文档库 最新最全的文档下载
当前位置:文档库 › 流体力学

流体力学

流体力学
流体力学

第三章计算流体力学基础

§3.1流体力学的基本方程

流体运动的规律滿足三大守恒定律,即质量守恒定律,动量守恒定律和能量守恒定律[24]。

(一)连续方程

(3-1)

式中ρ-流体密度

u-流体速度分量

(二)动量方程(x方向)

对于不可压流体(即)

(3-2)

式中γ-运动粘性系数

p-压力

对于可压缩流体

(3-3)

式中等号后前两项是粘性力

y,z方向上的动量方程可类似推出。

(三)能量方程

(3-4)

其中

式中等号左边第一项是瞬变项,第二项是对流项,等号右边第一项是扩散项,第二、三项是源项。

所以,流体力学基本方程组为:

(3-5)

§3.2紊流模式理论概况

§3.2.1基本方程

在自然界中,真实的流体都具有粘性。粘性流体存在两种不同的运动方式和流态,即层流和紊流。而在自然界和工农业生产中所遇见的流体流动大部分都是紊流。

复杂的流场(例如有回流、分离流)一般都是三维粘性紊流,一个多世纪以来,人们从紊流的实验研究与理论研究中认识到描述紊流运动的主要困难是质点运动参数在时间和空间上的随机性,描述其流动的数学模型是非线性偏微分方程,数字方法求解很困难;加之流动边界极不规则,更增加了数值求解的难度。从60年代起,一直在进行水轮机流道、泵进出口流道等的数值计算研究,为了能够求解,对流动作一定的假设来简化,归结起来有:定常流动—认为流道内的水流运动是定常的;无粘运动—忽略水流的粘性,并辅之于其它的假设,将流动简化为二维无粘、准三维无粘、三维无粘,这些简化的计算模型,虽然计算得以大大的简化,但假设与实际流动均有不同程度的差距;到80年代,随着计算机运算能力的提高与计算方法的发展,开始了粘性流动计算的研究。

粘性流动计算的方法可分为:一是边界层方法—利用微积分或积分法求解三维边界层方程;二是抛物化法—假设流动存在一个明显的主流方向(在此方向上无回流),沿主流方向的动量、质量等的扩散与对流相比可以忽略不计,下游的压力场对上游流动无影响;三是Navier-Stokes方程(简称N-S方程)解法求解三维的N-S方程。

三维的N-S方程是目前描述粘性流体运动较为理想的模型,其优点一是应用范围广,在空气、水流、传热等方面均用N-S方程描述;二是对于有分离、旋涡等情况的复杂三维流动更为适用。

三维直角坐标下的N-S方程[17] [25],即不可压缩粘性流体的动量方程式为:

(3-6)

不可压缩流体的连续性方程为:

(3-7)

式(3-6)和(3-7)共有四个未知数(u、v、w、p)和四个方程,加上边界条件,从理论上来讲其解是存在的。但是,要直接求解复杂而详细的粘性流体运动是十分复杂和困难的。

N-S方程的数值解法有原始变量法、涡量—流函数法(简称ω-φ法)和流函数法。求解Re数较低的粘性流包括心血管流动[25]、机械润滑系统中的油膜流动[26]的数值解已取得了不少进展,从60年代起用有限差分法[27]解边界层流动也已获得了不少成果,但对求解复杂几何形状与边界条件遇到了困难。用有限元法求解粘性流动,目前还限于求解Re数较低的流动。而用有限体积法求解N-S方程的SIMPLE法,在近几年来已得到广泛应用,并较成功地用于紊流模型的计算[10]~[12][28]~[30]。

§3.2.2 三维N-S方程模型的计算方法

N-S方程模型的流动计算可分为三种方法[31]:

1.直接模拟法(Direct Numerical Simulation,DNS)

除稀薄气体等极端条件外,紊流的最小长度尺度远远大于分子运动的长度尺度,故紊流可以作为连续体运动处理。

从原理上讲,可以用三维非定常的N-S方程对紊流进行直接计算。这种直接计算不需要紊流模型化,可像层流那样进行数值计算。但是,现实的高雷诺数紊流中,由于其最小尺度很小,若要对最小尺度的紊流进行直接计算,就需要很多的计算时间和庞大的计算机容量。这远远超过现有的计算机能力。当前直接计算法只能用于对低雷诺数紊流进行直接计算,并且用新型巨型向量计算机可取数十万个网格点,但也只能捕捉到较大的紊流涡,网格的网目捕捉不到小涡,从而得到的仅是关于大涡结构的大体结果。

将来,即使可能进行精确的直接计算,但为了获得有意义的信息,也必须对大量的计算结果进行统计处理。

2.大涡模拟法(Large Eddy Simulation,LES)

依照紊流的旋涡理论,紊流的脉动与混合主要是有大尺度的涡造成的。大涡从主流中获取能量,分裂后将能量传到较小的涡。大涡的运动为各向异性,随流动情况而不同。小涡主要是耗散能量,几乎各向同性,并且不同流动情况的小涡有许多共性。从而得出

大尺度涡模拟的数值方法。即用非定常的(三维且时间相关的)N-S方程确定大涡的特性,不计算小涡。而小涡的效果有近似的模型来处理,即用大涡模拟还可以对那些被直接计算忽略掉的,比如计算网格小的涡,经模型化,进行数值模拟。该方法需要相当大的计算机内存和计算时间。

用大涡模拟对N-S方程实行网格内空间平均,其结果将相当于时间平均雷诺应力的网格雷诺应力作为未知数表示。将该项模型化,称为网格平均模型。

可将网格的大小取为小于某种程度,纳入网格内的涡若相似,则该网格捕捉不到的紊流变动,可用梯度扩散型的紊流粘性普遍性地模型化。该梯度扩散型的模型称为Smagorinsky模型。几乎所有的大涡模拟计算都用它。但是,在现阶段,网格数取得还不充分,系数值不同,导致计算结果有所差异,所以目前是按不同的流动情况一边调节系数值,一边进行计算。

3.雷诺(Reynolds)时均方程法

将非定常的N-S方程作时间平均处理。在所得出的时均方程中包含了脉动量乘积的时均值未知数,于是方程个数少于未知数个数,如作进一步的时均处理将出现更高阶的脉动量乘积的时均值未知数,方程不可能封闭;要是方程封闭,须作一定的假设。这是工程上普遍采用的方法,因为工程中感兴趣的是时均量。

在三维N-S方程计算模型中,雷诺时均方程法是较常使用的一种方法。该方程是在将紊流看成时均运动和脉动运动的基础上建立的。紊流运动的任何变参量都分解为时间平均值和脉动值,例如:,等。

不可压缩粘性流体的三维N-S方程组作时均处理后的时均方程为:

连续性方程:

,(3-8)

动量方程(雷诺方程):

(3-9)

式中:为二阶相关项,又称为雷诺应力,p为压力值,u为速度,x为坐标轴,i=1,2,3,j=1,2,3,分别表示x,y,z三个空间坐标,脚标在某一项中相同时,表示求和。变量上方有“-”者为时均值,变量上标有“'”者为脉动量。

显然方程(3-8)、(3-9)包含有十个未知量,而方程只有四个,方程不封闭,只是因为对N-S方程取平均,使得脉动时空的细节抹平,失去了反映流动内部的细节信息,导致了方程的不封闭。为了找回平均过程中失去的紊流流动的细节信息,科学工作者建立和引入了多种紊流模式来弥补失去的信息和封闭时均N-S方程,从而能反映紊流特性和封闭雷诺方程的模式称为紊流模型(Turbulence Model)。

§3.2.3紊流模型

时均N-S方程中的二阶相关项,即雷诺应力项是未知量,它有自己的表示式称为紊流模型。紊流模型的表示式与时均N-S方程形成封闭的方程组。

常用的紊流模型都是建立在涡粘性概念的基础上的,雷诺应力与涡粘性的关系为:

(3-10)

