值问题归纳

小学奥数最大值最小值问题汇总 1.三个自然数的和为15,这三个自然数的乘积最大可能是_______。 3.一个长方形周长为24厘米,当它的长和宽分别是_______厘米、_______厘米时面积最大,面积最大是_______平方厘米。 4.现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_______米,宽应是_______米。 5.将16拆成若干个自然数的和,要使和最大,应将16拆成_______。 6.从1,2,3,…,2003这些自然数中最多可以取_______个数,才能使其中任意两个数之差都不等于5。 7.一个两位小数保留整数是6,这个两位小数最大是_______,最小是_______。 8.用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出_______种不同的整数的重量。 9.有一架天平,左右都可以放砝码,要称出1~80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用_______的砝码。 10.如下图,将1~9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_____。二、解答题(30分) 1.把19分成若干个自然数的和,如何分才能使它们的积最大? 2.把1~6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。 3.自行车的前轮轮胎行驶9000千米后要报废,后轮轮胎行驶7000千米后要报废。前后轮可在适当时候交换位置。问一辆自行车同时换上一对新轮胎,最多可行驶多少千米? 4.如下图,有一只轮船停在M点,

现需从OA岸运货物到OB岸,最后停在N点,这只船应如何行走才能使路线最短? 5.甲、乙两厂生产同一型号的服装,甲厂每月生产900套,其中上衣用18天,裤子用12天;乙厂每月也生产900套,但上衣用15天,裤子也要用15天。两厂合并后,每月最多可以生产多少套衣服? 6.现在有若干千克苹果,把苹果装入筐中,要求能取出1~63千克所有整千克数的苹果,并且每次都是整筐整筐地取出。问:至少需要多少个空筐?如何装? B卷(50分)一、填空题(每题2分,共20分) 1.在六位数865473的某一位数码后面再插入一个该数码,能得到的七位数中最小的是_____。 2.用1~8这八个数码组成两个四位数,要使这两个数的差尽量小,这个差是______。 3.三个质数的和是100,这三个质数的积最大是______。 4.有一类自然数,自左往右它的各个数位上的数字之和为8888,这类自然数中最小的 (1)求最大量的最大值:让其他值尽量小。例:21棵树载到5块大小不同的土地上,要求每块地栽种的棵数不同,问栽树最多的土地最多可以栽树多少棵?解析:要求最大量取最大值,且量各不相同,则使其他量尽可能的小且接近,即为从“1”开始的公差为“1”的等差数列,依次为1、2、3、4,共10棵,则栽树最多的土地最多种树11棵。(2)求最小量的最小值:让其他值尽量大。例:6个数的和为48,已知各个数各不相同,且最大的数是11,则最小数最少是多少?解析:要求最小数的最小值,则使其他量尽可能的大,

例说求函数的最大值和最小值的方法

例说求函数的最大值和最小值的方法 例1.设x 是正实数,求函数x x x y 32+ +=的最小值。 解:先估计y 的下界。 55)1(3)1(5)21(3)12(222≥+- +-=+-+ ++-=x x x x x x x y 又当x =1时,y =5,所以y 的最小值为5。 说明 本题是利用“配方法”先求出y 的下界,然后再“举例”说明这个下界是可以限到的。“举例”是必不可少的,否则就不一定对了。例如,本题我们也可以这样估计: 77)1(3)1(7)21(3)12(222-≥-+ +-=-++ ++-=x x x x x x x y 但y 是取不到-7的。即-7不能作为y 的最小值。 例2. 求函数1 223222++--=x x x x y 的最大值和最小值。 解 去分母、整理得:(2y -1)x 2+2(y +1)x +(y +3)=0. 当2 1≠y 时,这是一个关于x 的二次方程,因为x 、y 均为实数,所以 ?=[2(y +1)]2-4(2y -1)(y +3)≥0, y 2+3y --4≤0, 所以 -4≤y ≤1 又当3 1-=x 时,y =-4;x =-2时,y =1.所以y min =-4,y max =1.

说明 本题求是最值的方法叫做判别式法。 例3.求函数152++-=x x y ,x ∈[0,1]的最大值 解:设]2,1[1∈=+t t x ,则x =t 2-1 y = -2(t 2-1)+5t = -2t 2+5t +1 原函数当t =169,45=x 即时取最大值8 33 例4求函数22 3,5212≤≤+--=x x x x y 的最小值和最大值 解:令x -1=t ( 121≤≤t ) 则t t t t y 4142+=+= y min =5 1,172max =y 例5.已知实数x ,y 满足1≤x 2+y 2≤4,求f (x )=x 2+xy +y 2的最小值和最大值 解:∵)(2 122y x xy +≤ ∴6)(23 ),(2222≤+≤++=y x xy y x y x f 又当2==y x 时f (x ,y )=6,故f (x ,y )max =6 又因为)(2122y x xy +- ≥

