文档库 最新最全的文档下载
当前位置:文档库 › 计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告
计算机组成原理实验报告

实验报告

运算器实验

一、实验目的

掌握八位运算器的数据传输格式,验证运算功能发生器及进位控制的组合功能。

二、实验要求

完成算术、逻辑、移位运算实验,熟悉ALU运算控制位的运用。

三、实验原理

实验中所用的运算器数据通路如图2-3-1所示。ALU运算器由CPLD描述。运算器的输出FUN经过74LS245三态门与数据总线相连,运算源寄存器A和暂存器B的数据输入端分别由2个74LS574锁存器锁存,锁存器的输入端与数据总线相连,准双向I/O输入输出端口用来给出参与运算的数据,经2片74LS245三态门与数据总线相连。

图2-3-1运算器数据通路

图中A WR、BWR在“搭接态”由实验连接对应的二进制开关控制,“0”有效,通过【单拍】按钮产生的脉冲把总线上的数据打入,实现运算源寄存器A、暂存器B的写入操作。

四、运算器功能编码

算术运算逻辑运算

K23~K0置“1”,灭M23~M0控位显示灯。然后按下表要求“搭接”部件控制路。

表2.3.2 运算实验电路搭接表

算术运算

1.运算源寄存器写流程

通过I/O单元“S7~S0”开关向累加器A和暂存器B置数,具体操作步骤如下:

2.运算源寄存器读流程

关闭A、B写使能,令K18=K17=“1”,按下流程分别读A、B。

3.加法与减法运算

令M S2 S1 S0(K15 K13~K11=0100),为算术加,FUN及总线单元显示A+B的结果令M S2 S1 S0(K15 K13~K11=0101),为算术减,FUN及总线单元显示A-B的结果。

逻辑运算

1.运算源寄存器写流程

通过“I/O输入输出单元”开关向寄存器A和B置数,具体操作步骤如下:

2.运算源寄存器读流程

关闭A、B写使能,令K17= K18=1,按下流程分别读A、B。

①若运算控制位设为(M S2 S1 S0=1111)则F=A,即A内容送到数据总线。

②若运算控制位设为(M S2 S1 S0=1000)则F=B,即B内容送到数据总线。

③逻辑运算

令M S2 S1 S0(K15 K13~K11=1101),为逻辑与,FUN及总线显示A逻辑与B的结果。

令M S2 S1 S0(K15 K13~K11=1100),为逻辑或,FUN及总线显示A逻辑或B的结 移位运算

现代计算机CPU的累加器(A)在运算中通常含有移位的功能,为了规范运算器的设计,Dais-CMX08+在移位运算时把累加器A视为移位的源与目的寄存器,也就是说移位是通过累加器A实现的,这种规范的设计理念使我们的运算器能够与标准机微指令系统相吻合,达到可以面向源程序级(汇编及C语言)的水准。

1.移位控制编码

表2.3.3 移位编码表

2.移位执行过程

①循环左移

②循环右移

③带进位循环左移

④带进位循环右移

所谓循环移位,就是指移位时数据的首尾相连进行移位,即最高(最低)位的移出位又移入数据的最低(最高)位。根据循环移位时进位位是否一起参加循环,可将循环移位分为不带进位循环和带进位循环两类。其中不带进位循环是指进位“CY”的内容不与数据部分一起循环移位,也称小循环。带进位循环是指进位“CY”中的内容与数据部分一起循环移位,也称大循环。

◆不带进位循环左移:各位按位左移,最高位移入最低位。

◆不带进位循环右移:各位按位右移,最低位移入最高位。

◆带进位循环左移:各位按位左移,最高位移入C中,C中内容移入最低位。

◆带进位循环右:各位按位右移,最低位移入C中,C中内容移入最高位。

循环移位一般用于实现循环式控制、高低字节的互换,还可以用于实现多倍字长数据的算术移位或逻辑移位。

3.移位运算实例

(1)A寄存器置数

拨动“I/O输入输出单元”开关向移位源寄存器A置数,具体操作步骤如下:

(2)A寄存器移位流程

完成上流程的操作后,按表2.3.3改变K13、K11的状态,再按动【单拍】钮,观察A 的变化。

①当K13 K11=11,每按一次【单拍】钮,A右移一位。

②当K13 K11=10,每按一次【单拍】钮,A左移一位。

③当K13 K11=01,每按一次【单拍】钮,A带进位右移一位。

④当K13 K11=00,每按一次【单拍】钮,A带进位左移一位。

⑤实验思考

验证表2.3 .1 ALU运算器编码表所列的运算功能。

在给定A=55h、B=77h的情况下,K23~K0置“1”,改变运算器的功能设置位M S2 S1 S0(K15 K13~K11),观察运算器的输出,填入下页表格中,并和理论分析进行比较、验证。

表2.3.4ALU运算器真值表

●实验心得

这次的实验我了解到了如何调整ALU—BUS、SW—BUS#、M1、LDDR1、M2、LDDR2和运算类型选择端S2、S1、S0记录下实验数据。

●通用寄存器实验

一、实验目的

1.熟悉通用寄存器的数据通路。

2.了解通用寄存器的构成和运用。

二、实验要求

掌握通用寄存器R3~R0的读写操作。

三、实验原理

实验中所用的通用寄存器数据通路如下图所示。由四片8位字长的74LS574组成R1 R0(CX)、R3 R2(DX)通用寄存器组。图中X2 X1 X0定义输出选通使能,SI、XP控制位为源选通控制。RWR为寄存器数据写入使能,DI、OP为目的寄存器写选通。DRCK信号为寄存器组打入脉冲,上升沿有效。准双向I/O输入输出端口用于置数操作,经2片74LS245三态门与数据总线相连。

图2-3-3 通用寄存器数据通路

四、实验内容

1.实验连线

2.寄存器的读写操作

①目的通路

当RWR=0时,由DI、OP编码产生目的寄存器地址,详见下表。

通用寄存器“手动/搭接”目的编码

②通用寄存器的写入

通过“I/O输入输出单元”向R0、R1寄存器分别置数11h、22h,操作步骤如下:

按【单拍】按钮按【单拍】按钮通过“I/O输入输出单元”向R2、R3寄存器分别置数33h、44h,操作步骤如下:

按【单拍】按钮按【单拍】按钮

③源通路

当X2~X0=001时,由SI、XP编码产生源寄存器,详见下表。

通用寄存器“手动/搭接”源编码

④通用寄存器的读出

关闭写使能,令K18(RWR)=1,按下流程分别读R0、R1、R2、R3。

●实验心得

这次的实验我了解到寄存器是CPU内部重要的数据存储资源,用来暂存数据和地址,是汇编程序员能直接使用的硬件资源之一。由于寄存器的存取速度比内存快,所以,在用汇编语言编写程序时,要尽可能充分利用寄存器的存储功能。寄存器一般用来保存程序的中间结果,为随后的指令快速提供操作数,从而避免把中间结果存入内存,再读取内存的操作。

●存储器读写实验

一、实验目的

熟悉和了解存储器组织与总线组成的数据通路。

二、实验要求

按照实验步骤完成实验项目,掌握存储部件在原理计算机中的运用。

三、实验原理

存储器是计算机的存储部件,用于存放程序和数据。存储器是计算机信息存储的核心,是计算机必不可少的部件之一,计算机就是按存放在存储器中的程序自动有序不间断地进行工作。

本系统从提高存储器存储信息效率的角度设计数据通路,按现代计算机中最为典型的分段存储理念把存储器组织划分为程序段、数据段、内存或堆栈段,由此派生了数据总线(DBus)、指令总线(IBus)、微总线(μBus)等与现代计算机设计规范相吻合的实验环境。

实验所用的存储器电路原理如图2-3-8所示,该存储器组织由一片6116构成具有段概念的信息存储体系,该存储体系Addr由IP指针和AR指针分时提供,E/M控位为“1”时选通IP,反之选通AR。该存储器可动态变更程序源与数据源,把我们的教学实验提高到能与现代计算机设计规范相匹配与接轨的层面。

图2-3-8 存储器数据通路

四、存储器分类与寻址

1. 存储器组织分类表

“搭接”态本系统存储器由二个部分组成,详见下表:

五、实验内容

1. 实验连线

2. 存储器数据段读写操作 (1) 数据段写操作

按下流程从0址单元开始,向数据段00h~05h 单元依次写入11 22 33 44 55 66。

(2) 数据段读操作

按【单拍】按钮

按【单拍】按钮

K23=0

依次读出数据段00~05h 单元的内容,这里以0址单元读出为例阐述操作流程。

执行上述流程总线单元应显示11h ,若正确可按上述流程读出01h~05h 单元的内容。

3. 存储器程序段读写操作 (1) 程序段写操作 ① PC 装载写操作流程:

② PC+1写操作流程:

重复PC+1写流程,分别对02~04写入23 45 67。

(2) 程序段读操作

PC 装载及PC+1读操作流程

完成上流程,PC=01,总线单元显示AA ,此时每按一次【单拍】按钮,PC+1,总线单元依次显示23 45 67……等内容。

4. 程序与数据存储器的分段读出

由上流程可知存储器组织0地址的内容有两个,其中55为程序段内容,11为数据段内容。

实验心得

这次实验我掌握了静态存储器的工作特性及使用方法,掌握了半导体随机存储器怎样存储和读出数据。发现自己对计算机的实验感兴趣了。在做实验之前,需要把实验原理先弄清楚。

按【返回】键

K23=0

K23=1

K10~K8=011

按【单拍】按钮

按【单拍】按钮

K23~K21=101

中断控制实验

一、实验目的

1.熟悉中断的硬件机制。

2.了解中断的编程规则。

3.掌握中断的控制方法。

二、实验要求

通过实验,理解中断工作过程。

三、实验原理

所谓中断就是指处理机暂时终止执行现行程序而转去处理更加紧迫的事件服务程序,待处理机完毕后再自动返回执行原来的程序过程。

按图2-4-12所示,本系统提供了一个单级中断硬件机制,由中断允许位IEQ、中断申请源INO、中断请求源INQ和中断响应标志IAQ组成。

微程序控制器每执行一条机器指令之后,先查询中断请求源INQ,如果INQ为“1”,则继续执行下一条机器指令,若检测到INQ为“0”,强制转入微程序控制器的003号单元执行中断响应微服务。中断服务微程序首先置位中断响应标志IAQ,迫使请求源INQ复位,其次执行当前PC的进栈操作,然后按照机器程序的要求随机定义中断向量,把中断服务程序入口地址装入程序计数器PC中,转入中断服务子程序的执行。

遇RET指令,执行中断服务返回微操作,清除中断服务响应标志IAQ,把栈顶所指单元的内容装入程序计数器PC中,恢复执行被中断的机器程序。

四、控制电路

图2-4-12 中断控制电路

五、控制格式

1. 中断允许控制IEQ

中断允许控制表

2. 中断响应控制IAQ

表中断响应控制表

3. 中断请求控制INQ

表中断请求控制表

说明:三表中T

六、中断实验

1. 中断允许控制

2. 中断请求与中断服务控制

用一双头实验导线将中断请求源输入插孔XINT 与中断源产生插孔INT 相连接。

实验心得

这次实验我了解到中断控制的原则就是进程的优先级,当优先级高的进程发出请求时,CPU 会暂停当前运算的进程,

K16 K6 K3=110

K16 K6 K3=100

按【单拍】按钮

按【单拍】按钮

按【单拍】按钮 按【单拍】按钮

按【中断】按钮

中断申请

进行优先级高的进程处理,优先级高的进程运行完毕后,CPU 继续进行原有进程的运算。当然如果某程序运行时不想被中断,可以在程序运行时禁用中断,当然这是在单片机编程时可以。

微控制器实验

一、实验目旳

1.熟悉微控制器的的控制原理。

2.掌握微控制器的实现方法。

二、实验要求

通过控制器实验,理解计算机内部工作过程,建立计算机整机工作概念。

三、控制器组成

控制器是计算机的指挥和控制中心,由它把计算机的运算器、存储器、I/O设备等联系成一个有机的系统,并根据程序所特定的微指令序列对各部件的具体要求,适时地发出各种命令,控制计算机各部件有条不紊的进行工作。

如图2-4-13所示,本系统控制器由组合逻辑与存储逻辑集合组成。两者按独立控制器的规范与标准设计,既可单独控制,亦可交替互补(混合)控制,在国内率先把PLA控制理念融入微控制器的设计与实现中。

图2-4-13控制器组成框图

1.组合逻辑型

如图2-4-13所示的PLD框为组合逻辑型控制器,由可编程器件XC9572独立组成,在器件编程环境的支撑下完成微操作控制信号的设计与下载。以取得最高操作速度为设计目标,它的缺点是繁锁、杂乱、缺乏规律性,且不易修改和扩充,缺乏灵活性。