式中:μt为涡粘性系数。各种紊流模型都是表示紊流涡粘性系数μt的方程式。

目前已有许多的工程紊流模式,并且还在不断的发展之中,这里仅简单介绍目前工程上广泛应用的零方程紊流模型、一方程紊流模型、二方程紊流模型、雷诺应力方程模型、代数应力紊流模型等理论及进展[30][32]。

1.零方程模型

就是在运动方程和连续方程以外,不需要另外再加任何方程式来使方程组封闭。即雷诺应力能直接用某些物理量和物理常数表达出来,所以只要把雷诺应力直接代入运动方程中去,而不必另外再加上其它的补充方程式了。零方程模型中有紊流粘性模型、混合长度模型、涡量传递模型及紊动局部相似模型等。如直接用时均速度模拟二阶相关项,也称为Prandtl混合长度模型。虽然该模型简单,有一些成功的应用,但存在以下缺点:忽略了紊流的对流和扩散输送,对不同的流动要采用不同的经验系数,缺少通用性。它不适合有回流的较复杂流动,也无法处理表面曲率的影响。

2.一方程模型

为克服零方程模型的缺陷,在紊流平均运动的连续性方程和动量方程基础上,添加一个湍动能(k)方程以力图组成封闭方程组,而其它二阶脉动相关量均由代数方程表示。由于一方程模型中引入的修正函数是与流场和长度尺寸有关的函数,部分考虑了紊流的历史效应,既考虑了湍动能的对流项和扩散项对湍流输送过程的影响,但长度尺寸必须由经验给出,对于复杂问题其值很难确定。普遍性不高,对于复杂流动精度也不高。

3.二方程k-ε模型

它是二方程模型中应用最广的一种。它以一方程模型为基础,再增加一个ε(耗散率)为因变量的控制方程,来使方程组封闭,即用偏微分方程求解紊流的特征长度。标准的k-ε模型认为紊动粘性系数是各向同性的,它不仅考虑到紊动速度比尺的输送,而且考虑到紊动长度比尺的输送,因而能确定各种复杂水流的长度比尺分布。该模型基本形式比较简单,实际应用性广,能成功的预测许多剪切层型水流和回流,适用于各向同性或弱各向异性紊流。但是,k-ε模型也存在一些缺陷,例如,模型中的经验常数通用性尚不十分令人满意,对强旋流、浮力流、重力分层流、曲壁边界层、低Re数流动、圆管射流几种流动不适用。

4.k-ε紊流模型的修正

对k-ε紊流模型的修正主要有浮力修正法、近壁函数法、低雷诺数模型、区域模型、双流体模型、各向异性及多尺度等方法。

在浮力修正中主要是在k、ε方程中加入浮力项和Richardson通量数来研究浮力问题。

在近壁区流体流动中具有较大的梯度、雷诺数低,各向异性较为突出,粘性底层的分子粘性必将影响到粘性底层以外的紊流区域。如果用高雷诺数模型应用这一区域,需要非常密集和大量的网格布置,因而要花大量的时间和内存,在实际中也是不现实的。对于近壁区的修正,一般采用壁面函数和低雷诺数方程的方法。采用壁面函数法时,紊流流动中采用高雷诺数k-ε模型。而在粘性底层内不布置任何节点,把第一个与壁面相邻的节点布置在旺盛紊流区域内。这种方法能节省内存和时间,在工程紊流计算中应用较广。但是,壁面函数是不精确的,尤其当存在很大的压力梯度时;其次,当出现分离流时,壁面函数不容易确定。两种改进的壁函数关系已被提出,在一定程度上使计算结果得以改善。

低雷诺数模型考虑近壁区分子粘性对紊流的作用,在充分发展的紊流区用高雷诺数模型:在低雷诺数区,将高雷诺数模型修正,使之可应用到低雷诺数区。最简单的低雷诺

数模型是由Van Driest(1956)提出的,随后Jones和Launder[33]将k-ε模型扩展到低雷诺数流动。他们对高雷诺数k-ε模型做了三方面的扩充:(1)控制方程中的扩散系数必须同时包括紊流扩散系数和分子扩散系数;(2)系数Cμ,C1,C2必须考虑雷诺数的影响;(3)在k方程中应考虑到壁面附近脉动动能的耗散不是各向同性这一因素。低雷诺数模型的种类很多,虽然现有的各种低雷诺数k-ε模型在预测紊流流场特性方面已有很多成功的实例,但在确定流动中的紊流脉动能的分布方面却不理想,并且在计算时间及计算内存方面所付出的代价也是很大的。

5.雷诺应力方程模型

直接从脉动速度场出发,导出湍流应力式,然后对方程中各项作适当的分析与简化,使方程组封闭。该模型考虑了紊动粘性系数各向异性效应,对浮力效应、强旋转效应、曲壁效应和近壁效应的模拟精度较高。但它的k方程及ε方程的模拟精度并不比标准的k-ε模型高,且对于工程应用而言过于繁琐,对三维流动,仅紊流特性本身就需11个偏微分方程,同时各个应力分量的边界条件事先很难给定。

6.代数应力模型

代数应力模型一般将应力方程模型的微分方程简化为代数方程,并保留微分方程的基本性质,即由k方程及ε方程加上一些代数方程构成。一方面它保留了紊动粘性系数各向异性的特征,另一方面方程个数比雷诺应力方程模型大为减少,比标准的k-ε模型多了一些代数方程。它对有必要计及体积效应时(浮力、流线弯曲、旋转等)优点突出。

总的来说,二方程模型计算简单,工程比较愿意采用这种模式。对于阀门流道而言,内部流动紊乱程度相当严重。零方程模型、一方程模型由于模型本身的局限性,误差可能较大;雷诺应力模型计算过于繁琐,对计算机的运算速度和存储量要求高,边界条件确定困难,目前对于工程应用选择雷诺应力模型还不现实;选择二方程k-ε模型、代数应力模型是比较可行的。但代数应力模型常用于计算一些弯曲壁面、离心力较大的强旋转流,对于阀门阀道内的流动,流线弯曲,但弯曲壁面的影响主要体现在弯曲段及其下游的部分区域,对于该工程问题采用二方程k-ε模型较为合理。

§3.2.4标准k-ε模型

由于Reynolds应力及紊流的粘性系数都是未知的,因而Reynolds方程是不封闭的,需要建立与未知量有关联的输运方程进行封闭。目前常采用的是反映紊动能的k方程和反映紊动能耗散的ε方程进行封闭。紊流流动是由外部提供有效的能量,在流动的过程中,

很小一部分能量使直接通过平均运动的粘性而损耗,一部分先转化为紊动能,最后转化为热能而耗散。在紊动耗散中,紊动能在形式上是先转化为大小不同的涡体而后通过涡体运动和粘性作用而耗散。紊动能的产生是通过雷诺切应力对时均流场的作用来实现的。

标准的k-ε模型中雷诺应力为:

(3-11)

其中涡粘性系数为:

雷诺应力式中引入的新变量k(湍动动能)、ε(耗散率)用k-ε模型来封闭。

k方程:

(3-12)

ε方程:

(3-13)

其中:为紊动能,为紊动能的耗散项,为涡粘性系

数,为紊动能生成项;式中脚标j可取值为1,2,3表示x,y,z三个空间坐标,j脚标在一项中重复时称求和标,表示三项求和。

有关模型参数见表3-1:

表3-1 标准k-ε模型中的有关系数

雷诺时均方程在引入紊流模型后,k、ε方程与连续性方程(3-2)、动量方程(3-4)就构成了完全封闭的不可压缩粘性流体紊流流动的控制方程组。

所以,不可压缩粘性流体紊流流动的控制方程组为[17]:

(连续性方程)

(动量方程)(3-14)

(k方程)

(ε方程)

§3.3数值离散的方法

工程实际中的流体力学问题,根据不同的具体特点,可以建立起不同的数学模型。这种数学模型通常是一组给定初始条件与边界条件的微分方程来表示。求解出这类流体力学数学方程的分析解,除了为数不多的几个问题外,大多是相当困难的,往往需要求助于数值计算。