函数的最大值与最小值练习题(3)

1 3.3.3 函数的最大值与最小值练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列说法正确的是 A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值 2.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x ) A.等于0 B.大于0 C.小于0 D.以上都有可能 3.函数y = 234213141x x x ++,在[-1,1]上的最小值为 A.0 B.-2 C.-1 D.12 13 4.下列求导运算正确的是( ) A .211)1(x x x +='+ B .2ln 1)(log 2x x =' C .e x x 3log 3)3(?=' D .x x x sin 2)cos (2-=' 5.设y =|x |3,那么y 在区间[-3,-1]上的最小值是 A.27 B.-3 C.-1 D.1 6.设f (x )=ax 3-6ax 2+b 在区间[-1,2]上的最大值为3,最小值为-29,且a >b ,则 A.a =2,b =29 B.a =2,b =3 C.a =3,b =2 D.a =-2,b =-3 二、填空题(本大题共5小题,每小题3分,共15分) 7.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________. 8.已知函数f (x )=2-x 2,g (x )=x .若f (x )*g (x )=min{f (x ),g (x )},那么f (x )*g (x )的最大值是 . 9.将正数a 分成两部分,使其立方和为最小,这两部分应分成____和____. 10.使内接椭圆22 22b y a x +=1的矩形面积最大,矩形的长为_____,宽为______ 11.在半径为R 的圆内,作内接等腰三角形,当底边上高为______时,它的面积最大. 三、解答题(本大题共3小题,每小题9分,共27分) 12.有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少? 13.已知:f (x )=log 3x b ax x ++2,x ∈(0,+∞).是否存在实数a 、b ,使f (x )同时满足下列两个条件:(1)f (x )在(0,1)上是减函数,在[1,+∞)上是增函数;(2)f (x )的最小值是1,若存在,求出a ,b ,若不存在,说明理由. 14.一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD 的面积为定值S 时,使得湿周l =AB +BC +CD 最小,这样可使水流阻力小,渗透少,求此时的高h 和下底边长b . b

最大值与最小值及取值范围习题

最大值与最小值及取值范围习题 1.(2011?青岛)在如图所示的电路中,电流表的量程为0~0.6A,电压表的最程为0~3V,R3=4Ω.求(画出相应的等效电路图): (1)只闭合开关S1时,电路消耗的功率为4W,则电源电压U=? (2)只闭合开关S2时,灯泡R1正常发光,R3消耗的功率为0.64W,则灯泡的电阻R1=? (写出该小题的解题思路后再求解) (3)只闭合开S3时,在不损坏电流表、电压表和灯泡的情况下,则变阻器R2的取值范围 是多少? 2.(2006?南京)如图所示电路中,电源电压6V恒定,电流表的量程为0~0.6A, 电压表的量程为0~3V,灯L1和L2的规格分别为“6V 1.8W”和“6V 1.2W”,滑动变 阻器R的规格为“50Ω 1.5A”,不计温度对灯丝电阻的影响.求: (1)滑动变阻器的滑片P放在a端时,闭合开关S1、S2、S3后,电压表和电流表 的读数是多少? (2)若两灯中只允许一盏灯工作,且要求电路元件安全使用,在滑片移动过程中, 整个电路至少消耗多少电功率? 3.如图4所示电路中,电源电压12V保持不变,小灯泡L的规格为“6V 3W”,滑动变阻器的最大阻值为12Ω,电 流表的量程为0~3A. ①当开关S1、S2都断开时,小灯泡L恰能正常发光,R1的阻值为多大? ②当开关S1、S2均闭合时,要使电流表安全使用,变阻器接入电路的阻值不得 小于多少?整个电路的电功率的变化范围是多少?