组合逻辑控制器实质上是一个组合逻辑电路,它将一组输入逻辑信号转换成一组输出控制信号,可称为硬布线控制器。

2. 存储逻辑型

如图2-4-13所示的CM 框为存储逻辑型微程序控制器,它是采用存储逻辑来实现的,也就是把微操作信号代码化,使每条机器指令转化成为一段微程序,存入控制存储器中,微操作控制信号由微指令产生。

微程序控制器的设计思想和组合逻辑的设计思想截然不同。它具有设计规整,调试、维修以及更改、扩充指令方便的优点,易于实现自动化设计,已成为当前控制器的主流。但是,由于它增加了一级控制存储器,所以指令的执行速度比组合逻辑控制器慢。

3. 组合逻辑与存储逻辑结型

如图2-4-13所示,本系统控制器由组合逻辑与存储逻辑集合组成PLA 控制器,它是吸收前两种的设计思想来实现的。PLA 控制器实际上也是一种组合逻辑控制器,但它又与常规的组合逻辑控制器的硬联结构不同,它是程序可编的,某一微操作控制信号由存储逻辑控制器产生。

4. 关于组合逻辑控制器实验

组合逻辑控制器由大规模可编程器件的软逻辑设计定义,渉及器件的开发环境,我们在基于“RISC ”处理器构成的模型机实验中论证。这里以微程序控制器为例展开控制器的原理组成与顺序控制实验。

四、微程序控制器

微程序控制的实质是用程序设计的思想方法耒组织微操作控制逻辑,用规整的存储逻辑代替繁杂的组合逻辑。把各条指令的微操作序列以二进制编码字的形式设计成微程序,存放在控制存储器中,通过读取并执行相应的微程序实现一条指令的功能。这就是微程序控制的基本概念。

1. 微程序控制器的组成结构

1)控制存储器CM

如图2-4-14所示的CM 框为微程序控制器,由2片6264和1片6116共三片静态存储器平行组成。它们的地址通路由微程序计数器μPC 供给,其寻址范围为0~7FF.控制器设有段微址,2片6264的数据端在段微址的指示下分时输出下址与微控制信息,并和6116的数据端平行组成24个途经三态门隔离驱动的微控制位(M23~M0)。

2)微程序计数器μPC

图2-4-14所示的微地址计数器框由3片161构成按字方式寻址的uPC 计数器,计数器的输入端通过微总线(ubus )从指令译码器ID 、微控制器(CM )的下址段捕捉非因变分量,从运算标志PSW 、中断请求标志INQ 等标志中捕捉因变分量。计数器的输出端组成12位微地址总线,控制微程序存储器的寻址。其中ua11为段微址,电路构造中与2片6264的地址端“A11”相连,它零状态输出微控制信息,“1”状态输出后续微地址。它的清零端由中央外理器单元直控,上电时uPC 计数器自动清零,在手动实验中按【返回】键可实现计数

M7~M0 M18……M8

表2.4.8 微指令的重叠结构定义

器的手动清零。

图2-4-14微程序控制器原理图

2.微程序的执行过程

图2-4-14 所标示的字号表示微程序控制的全部工作过程。

1)启动取指微指令或微程序,根据程序计数器PC所提供的指令地址,从EM主存中取出所要执行的机器指令,送入指令寄存器IR、指令译码器ID中,并且完成PC+1,指向机器指令的下址单元。

2)根据ID译码器中的指令码,把微地址形成电路产生的机器指令起始微地址打入μPC。

3)从μPC所指定的CM控制存储器单元分时输出微操作控制字段与后续微地址控制字段。

4)微指令的操作控制字段经译码或直接产生一组微命令,控制有关功能部件完成微程序所规定的微操作。

5)微指令的下址段及当前PSW、INQ等标志送往微地址形成电路,产生下条微指令的地址,进入读取与执行下条微指令。如此循环,直到一条机器指令的微程序全部执行完毕。

图2-4-15微指令控制格式

3.微指令格式及编码

本系统采用字段直接编码法,把微指令操作控制字段划分为若干个子字段,每个子字段的所有微命令进行统一编码。

如图2-4-15所示,本控制器微指令字长35位,其中24个操作控制位分别由识别判断字段、运算控制字段、源寻址字段、目的寻址字段及直接控制字段组成。在下址捕捉时段由M18~M8输出字为十一位的后续微地址。