流体力学偏微分方程的数值解,由于所用的离散基本原理不同,计算流体力学采用的方法[28][34]主要有:

1.有限差分法(Finite-different Method,FDM),以及在此基础上发展的PIC (Partical-in-cell)法和MAC(Marker-and-Controller Method)法等,还有在70年代末,美籍中国学者陈景仁提出了有限分析法(Finite Analytic Method,FAM)。

2.有限单元法(Finite-Element Method,FEM),在此基础上,英国C.A.Brebbia等人提出了边界元法和混合元法等。

3.有限体积法(Finite Volume Method,FVM),此方法目前在计算流体力学和传热学中应用极为普遍。

此外,应用于流动计算的数值方法还有控制体积有限元法(CVFEM)、微分求积法(Differential Quadrature Metho, d,DQM)、格子方法(Lattice-Boltzmann Method,LBM)等等。常用的数值方法简略介绍如下:

有限差分法(Finite-different Method,FDM)

有限差分法是将求解域划分为差分网格(最简单的为矩形网格),用有限个网格结点(即离散点)代替连续的求解域,然后将偏微分方程组的导数用差分代替,推导出含有离散点上有限个未知数的差分方程组。求解差分方程组(即代数方程组)的解,就作为微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题的近似数值解法。有限差分法发展较早比较成熟,原理简单、数学推演和概念清晰、编程方便,收敛性和稳定性理论比较成熟,较多的用于求解双曲线型和抛物线型问题。

有限差分法是从微分算子就结点领域进行泰勒展开,截取前几项所得差分近似公式来求解,差分方程计算的数值导数是由差分值除以结点间的距离。因此有限差分解数值导数的精度总比解自身精度的阶次低;用有限差分近似所导出的代数方程组,其数值解常出现不稳定现象,因为用有限差分近似改变了控制方程中的微分或导数。另外有些差分格式还引起数值扩散现象。这种数值扩散现象在高Re数流动中特别显著,因为在高Re数流动中对流项或低阶导数项在控制方程中处于支配地位。在规则区域的结构化网格上,有限差分法是十分简便而有效的,而且很容易引入对流项的高阶格式。其不足的是离散方程的守恒特性难以保证,而最严重的缺点则是对不规则区域的适应性差。用有限差分法求解边界条件复杂,尤其是椭圆型问题不如有限元法、有限体积法方便。

有限元法(Finite-Element Method,FEM)

有限元法约始于50年代西方的飞机设计,60年代开始用于流体力学,同时期我国的冯康提出了一套理论和实际相结合的方法。它是将一个连续的求解域任意分成适当形状(三角形、四边形、四面体、六面体等)的许多微小单元,并于各小单元分别构造差值函数,然后根据极值原理(变分或加权余量法),将问题的控制微分方程化为控制所

有单元的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体之和,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各结点上待求的函数值。

有限元法的基础是该极值原理和剖分原理,它吸收了有限差分法中离散处理的内核,又采用了变分计算中选择逼近函数并对区域进行积分的合理方法。这是两类方法取长补短而进一步发展的结果。由于有限元法的网格划分灵活,因此它有很广泛的适用性,尤其适合于几何、物理条件较复杂的问题。

但有限元法编程比较复杂,存储量大,计算量大,只在二维计算中应用较为普遍。另外在有限元方法中,控制方程中的导数虽然没有受到损害,但常采用低阶多项式作为联系小单元内各结点值的近似解,然后使构成的近似解满足控制方程的变分形式或加权积分形式。相邻于两个或三个有限元的公共结点上的数值导数常常不连续,甚至不确定,所以对于高Re数流动要得到精确而稳定的有限元解也有困难。有限元法适用于求解具有椭圆性质的方程,但近几年对于三维紊流流场用有限元求解也逐渐多起来了。

有限分析法(Finite Analytic Method,FAM)

有限分析法是在有限元法基础上发展起来的一种数值方法。它是1977年,美籍中国学者陈景仁教授为解决求解对流扩散方程出现数值失真的问题首先提出的。

有限分析法的基本思想是:将求解区域划分成有限个规则的矩形单元;每个单元中的求解函数,通过微分方程在单元子区域中的分析解来表达;为获得单元中的局部分析解,单元子区域的边界条件,将采用插值函数逼近;如果方程非线性,则在单元中将非线性项局部线性化。这样,每个单元中心结点的函数值和单元边界结点的函数值可通过单元分析解构成一个代数方程,称为单元有限分析方程,将所有内点上的单元有限分析方程联立,就构成总体有限分析方程,通过代数方程组数值求解,即可获得求解区域中全部离散点的函数值[7]。有限分析法具有自动迎风性质,能准确地模拟对流项。同时不存在数值扩散,计算稳定性好,收敛较快。

有限分析法的思想有可取之处,它可以克服在高Re数下有限差分法的数值解容易发散或振荡的缺点,但其计算工作量较大,耗费的机时较多,对计算区域几何形状的适应性也较差,有时求微分方程的局部解析解也会遇到困难,目前应用还不是很普遍。

边界元法(Boundary Element Method,BEM)

边界元法是首先将控制微分方程化为边界积分方程,再用有限元的基本思想与方法步骤(在求解域的边界上划分有限单元)来处理边界积分方程的方法。其特点是在域内

满足微分方程,而在边界上近似满足边界条件。该方法于1978年由英国的C.A.Brebbia 正式采用。后又发展有与区域方法结合的混合元法和有限基本解法。边界元法具有如下特点:

(1)对于无限区域问题,无需确定外边界,只需在区域内边界上进行离散和插值,降低维数,减少计算费用和时间;

(2)离散化的误差只产生在边界上,域内的函数值和系数值直接可用解析公式计算,其精度高;

(3)边界元的基本解本身有可导性,可适用于求解奇异性问题;

(4)编制程序简便、工作量少。

同时边界元法也存在一些缺陷:

第一,虽然边界元法单元数、未知量个数少、方程组阶次低,但方程组的系数矩阵不对称并为满阵,有时是近似的奇异阵,求解这类方程组的方法受到限制;

第二,边界元法采用解析函数的基本解,比较适用于线性问题以及基本解已知(如源、汇、偶极子、涡)的问题。对于非线性问题可采用迭代计算方法计算非线性项。对于复杂的紊流问题是难以寻求积分方程的。边界元法对于非线性问题、半无限域问题,特别是区域的角点等处理都在研究之中。

有限体积法(Finite Volume Method,FVM)

有限体积法又称为控制体积法,在Fluent中就是采用这种方法。其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积,将待解的微分方程对每个控制体积积分,得出一组离散方程。其中的未知数是网格点上的因变量Φ的数值。为了求出控制体积的积分,必须假定Φ值在网格点之间的变化规律,即假定Φ值的分段的分布剖面。从积分区域的选取方法来看,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法来看,有限体积法属于采用局部近似的离散方法。简而言之,子区域法加离散,就是有限体积法的基本方法。

有限体积法的基本思想易于理解,并能得出直接的物理解释。有限体积法实际上是流体力学中用微元体概念推导微分方程的逆过程,网格就相当于放大的微元体。离散方

程的物理意义,就是因变量Φ在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中守恒原理一样。

有限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足,因此用有限体积法导出的离散方程可以保证具有守恒性,对区域形状的适应性也比有限差分法好,这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格及其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。

就离散方法而言,有限体积法可视为有限单元法和有限差分法的中间物。有限单元法必须假定Φ值在网格点之间的变化规律(即插值函数),并视其为近似解。有限差分法只考虑网格点上Φ的数值而不考虑Φ值在网格点之间如何变化。有限体积法只寻求Φ的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定Φ值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,我们可以对微分方程中不同的项采用不同的插值函数。