4.如图所示,电源电压36V,小灯泡L标有“20V 8W”字样,若电流表量程为“0~0.6A”,电压表量程为“0~15V”(小灯泡电阻不变),求: ①小灯泡的电阻是多少? ②小灯泡正常工作时的电流是多少? ③在使用中要保证电路中的各个元件不受损坏,则滑动变阻器的阻值不能小于多少?此时电路 中的总功率是多大? 5.(2013?青岛模拟)如图所示电路,电源电压不变,R1=18Ω,小灯泡标有“6V 3W”(电阻不变),滑动变阻器的最大阻值为50Ω,电流表的量程是0~0.6A,电压表的量程是0~3V.当只断开S2时,电流表示数为0.5A.求:(1)电源电压; (2)只闭合S1时,小灯泡消耗的电功率; (3)只闭合S2时,在不超过电流表、电压表量程的情况下,小灯泡电压的变化范围. 6.如图所示,电源电压恒定,R1=18Ω,滑动变阻器R2的最大值是24Ω,小灯泡L 上标有“6V、3W”字样,电流表的量程为0~3A. (1)当开关S2闭合,S1、S3断开,滑动变阻器的滑片P滑至中点时,灯泡L恰好 正常发光,则电源电压U为多大? (2)当开关S1闭合,S2、S3断开,通电5分钟,电流通过灯泡L所做的功是多少? (3)当开关S1、S2、S3都闭合时调节滑动变阻器的滑片P,在电流不超过电流表 量程的情况下,电路中用电器总功率的最大值和最小值分别是多少? 7.如图所示电路,电源电压保持不变,电流表的量程为0~0.6A,电表使用的是0~3V量程,定值电阻的阻值为R1=8Ω,灯泡的电阻R2=5Ω,滑动变阻器的最大阻值R3=20Ω. (1)开关S1闭合,S2断开,电流表示数为0.25A,电压表的示数为2.5V,求电源电压和滑动变阻器接入电路中的电阻值.

函数的最大值和最小值教案.doc

函数的最大值和最小值教案 1.本节教材的地位与作用本节主要研究闭区间上的连续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已 经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么 f(x)在闭区间[a,b]上有最大值和最小值” ,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的 最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义. 2.教学重点会求闭区间上连续开区间上可导的函数的最值. 3.教学难点高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优 化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点. 【教学目标】根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的 教学目标: 1.知识和技能目标 (1)理解函数的最值与极 值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数

f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述 函数的最大值与最小值的方法和步骤. 2.过程和方法目标(1)了解开区间内的连续函数或闭区间上的不连续函数不一定有 最大、最小值. (2)理解闭区间上的连续函数最值存在的可能 位置:极值点处或区间端点处. (3)会求闭区间上连续,开区 间内可导的函数的最大、最小值. 3.情感和价值目标 (1) 认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高 学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教法选择】根据皮亚杰的建构主义认识论,知识是个体在 与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主 客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间 上的连续函数一定存在最大值和最小值之后,引导学生通过观察 闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的 方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是 进行适当的引导,而不进行全部的灌输.为突出重点,突破难点, 这节课主要选择以合作探究式教学法组织教学. 【学法指导】对于求函数的最值,高三学生已经具备了良好的知识基础,剩下 的问题就是有没有一种更一般的方法,能运用于更多更复杂函数 的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使 得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂

函数的最大值和最小值(教案与课后反思)

3.8函数的最大值和最小值(第1课时) 嵊州市马寅初中学袁利江 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1.知识和技能目标 (1)理解函数的最值与极值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值. (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处. (3)会求闭区间上连续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 (1)认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教学重点】 会求闭区间上连续开区间上可导的函数的最值. 【教学难点】 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.【难点突破】 本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

最大值和最小值问题

最大值和最小值问题 3.2.2 最大值、最小值问题教学过程:一、复习引入: 1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点 2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点 3.极大值与极小值统称为极值注意以下几点:(?。┘?值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(??)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(?#┘?大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而 > (?ぃ┖?数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点二、讲解新课: 1.函数的最大值和最小值观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.一般地,在闭区间上连续的函数在上必有最大值与最小值.说明:⑴在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件. (4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⒉利用导数求函数的最值步骤: 由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:⑴求在内的极值;⑵将的各极值与、比较得出函数在上的最值三、讲解范例:例1求函数在区间上的最大值与最小值例2已知x,y为正实数,且满足,求的取值范围例

导数运用最大值与最小值(含答案)

最大值与最小值 一、基础过关 1.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是________,________. 2.f (x )=x 3-3x 2+2在区间[-1,1]上的最大值是________. 3.函数y =ln x x 的最大值为________. 4.函数f (x )=x e x 的最小值为________. 5.已知函数y =-x 2-2x +3在区间[a ,2]上的最大值为15 4 ,则a 等于________. 6.已知f (x )=-x 2+mx +1在区间[-2,-1]上最大值就是函数f (x )的极大值,则m 的取值范围是________. 7.求函数f (x )=1 3x 3-4x +4在[0,3]上的最大值与最小值. 二、能力提升 8.函数y =4x x 2+1 的值域为________. 9.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当MN 达到最小时t 的值为________. 10.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________. 11.已知函数f (x )=2x 3-6x 2+a 在[-2,2]上有最小值-37,求a 的值及f (x )在[-2,2]上的最大值. 12.已知函数f (x )=x 3-ax 2+bx +c (a ,b ,c ∈R ). (1)若函数f (x )在x =-1和x =3处取得极值,试求a ,b 的值; (2)在(1)的条件下,当x ∈[-2,6]时,f (x )<2|c |恒成立,求c 的取值范围. 三、探究与拓展 13.已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间; (2)求f (x )在区间[0,1]上的最小值.