随着计算机工业日新月异的发展,在过去的十余年中数值计算方法及其在计算流体力学、计算水力学中的应用也得到了飞速的进步,新的数值处理方法不断地问世,原有的方法则得到进一步的充实和完善。经过许多学者的理论研究和实际计算表明,在应用于流动问题数值计算的众多方法中,有限体积法由于其概念简明、实施过程简便、数值特性优良,即最大限度地保持了差分法的简单性,又兼有有限元法的精确性,具有积分守恒性、易于处理边界控制体的特点,因而目前在二维和三维紊流数值计算中有限体积法得到了广泛而成功的应用。

§3.4 流场的计算

§3.4.1 传统方法

对不可压流体:

(3-15)

由连续方程和动量方程可看出,给定一个p的分布,可以由三个动量方程解出u、v、w;但u、v、w必须满足连续方程,而连续方程不涉及到压力p,因而计算速度场真正的困难在于不知道压力场。

传统方法是采用流函数—涡量法。

对二维问题,将两个动量方程交叉求导后,消去压力梯度项,并引入涡函数:

(3-16)

并根据连续方程引入流函数:

(3-17)

把二维方程组转化为:

(3-18)

只要解两个方程,求出Ψ和Ω。

这个方法的缺点是:

(1)壁面上漩涡值较难确定;

(2)流函数不能推广到三维。

§3.4.2 SIMPLE方法

SIMPLE算法,就是求解压力耦合方程的半隐方法[17](Semi-Implicit Method for Pressure Linked Equations)。它是Patankar与Spalding在1972年提出的。本文将应用SIMPLE 方法进行压力-速度的耦合,求解不可压流体力学方程组。

(一)离散中的两个问题

a. a. 压力梯度项的离散

对流项扩散项源项

上风格式中心格式

W w P e E

(δx)w(δx)e

对P控制体积分后,的贡献为,如w和e为单元中点

(3-19)因此,动量方程将包含相间隔(而非相邻)节点间的压力差。

这样导致的后果是:

(1)精度降低;

(2)锯齿状压力场,如

p=100 500 100 500 100

这类锯齿状压力场对动量方程而言与均匀场相同(奇偶差)。

因此,高度不均匀的压力场将被动量方程的特殊离散化当作均匀的压力场处理。

b.连续方程的离散

一维问题:

(3-20)

对控制体积分后:

则(跳开了P点)

这样也会导致奇偶差。

(二)交错网格法

对以上出现的离散问题,我们用交错网格法能较好的解决。在此方法中,将速度变量u、v直接设置在P控制体的边界面上,即P控制体边界面上的u、v不再是通过主节点上的值求得,而是直接解得。

交错网格法的优点是:

(1)连续方程(二维):

(3-21)

对一维:

u e与u w为相邻速度分量,从而不会出现奇偶差。

(2)压力场

交错网格使两邻近节点之间的压力差现在成为位于这两个节点之间的速度分量的自然驱动力。

(3)动量方程的离散

N

n

A W w e E

P

, s

S

图3-1 交错网格

x方向动量方程的交错控制容积为如图3-1所示的u控制体,最终的离散方程式为

(3-22a)式中:为u 单元控制体所受的x方向的总压力差。

y方向动量方程的离散方程为

(3-22b)

动量方程只有在压力场给定或以某种方式估算时才能求解。基于试探的压力场p*的速度场将用u*、v*、w*表示,它们的求解在于求解下列的方程:

(3-23a)

(3-23b)

(3-23c)

(三)压力-速度的校正

我们假定正确的压力场p

(3-24)

式中:为压力校正值,为准确值。相应的速度校正可用类似的方法得到:

(3-25)

(3-26)

(3-27)

将方程(3-22a)和(3-23a)相减,得到

(3-28)为求解方便,先删去项,可得

(3-29)

式中:——速度校正公式

速度校正后:

(3-30a)

其它方向的速度分量的校正公式可以类似的写出

(3-30b)

(3-30c)

(四)压力校正方程

利用连续方程来校正压力场

连续方程:

(3-31)

该式的积分形式为:

流体力学基础

第二章流體力學基礎 1.流動描述法 在質點力學和固體力學的學科中,因可以很清楚看到或想像質點或固體的運動情形,所以,也就比較容易去分析。流體雖然可視為由無數的流體質點或元素(element)所組成,但是,在分析或想像流體各質點的運動時,就可能引起困難。為研究流體流動的問題,通常有兩種不同定義流場流動的描述或分析的方法,分別是拉氏描述法(Lagrangian method of description)和歐拉氏(Eulerian method of description)描述法。 甲、拉氏描述法 這種描述法的觀念和分析質點力學的問題相同,即視流體 的流動是由無數個流體質點或元素所組成。茲假設某一流 體質點(取名為A質點)的運動軌跡或路徑(pathline)為已 知,則該運動軌跡在卡氏座標(Cartesian coordinates)上可表 示為: r= r(ξA, t) = x i+ y j+ z k 式中, ξA = x A i+ y A j+ z A k =流體A質點在已知時間t時的位置向量,故為已

知值。 因此,流體A 質點隨時間而運動的軌跡r ,應僅為時間t 的函數,其分量為 x = F x (ξA , t ) y = F y (ξA , t ) (2-1) z = F z (ξA , t ) 所以,流體A 質點運動的速度(u , v, w )和加速度(a x , a y , a z ),可依定義對時間t 微分而得。即: u = (dt dx )A ξ a x = (dt du )A ξ = (22dt x d )A ξ v = (dt dy )A ξ (2-2) a y = (dt dv )A ξ = (22dt y d )A ξ (2-3) w = (dt dz )A ξ a z = (dt dw )A ξ = (22dt z d )A ξ 顯然地,這些結果和質點力學所表示的式子是完全相同的。 乙 歐拉氏描述法 這種描述法的觀念是在流場中隨意選取某定點P 或固定區域,然後注視佔據該定點P 或固定區域上的流體,注意其流動變數(flow variables)的變動情形。歐拉假設流體的流動情形,可以一速度場ν表示: ν = ν(r , t ) = u i + v j + w k 流體質點P 的運動軌跡 x

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

流体力学基础知识

流体力学基础知识 第一节流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母T表示,单位为kg/m3。流体单位体积内所具有的重量称为重度,重度用表示,单位为N/m?,两者之间的关系为 =「g , g 为重力加速度,通常g = 9. 806m/s2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用」来表示。 所谓运动粘度是指动力粘度」与相应的流体密度「之比,用、来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升咼而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60C时,由于粘滞性下 降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60C下。 第二节液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△卩,当厶F逐渐趋近于零时作用在厶F面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示 某点的实际液体静压力就需要引出点静压力的概念。

流体力学-基本概念

**流函数:由连续性方程导出的、其值沿流线保持不变的标量函数。**粘性:在运动状态下,流体内部质点间或流层间因相对运动而产生内摩擦力以抵抗剪切变形,这种性质叫做粘性。粘性的大小用黏度表示,是用来表征液体性质相关的阻力因子。粘度又分为动力黏度.运动黏度和条件粘度。 **内摩擦力:流体内部不同流速层之间的黏性力。 **牛顿流体:剪切变形率与切应力成线性关系的流体(水,空气)。**非牛顿流体:黏度系数在剪切速率变化时不能保持为常数的流体(油漆,高分子溶液)。 **表面张力:1.表面张力作用于液体的自由表面上。2.气体不存在表面张力。3.表面张力是液体分子间吸引力的宏观表现。4.表面张力沿表面切向并与界线垂直。5.液体表面上单位长度所受的张力。6.用σ 表示,单位为N/m。 **流线:表示某瞬时流动方向的曲线,曲线上各质点的流速矢量皆与该曲线相切。性质:a、同一时刻的不同流线,不能相交。b、流线不能是折线,而是一条光滑的曲线。c、流线簇的疏密反映了速度的大小。 **过流断面:与元流或总流的流向相垂直的横断面称为过流断面。(元流:在微小流管内所有流体质点所形成的流动称为元流。总流:若流管的壁面是流动区域的周界,将流管内所有流体质点所形成的流动称为总流。)

**流量:单位时间内通过某一过流断面的流体体积称为该过流断面的体积流量,简称流量。 **控制体:被流体所流过的,相对于某个坐标系来说,固定不变的任何体积称之为控制体。控制体的边界面,称之为控制面。控制面总是封闭表面。占据控制体的诸流体质点随着时间而改变。 **边界层:水和空气等黏度很小的流体,在大雷诺数下绕物体流动时,黏性对流动的影响仅限于紧贴物体壁面的薄层中,而在这一薄层外黏性影响很小,完全可以忽略不计,这一薄层称为边界层。 **边界层厚度:边界层内、外区域并没有明显的分界面,一般将壁面流速为零与流速达到来流速度的99%处之间的距离定义为边界层厚度。 **边界层的基本特征:(1) 与物体的特征长度相比,边界层的厚度很小。(2) 边界层内沿厚度方向,存在很大的速度梯度。(3) 边界层厚度沿流体流动方向是增加的,由于边界层内流体质点受到黏性力的作用,流动速度降低,所以要达到外部势流速度,边界层厚度必然逐渐增加。(4) 由于边界层很薄,可以近似认为边界层中各截面上的压强等于同一截面上边界层外边界上的压强值。 (5) 在边界层内,黏性力与惯性力同一数量级。 (6) 边界层内的流态,也有层流和紊流两种流态。 **滞止参数:设想某断面的流速以等熵过程减小到零,此断面的参数称为滞止参数。

流体力学在医学中的应用

流体力学在医学中的应用 通过对流体力学这一章的学习,我发现在医学治疗疾病领域,流体力学有着丰富的应用,尤其在动脉病方面,通过对资料及文献的学习,了解到心血管疾病与其有密切关系,而且血流动力学不仅在动脉病变的发生和发展过程中起着决定性的作用,而且是外科医生在心血管疾病的手术和介入治疗等过程中必须充分考虑的因素,下面依次举例~ 1冠状动脉硬化斑块与血液流体动力学关系 原理:当冠状动脉粥样硬化斑块给血管造成的狭窄程度在20%-40%之间的时候,流经斑 块的速度剖面呈抛物线状态;当狭窄的程度是50%时,速度剖面出现紊乱,没有出现抛物线的分布,且不满足层流的规律,并伴有回流现象的发生;当狭窄程度在50%-75%之间时,斑块附近轴管的管轴速度小于周围速度,此时速度剖面呈现中心凹状,斑块的后部有明显的回流现象。 疾病成因及表象:软斑块可逆,且对血液动力学不造成明显的影响,但是它的不稳定与易破 碎等会引发急性冠状动脉的综合症状,是引发心脏事件的危险因素;钙化斑块不可逆,对血液动力学的影响较为明显,但其斑块稳定和不易破碎的特点是造成稳定性心绞痛的主要诱导原因,也是冠状动脉疾病的晚期表现。 检测及治疗方法:冠状动脉硬化斑块有较多的常规检查方法,比如多层CT冠状动脉成像、 血管的内超声检查以及冠状动脉造影,而其中冠状动脉造影是冠心病检查的金标准,但它主要是由填充造影剂的方法来判断血管腔的变化情况,而无法真正识别血管壁的结构,不能起到判断斑块性质的作用,也无法对血液动力学造成影响。而64排螺旋CT在空间和时间的分辨率上都有所提升,不仅能观察到管腔,还可以看到血管壁。由斑块特征的不同,可将其分成软斑块和纤维斑块以及钙化斑块,斑块不同,CT值也各异,其稳定性也存在差异,64排螺旋CT是目前为止无创检查冠心病最为常见的影像方法。本文主要研究患者在冠状动脉螺旋CT成像之后的软斑块和钙化斑块给血液动力学与诱发心脏事件带来的影响。 2与血液流体动力学关系

计算流体力学_CFD_的通用软件_翟建华

第26卷第2期河北科技大学学报Vol.26,No.2 2005年6月Journal of Hebei University of Science and T echnology June2005 文章编号:100821542(2005)022******* 计算流体力学(CFD)的通用软件 翟建华 (河北科技大学国际交流与合作处,河北石家庄050018) 摘要:对化学工程领域中的通用CFD(Computational Fluid Dynamics)模拟软件Phoenics,Flu2 ent,CFX等的具体特点和应用情况进行了综述,指出了他们各自的结构特点、特有模块、包含的数学模型和成功应用领域;给出了选用CFD软件平台的7项准则,对今后CFD技术的发展进行了预测,指出,今后CFD研究的主要方向将集中在数学模型开发、工程改造和新设备开发及与工艺软件的匹配连用等方面。 关键词:计算流体力学;模拟软件;CFX;FLUENT;PH OENICS 中图分类号:T Q015.9文献标识码:A Review of commercial CFD software ZH AI Jian2hua (Department of Int ernation Exchange and Cooperation,H ebei University of Science and Technology,Shijiazhuang H ebei 050018,China) Abstr act:The paper summar izes the features and application of the CF D simulation software like Phoenics,F luent and CFX etc in chemical engineering,and discusses their str ucture features,special modules,mathematical models and successful application areas.It also puts forward seven r ules for the good choice of commercial CF D code for the CF D simulation resea rcher s.Based on t he predict ion of the technology development,it points out the possible r esear ch direction for CF D in the future will focus on the development of mathematical model,project transformat ion,new equipment and their matching application with technologi2 cal softwa re. Key words:CF D;simulation software;CF X;FLUENT;P HOENICS CFD(Computational Fluid Dynamics)软件是计算流体力学软件的简称,是用来进行流场分析、计算、预测的专用工具。通过CFD模拟,可以分析并且显示流体流动过程中发生的现象,及时预测流体在模拟区域的流动性能,并通过各种参数改变,得到相应过程的最佳设计参数。CFD的数值模拟,能使我们更加深刻地理解问题产生的机理,为实验提供指导,节省以往实验所需的人力、物力和时间,并对实验结果整理和规律发现起到指导作用。随着计算机软硬件技术的发展和数值计算方法的日趋成熟,出现了基于现有流动理论的商用CFD软件。这使许多不擅长CFD工作的其他专业研究人员能够轻松地进行流体数值计算,从而使研究人员从编制繁杂、重复性的程序中解放出来,以更多的精力投入到研究问题的物理本质、问题提法、边界(初值)条件和计算结果的合理解释等重要方面上,充分发挥商用CFD软件开发人员和其他专业研究人员各自的智力优势,为解决实际工程问题开辟了道路。 CFD研究走过了相当漫长的过程。早期数值模拟阶段,由于缺乏模拟工具,研究者一般根据自身工作性质和研究过程,自行编制模拟程序,其优点是针对性强,对具体问题的解决有一定精度,但是,带来的问题 收稿日期:2004208221;修回日期:2004211221;责任编辑:张军 作者简介:翟建华(19642),男,河北平乡人,教授,主要从事化工CFD、高效传质与分离和精细化工方面的研究。

流体力学基本概念和基础知识..知识分享

流体力学基本概念和基础知识(部分) 1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体? 流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质 dy du A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。 水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。 2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。 连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化) 3.什么是理想流体? 不考虑黏性作用的流体,称为无黏性流体(或理想流体) 4.什么是实际流体? 考虑黏性流体作用的实际流体 5.什么是不可压缩流体? 流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。 6.为什么流体静压强的方向必垂直作用面的内法线? 流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向 7.为什么水平面必是等压面?