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总 1. _____________________________________________________ 三个自然数的和为15,这三个自然数的乘积最大可能是 _______________ 。 3. _________________________________________________ —个长方形周长为24厘米,当它的长和宽分别是_____________________ 厘米、_______ 厘米时面积最大,面积最大是__________ 平方厘米。 4. 现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个 鸡舍面积最大,长应是_________ 米,宽应是 _________ 米。 5 .将16拆成若干个自然数的和,要使和最大,应将16拆成__________ 。 6 .从1, 2 , 3,…,2003这些自然数中最多可以取 ____________ 个数,才能使其中任意两个数之差都不等于5。 7. __________________________________________________ —个两位小数保留整数是6,这个两位小数最大是____________________ ,最小是________ O 8. 用1克、2克、4克、8克、16克的砝码各一个和一架天平,最 多可以称出________ 种不同的整数的重量。 9. 有一架天平,左右都可以放砝码,要称出1?80克之间所有整克 数的重量,如果使砝码个数尽可能少,应该用__________ 的砝码。10 .如下图,将1?9这9个数填入圆圈中,使每条线上的和相等,使和为 A,A最大是_______ 。二、解答题(30分) 1. 把19分成若干个自然数的和,如何分才能使它们的积最大?

函数的最大值和最小值时

函数的最大值和最小值时 Revised by BLUE on the afternoon of December 12,2020.

2006年江西省高中青年教师优质课比赛参赛教案§函数的最大值和最小值(第1课时)江西省临川第一中学游建龙(344100) 二OO六年九月十三日

§函数的最大值和最小值 【教材分析】 1.本节教材的地位与作用 本节是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使用料最省、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,对于完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义. 2.教学重点 会求闭区间上连续开区间上可导的函数的最值. 3.教学难点 确定函数最值的方法,并会求函数的最值. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1.知识和技能目标 (1)理解函数的最值与极值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)了解开区间内的连续函数不一定有最大、最小值. (2)会求闭区间上连续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 (1)认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课引导学生自己通过观察函数的图象,归纳、总结出最大值、最小值求解的方法与步骤,让学生自己主动地获得知识,老师只是进行适当的引导,而不是进行全部的灌输.【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下问题是有没有一种更一般的方法,能运用于更多更复杂的函数求最值问题教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232--∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32 R a ax x y ∈++=在]1,1[-上的最大值。

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题

————————————————————————————————作者: ————————————————————————————————日期:

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232 --∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32R a ax x y ∈++=在]1,1[-上的最大值。

导数在函数求最大值和最小值中的应用解读

导数在函数求最大值和最小值中的应用 例1.求函数f (x )=5x + . 解析:由3040x x +??-? ≥≥得f (x )的定义域为-3≤x ≤4,原问题转化为求f (x )在区间[-3, 4]上的最值问题。 ∵ y ’=f ’(x ) =5 在[-3,4]上f ’(x )>0恒成立, ∴ f (x )在[-3,4]上单调递增. ∴ 当x =-3时y min =-15-7, 当x =4时y max =20+27, ∴ 函数的值域为[-15-7,20+27]. 例2.设32f (a ),f (-1)0,∴ f (x )的最大值为f (0)=b -1, 又f (-1)-f (a )=21(a 3-3a -2)=21(a +1)2(a -)<0, ∴ f (x )|min =f (-1),∴ -23a -1+b =-23a = ∴ a b =1. 例3.若函数f (x )在[0,a ]上单调递增且可导,f (x )<0,f (x )是严格单调递增的,求 ()f x x 在(0,a ]上的最大值。 解析:2()'()()[]'f x f x x f x x x ?-=,∵ f (x )是严格单调递增的, ∴ f ’(x )>0,∵ f (x )<0,x >0,∴f ’(x )·x -f (x )>0, ∴ 2()'()()[ ]'f x f x x f x x x ?-=>0,∴ ()f x x 在(0,a ]上是增函数。 ∴ ()f x x 在(0,a ]上最大值为()f a a . 例4.设g (y )=1-x 2+4 xy 3-y 4在y ∈[-1,0]上最大值为f (x ),x ∈R , ① 求f (x )表达式;② 求f (x )最大值。 解析:g ’(y )=-4y 2(y -3x ), y ∈[-1, 0], 当x ≥0时,g ’(y )≥0,∴ g (y )在[-1, 0]上递增, ∴ f (x )=g (0)=1-x 2. 当-3 10,在[-1,3x ]上恒成立,在(3x ,0)上恒成立, ∴ f (x )=g (3x )=1-x 2+27x 4 .

相关文档
相关文档 最新文档