由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。 8.什么是等压面?满足等压面的三个条件是什么? 在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。满足等压面的三个条件是同种液体连续液体静止液体。 9.什么是阿基米德原理? 无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。 10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况? 重力大于浮力,物体下沉至底。重力等于浮力,物体在任一水深维持平衡。重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。 11.等角速旋转运动液体的特征有那些? (1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。 12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少? 绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。相对压强:当地同高程的大气压强ap为零点起算的压强。压力表的度数是相对压强,通常说的也是相对压强。1atm=101325pa=10.33mH2O=760mmHg. 13.什么叫自由表面?和大气相通的表面叫自由表面。 14.什么是流线?什么是迹线?流线与迹线的区别是什么? 流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。流线是由无究多个质点组成的,它是表示这无究多个流

计算流体力学软件

计算流体力学(CFD)是近代流体力学,数值数学和计算机科学结合的产物,是一门具有强大生命力的边缘科学。它以电子计算机为工具,应用各种离散化的数学方法,对流体力学的各类问题进行数值实验、计算机模拟和分析研究,以解决各种实际问题。 计算流体力学和相关的计算传热学,计算燃烧学的原理是用数值方法求解非线性联立的质量、能量、组分、动量和自定义的标量的微分方程组,求解结果能预报流动、传热、传质、燃烧等过程的细节,并成为过程装置优化和放大定量设计的有力工具。计算流体力学的基本特征是数值模拟和计算机实验,它从基本物理定理出发,在很大程度上替代了耗资巨大的流体动力学实验设备,在科学研究和工程技术中产生巨大的影响。目前比较好的CFD软件有:Fluent、CFX,Phoenics、Star-CD,除了Fluent 是美国公司的软件外,其它三个都是英国公司的产品 ------------------------------------------------------ FLUENT FLUENT是目前国际上比较流行的商用CFD软件包,在美国的市场占有率为60%。举凡跟流体,热传递及化学反应等有关的工业均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛的应用。其在石油天然气工业上的应用包括:燃烧、井下分析、喷射控制、环境分析、油气消散/聚积、多相流、管道流动等等。 Fluent的软件设计基于CFD软件群的思想,从用户需求角度出发,针对各种复杂流动的物理现象,FLUENT软件采用不同的离散格式和数值方法,以期在特定的领域内使计算速度、稳定性和精度等方面达到最佳组合,从而高效率地解决各个领域的复杂流动计算问题。基于上述思想,Fluent开发了适用于各个领域的流动模拟软件,这些软件能够模拟流体流动、传热传质、化学反应和其它复杂的物理现象,软件之间采用了统一的网格生成技术及共同的图形界面,而各软件之间的区别仅在于应用的工业背景不同,因此大大方便了用户。其各软件模块包括: GAMBIT——专用的CFD前置处理器,FLUENT系列产品皆采用FLUENT公司自行研发的Gambit 前处理软件来建立几何形状及生成网格,是一具有超强组合建构模型能力之前处理器,然后由Fluent 进行求解。也可以用ICEM CFD进行前处理,由TecPlot进行后处理。 Fluent5.4——基于非结构化网格的通用CFD求解器,针对非结构性网格模型设计,是用有限元法求解不可压缩流及中度可压缩流流场问题的CFD软件。可应用的范围有紊流、热传、化学反应、混合、旋转流(rotating flow)及震波(shocks)等。在涡轮机及推进系统分析都有相当优秀的结果,并且对模型的快速建立及shocks处的格点调适都有相当好的效果。 Fidap——基于有限元方法的通用CFD求解器,为一专门解决科学及工程上有关流体力学传质及传热等问题的分析软件,是全球第一套使用有限元法于CFD领域的软件,其应用的范围有一般流体的流场、自由表面的问题、紊流、非牛顿流流场、热传、化学反应等等。 FIDAP本身含有完整的前后处理系统及流场数值分析系统。对问题整个研究的程序,数据输入与输出的协调及应用均极有效率。 Polyflow——针对粘弹性流动的专用CFD求解器,用有限元法仿真聚合物加工的CFD软件,主要应用于塑料射出成形机,挤型机和吹瓶机的模具设计。 Mixsim——针对搅拌混合问题的专用CFD软件,是一个专业化的前处理器,可建立搅拌槽及混合槽的几何模型,不需要一般计算流力软件的冗长学习过程。它的图形人机接口和组件数据库,让工程师

流体力学_环境自测题

《流体力学》自测题 第1章绪论 一.思考题 1.为什么说流体运动的摩擦阻力是摩擦阻力?它与固体运动的摩擦和有何不同? 2.液体和气体的粘度随温度变化的趋向是否相同?为什么? 3.不可压缩流体定义是什么?在实际工程应用中,通常可把什么流体作为不可压缩流体处 理? 二.选择题(单选) 1.作用于流体的质量力包括()。 (a)压力;(b)摩擦阻力;(c)重力;(d)表面力。 2.比较重力场(质量力只有重力)中,水和水银所受单位质量力Z水和Z汞的大小()。 (a)Z水﹤Z汞; (b)Z水=Z汞; (c)Z水﹥Z汞; (d)不定。 3.单位质量力的国际单位是()。 (a)N;(b)Pa (c)N/m (d) m/s2 4.与牛顿摩擦定律直接有关的因素是()。 (a)切应力和压强;(b) 切应力和剪切变形速度; (c) 切应力和剪切变形;(d) 切应力和流速。 5.水的动力粘度随温度的升高()。 (a)增大;(b) 减小;(c)不变;(d)不定。 6.流体运动粘度 的国际单位是()。 (a)m2/s; (b) N/m2; (c)kg/m; (d)N.s/m2 7.以下作用在流体上的力中不是表面力的为()。 (A) 压力(B) 剪切力(C) 摩擦力(D) 惯性力 8. 液体在两块平板间流动,流速分布如图所示,从中取出A、B、C三块流体微元,试分析:(1)各微元上下两平面上所受切应力的方向;(2)定性指出哪个面上的切应力最大?哪个最小?为什么?

第2章流体静力学一. 复习思考题 1.试述静止流体中的应力特性。 2.怎么认识流体静力学基本方程 p z C g ρ +=的几何意义和物理意义? 3.绝对压强、相对压强、真空度是怎样定义的?相互之间如何换算?4.何谓压力体?怎样确定压力体? 5.液体的表面压强(以相对压强计) 00 p≠时,怎样计算作用在平面或曲面上的静水总压力? 二. 选择题(单选) 2-1 静止液体中存在()。 (a) 压应力(b) 压应力和拉应力(c ) 压应力、切应力(d) 压应力、拉应力和切应力2-2 相对压强的起点是()。 (a) 绝对压强(b) 1个标准大气压(c) 当地大气压(d) 液面大气压 2-3金属压力表的读值是()。 (a) 绝对压强(b) 相对压强(c) 绝对压强加当地大气压(d) 相对压强加当地大气压2-4某点的真空度为65000Pa,当地大气压为0.1MPa,该点的绝对压强为()。 (a) 65000Pa (b) 55000Pa (c) 35000 Pa (d) 165000 Pa 2-5绝对压强p abs与相对压强p、真空度p v、当地大气压p a之间的关系是()。 (a) p abs=p+p v(b) p=p abs+p a(c) p v=p a-p abs(d) p=p v+p a 2-6在密闭容器上装有U形水银测压计,其中1、2、3点位于同一水平面上,其压强关系为()。 (a) p1=p2=p3(b) p1>p2>p3(c) p1<p2<p3(d) p2<p1<p3

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

流体力学基础学习知识知识

第一章流体力学基本知识 学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关内容。 §1-1 流体的主要物理性质 1.本节教学内容和要求: 1.1本节教学内容: 流体的4个主要物理性质。 1.2教学要求: (1)掌握并理解流体的几个主要物理性质 (2)应用流体的几个物理性质解决工程实践中的一些问题。 1.3教学难点和重点: 难点:流体的粘滞性和粘滞力 重点:牛顿运动定律的理解。 2.教学内容和知识要点: 2.1 易流动性 (1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。 流体也被认为是只能抵抗压力而不能抵抗拉力。 易流动性为流体区别与固体的特性 2.2密度和重度 (1)基本概念:密度——单位体积的质量,称为流体的密度即: M ρ= V M——流体的质量,kg ; V——流体的体积,m3。 常温,一个标准大气压下Ρ水=1×103kg/ m3

Ρ水银=13.6×103kg/ m3 基本概念:重度:单位体积的重量,称为流体的重度。重度也称为容重。 G γ= V G——流体的重量,N ; V——流体的体积,m3。 ∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3 γ水银=133.28×103kg/ m3密度和重度随外界压强和温度的变化而变化 液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。 2..3 粘滞性 (1)粘滞性的表象 基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表 现。 为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。用流速仪测出管道中某一断面的流速分布如图一所示 设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。 由于各流层之间的速度不同,相邻流层间有相对运动,便在接触面上产生一种相互作用的剪切力,这个力叫做流体的内摩擦力,或粘滞力。 平板实验 (2)牛顿内摩擦定律 基本概念:牛顿在平板实验的基础上于1867年在所著的《自然哲学的数学原理》中提出了流体内摩擦力的假说——牛顿内摩擦定律: 当切应力一定时,粘性越大,剪切变形的速度越小,所以粘性又可定义为流体

流体力学计算软件报告

三维方管内部二次流特征分析 ——基于NUMECA 数值仿真 2120130457 李明月 【摘 要】运用NUMECA 数值仿真的方法,通过在有粘与无粘的工况下三维方管的内部三维流线对比分析,重点在分析粘性工况下方管内部沿流向各截面上的切向速度矢量分布特征和总压系数分布特征对二次流机理进行讨论和分析。 【关键字】数值仿真 二次流 欧拉方程 N-S 方程 压力梯度 0 前言 在边界层内流体质点向着压力梯度相反并与主流运动方向大致垂直的方向流动,称为二次流。几乎所有的过流通到里面都存在着速度和压力分布不均的情况,压力分布不均则产生一个从高压指向低压的作用力,它与惯性力的大小关系是能否形成二次流的关键。而二次流会使叶轮机械叶片的边界层增厚从而导致分离和损失,而二次流在换热器中增强了对流换热,从而强化了传热,故对二次流的成因和特征的研究具有很大的现实意义。而运用NUMECA 软件对一个简单的三维方管在不同工况下进行数值运算,能够直观地观察得到二次流的结果,并对此进行对比和分析,对流体初学者而言,一方面可以熟悉NUMECA 软件的基本操作,一方面可以基于此加深对二次流的理解。 1 几何描述 如图一所示为三维方管的三维图与所需设定的边界条件。在此算例中,最大的特点在于 中部有一个90°的弯道,且出流部分较长。 10m m 30m m 80m m r20m m r10m m 图1 几何模型

2 网格划分与边界条件 在调入IGG data 文件生成几何文件之后,用网格功能中生成网格块的功能用对应网格顶点与几何顶点重合的方式将网格块贴附在几何模型上,再调整网格数量,和Cluster Points 功能调整边界网格大小,使得近壁面的网格较密,使数值计算时能更好地捕捉到近壁面的参数。生成的网格如图2所示。网格生成后一共33×33×129个网格,网格质量为:最小的正交角度为50.68°,最大宽高比为200,最大膨胀比为1.51,多重网格数为3。在边界条件上,管壁设为SOL 类型,另外短管端面设为INL 类型,剩下那一面设为OUT 类型。 3 边界设定及收敛特性 在NUMECA Fine Turbo 里面建立两个工况并命名为一个无粘一个有粘。在无粘的工况下,选择的流动模型为基于Euler 方程的数学模型。在有粘工况下,流动模型选择的是湍流N-S 方程,并且湍流模型为Spalart-Allmaras 模型。两个工况皆为理想气体的定常流动,进口边界设为总量下(total quantities imposed )马赫数推断(mach number extrapolated ),进口压力为1.3bar ,进口温度为340K 。出口设定为由静压推断(static pressure imposed ),出口压力为1.0bar 。固壁面在欧拉方程下为无粘的欧拉壁,在N-S 方程里为绝热壁。经初始化后选择计算后输出的参数,除了常规的静压静温和速度外,在壁面数据(solid data )里额外输出一个粘性压力(viscous stress )。选择500次迭代后,两种工况下的收敛曲线如图3~图6所示。 图2 三维方管网格划分示意图 图3 Euler 方程下残差收敛曲线

流体力学

()⊥ -++ +φφφ φφ1 4210 .01 Re 3 1Re 161 Re 8= 2 .0log 4.03 4 ∥ D C 其中,面积 颗粒在迎流方向上投影 计算颗粒表面积 等体积球横截面积 -2=∥φ 向上投影面积 计算颗粒在垂直迎流方 等体积球横截面积 =⊥φ The sphericity (Φ) represents the ratio between the surface area of the volume equivalent sphere and that of the considered particle, the cross-wise sphericity (Φ⊥) is the ratio between the cross-sectional area of the volume equivalent sphere and the projected cross-sectional area of the considered particle and the lengthwise sphericity (Φ||) is the ratio between the cross-sectional area of the volume equivalent sphere and the difference between half the surface area and the mean projected longitudinal cross-sectional area of the considered particle.

最新2-5有限元法在流体力学中的应用汇总

2-5有限元法在流体力学中的应用

第五章有限元法在流体力学中的应用 本章介绍有限元法在求解理想流体在粘性流体运动中的应用。讨论了绕圆柱体、翼型和轴对称物体的势流,分析了求解粘性流动的流函数—涡度法流函数法和速度—压力法,同时导出粘性不可压流体的虚功原理。 §1 不可压无粘流动 真实流体是有粘性和可压缩的,理想不可压流体模型使数学问题简化,又能较好地反映许多流动现象。 1. 圆柱绕流 本节详细讨论有限无法的解题步骤。考虑两平板间的圆柱绕流.如图5—1所示。为了减小计算工作量,根据流动的对称性可取左上方的l/4流动区域作为计算区域。 选用流函数方法,则流函数 应满足以下Laplace方程和边界条件

22220(,)0(,)2(,)(,)0(,)x y x y x y aec x y bd y x y ab x y cd n ψψ ψψ ???+=-∈Ω?????-----∈???=-----∈????-----∈????=-----∈???流线流线流线 流线 (5-1) 将计算区域划分成10个三角形单元。单元序号、总体结点号和局部结点号都按规律编排.如图5—2所示。 从剖分图上所表示的总体结点号与单元结点号的关系,可以建立联缀表于下 元素序号 1 2 3 4 5 6 7 8 9 10 总体 结点 号 n1 1 4 4 4 2 2 6 6 5 5 n2 4 5 9 8 6 5 7 10 10 9 n3 2 2 5 9 3 6 3 7 8 10 表5-1

各结点的坐标值可在图5—2上读出。如果要输入计算机运算必须列表。本质边界结点号与该点的流函数值列于下表 表5-2 选用平面线性三角形元素,插值函数为(3—15)式。对二维Laplace 方程进行元素分析,得到了单元系数矩阵计算公式(3—19)和输入向量计算公式(3—20)。现在对全部元素逐个计算系数矩阵。 例如元素1,其结点坐标为1x =0, 1y =2; 2x =0, 2y =1; 3x =2.5, 3y =2. 由(3—15)式可得 132 2.5a x x =-=; 213 2.5a x x =-=- 3210a x x =-=, 1231b y y =-=-; 2310b y y =-=; 3121b y y =-=; 0 1.25A = 从(3—19)式可计算出1K 1 1.45 1.250.21.2500.2K ?? ? ? = ? ? ? ? --对称 依次可计算出全部子矩阵 20.20.201.45 1.251.25K ?? ? ? = ? ? ? ? --

流体力学基础知识

流体力学基础知识 第一节 流体的物理性质 一、流体的密度和重度 流体单位体积内所具有的质量称为密度,密度用字母ρ表示,单位为kg/m 3。流体单位体积内所具有的重量称为重度,重度用γ表示,单位为N/m 3,两者之间的关系为g ργ=,g 为重力加速度,通常g =9.806m/s 2 流体的密度和重度不仅随流体种类而异,而且与流体的温度和压力有关。因为当温度和压力不同时,流体的体积要发生变化,所以其密度和重度亦随之变化。对于液体来讲,密度和重度受压力和温度变化的影响不大,可近似认为它们是常数。对于气体来讲,压力和温度对密度和重度的影响就很大。 二、流体的粘滞性 流体粘滞性是指流体运动时,在流体的层间产生内摩擦力的一种性质。 所谓动力粘度系数是指流体单位接触面积上的内摩擦力与垂直于运动方向上的速度变化率的比值,用μ来表示。 所谓运动粘度是指动力粘度μ与相应的流体密度ρ之比,用ν来表示。 运动粘度或动力粘度的大小与流体的种类有关,对于同一流体,其值又随温度而异。气体的粘性系数随温度升高而升高,而液体的粘性系数则随温度的升高而降低。 液体粘滞性随温度升高而降低的特性,对电厂锅炉燃油输送和雾化是有利的,因此锅炉燃用的重油需加热到一定温度后,才用油泵打出。但这个特性对水泵和风机等转动机械则是不利的,因为润滑油温超过60℃时,由于粘滞性下降,而妨碍润滑油膜的形成,造成轴承温度升高,以致发生烧瓦事故。故轴承回油温度一般保持在以60℃下。 第二节 液体静力学知识 一、液体静压力及其特性 液体的静压力是指作用在单位面积上的力,其单位为Pa 。 平均静压力是指作用在某个面积上的总压力与该面积之比。点静压力是指在该面积某点附近取一个小面积△F ,当△F 逐渐趋近于零时作用在△F 面积上的平均静压力的极限叫做该面积某点的液体静压力。 平均静压力值可能大于该面积上某些点的液体静压力值,或小于另一些点的液体静压力值,因而它与该面积上某点的实际静压力是不相符的,为了表示

流体力学

第十一讲流体力学 我们通常所说的流体包括了气体和液体。流体具有形状和大小可以改变的特征,这一点和弹性体是类似的,然而,流体仅仅具备何种压缩弹性,例如,用力推动活塞可以压缩密闭气缸中的气体,在撤消外力后,气体将恢复原状,将活塞推出;但流体不具备抵抗形状改变的弹性,在力的作用下,流体因流动而发生形状的改变,,撤消外力后,流体并不恢复原来的形状,流体的这种性质称为流动性。流体力学的任务在于研究流体流动的规律以及它与固体之间的相互作用。 一、理想流体 无论是气体还是流体都是可以压缩的,只不过在通常的情况下,气体较容易被压缩,而液体难以被压缩。但是,在一定的条件下,我们常常把流动着的流体看着是不可压缩的,这一点对于液体是比较好理解的,因为在对液体加压时,其何种的改变是极其微小的,是可以忽略的;我们之所以把流动着的气体也看作是不可压缩的,是因为气体的密度小,即使压力差不大,也能够迅速驱使密度较大处的气体流向密度较小的地方,使密度趋于均匀,这样使得流动的气体中各处的密度密度不随时间发生明显的变化,这样,气体的可压缩性便可以不必考虑。不过,当气流的速度接近或超过声速时,因气体的运动造成的各处的密度不均匀的差别不及消失,这时气体的可压缩性会变得非常的明显,不能再看作是不可压缩的。总之,在一定的问题中,若可不考虑气体的可压缩性,便可将它抽象为不可压缩的理想模型,反之,则需看作是可压缩的液体。 液体都的或多或少的粘性,在静止液体中,粘性无法表现,在流体流动时,,将明显地表现出粘性。所谓粘性,就是当流体流动时,层与层之间有阻碍相对运动的内摩擦力,如河流中心的水流速度较快,由于粘性,靠近河岸的水几乎不动。在研究流体时,若流体的流动性是主要的,粘性居于次要地位时,可认为流体完全没有粘性,这样的理想模型叫做非粘性流体,若粘性起着重要的作用,则需将流体看作粘性流体。 如果在流体的运动过程中,流体的可压缩性和粘性都处于极为次要的地位,就可以把流体看作是理想流体。理想流体是不可压缩又无粘性的流体。 二、静止流体内的压强 1.静止流体内一点的压强 首先,我们可以证明:在重力场中,过静止流体内一点的各不同方位无穷小的截面上的压强的大小都是相等的。这是流体内压强的一条重要的性质。基于这一点,我们对静止流体内的一点的压强作如下的定义:静止流体内的压强等于过此点任意一假想的微小截面上的压力与该截面的面积之比。 2.静止流体内压强的分布 a.在重力场中,静止流体内各等高点的压强相等。 b.沿直方向的压强的分布 在重力作用下,静止流体内的压强随流体高度的增加而减小。如果液体具有自由的表面,且自由表面处的压强为p0,则液体内部深度为h处的压强为 p=p0+ρgh (式中ρ为液体的密度) 对于气体来说,因密度很小,若高度范围不是很大,则可认为气体内各部分的压强

流体力学

流体力学的背景及其发展 姓名:王灿学号:106030123 摘要:这篇文章主要描述流体力学的背景及其发展。从欧洲工业革命以后,资本经济的良性运作带动了自然科学的发展,在众多的自然科学起得耀眼成绩之下,流体力学也得到了空前的发展。许多科学家在流体的研究中起得的重大成果,并推动流体力学的发展。比如比较有代表性的科学家有:伽利略,帕斯卡,伯努利等伟大的科学家。他们关于流体力学的众多科学研究成果,关系到与流体有关的产业良好的发展。有了他们,才有了今天的航空工业水利工程,电力工业,石油工业等产业的发展,这些都离不开流体力学。尤其是航空航天事业的发展。 流体力的背景 从大约十四世纪左右,我们伟大的科学家们就开始了对流体的研究,并起得了许多重要的成就:伽利略的虚位移原理,并首先提出,运动物体的阻力随着流体介质的密度的增大和速度的提高而增大;帕斯卡提出密闭容器能传递压强原理;伯努利出版《流体的力学》,在书中提出流体位势能,压强势能和动能之间的转换关系著名的伯努利方程;等众多的科学家都提出了很多理论原理,为流体力学的发展做出了巨大的贡献。 流体的定义: 流体:在任何微小切力的作用下都能够发生联系性变形的物质叫做流体。通常所说的能流动的物质叫流体。液体,气体统称流体。液体,气体都有有利于流动的共同特征,但是也有不同的特征。气体分子与液体分子的大小并没有明显的差异,但是气体分子间的距离是液体分子间距离的1000倍左右,所以气体容易压缩,分子能高度地自由运动,而液体且不能像气体那样自由的运动,但是还是能在相比气体分子小的空间里自由运动,气体流动性比液体的好。在工业生产中,根据流体的不同特性选择不同的流体加以应用。流体的特征:当流体在受力的时候,将会产生联系性变形,即是流动的特征,这与固体是不同的。 流体力学研究的内容及其方法 流体力学是研究流体平衡和宏观运动规律的科学,它的平衡条件及压强分布的规律,流云的基本规律,流体扰流物体或者通过通道似的速度分布,压强分布,能量损失,流体与固体之间的相互作用。 流体力学的研究方法:理论分析法,实验研究法,数值计算法。人类在认识自然规律的时候,总是有简单到复杂,由浅入深,需要具体的实验去验证,也要有理论指导。对于流体力学,他不仅是一门新兴的学科,而且我认为这是一门经验性比强的学科,需要建立在大量统计分析的基础上的。定理只适用于一定的范围。任何定理都是这样的,因为我们所在的世界是相对的。 (一)帕斯卡定理 密闭容器内的液体能够向各个方向传递压强。 (二)伯努利定理 经过大量的实验和理论分析,伯努利总结得出,动能+重力势能+压力势能=常数,有如下关系: ρ=流体的密度,v=流动速度,p=流体所受的压强,h=流体处于的高度(从某参考点计),

相关文档
相关文档 最新文档