⑴识别字段

①M4、M1、M0分别定义Iμ、Icz、Ids,组成下址识别字段。它们的编码下表所示。

表2.4.9手控态识别字段编码表

②M2定义为取指控位IR

表2.4.10取指控制一览表

*

③M3定义为中断控位IE,中断源控制见P51页表2.4.5~表2.4.7。

⑵运算字段

M15~M11组成M、CN、S2、S1、S0运算控制字段,运算控制编码见P30页表2.4.1。

⑶源控制段

M10~M8组成X2、X1、X0源寻址段,其编码见P8页表2.2。

⑷目的控制段

M19~M17组成o2、o1、o0目的寻址段。其编码见P8页表2.2。

⑸直接控制字段

①M6定义为字操作控位W,在通用寄存器、I/O及运算源寄存器的源与目的寻址中,W=“0”时,当前的源或目的操作面向奇址单元;若W=“1”,源与目的操作由本身的奇偶性决定。

②M7定义为源奇偶特性控位XP,在寄存器、I/O及运算寄存器的源寻址中,当XP=“0”时源为偶寻址;若XP=“1”源为奇寻址,形成偶递奇、奇递偶的八位字节总线。

③M16定义为目的奇偶控位OP,在寄存器、I/O及运算寄存器的目的寻址中,当OP=“0”时为目的偶寻址,以偶字节为操作目标;若OP=“1”目的为奇寻址,以奇字节为操作目标。

④M5定义为运算源控位ALU,当ALU=“1”时运算器以A、B寄存器为源,若ALU=“0”运算器以当前源编码的定义部件为源。

⑤M20定义为寄存器与内存选择控位R/M,当R/M=“1”时选择工作寄存器,若R/M=“0”选择内存。

⑥M21定义为EM/RM/IM主存及指令寄存器IR写命令MWR,当MWR=“0”、IR=“1”时执行存储器的写入操作。当MWR=“0”、IR=“0”时执行指令寄存器IR写入操作。

⑦M22定义为程序计数器使能控位IP ,当IP=“1”时程序计数器PC 处保持状态,当IP=“0”时,遇E/M=“0”执行PC 地址的装载,若E/M=“1”执行PC+1。

⑧M23定义为程序与数据的段地址选择控位E/M ,当E/M=“1”时,主存以当前程序指针PC 为Addr 地址总线;当E/M=“0”时,主存以当前AR 为Addr 地址总线。

⑹下址段

由M18~M8组成μD10~μD0共十一位下址微总线,在下址形成时段M18~M8输出后续微地址总线。

4. 取址微操作流程

取指周期是每条指令都要经历的周期,因此取指周期的操作称为公操作。在取指周期完成将现行指令从存储器中取出送往指令寄存器IR ,并执行PC+1→PC ,指向程序指令的下址。

从上图001号微单元所示的取指流程可知,“取指”按字节方式分时实现,执行时首先把操作码所在字节打入指令寄存器IR 及指令译码器ID ,然后PC+1执行操作数的存储。在同一机器周期内按字节方式分时实现取指与操作数的目的寻址操作。

五、微控制器实践

微控制器的格式及控位定义渉及机器指令的设计,我们结合模型机运用实践加予阐述与论正。这里围绕微控制器的顺序控制,以“取指”微操作所形成的微入口作为切入点,用手控方法模似微控制器的顺序控制过程,验证微控制器的基本工作原理。

1. 指令微地址的形成实验

我们默认操作码段的字长为八位,从PC 零地址开始,向EM 主存写入指令码,然后模拟“取指”微操作中机器指令起始微地址的形成。

①K23~K0置“1”,按【返回】键迫使PC=0,向程序段依次写入00h 、80h 、0C0h 、0FFh 。

②机器指令写入成功后,令K23~K0为“1“,灭M23~M0控位显示灯,然后令K22 K2=00,点亮M22、M2控位显示灯,按【单拍】按钮执行取指微操作,把指令码00h 打入ID 指令译码器,uPC 自动转入机器指令“00h ”的微入口地址600h ,ID 按下流程完成取指微操作。

按【返回】键 按【单拍】钮

按【单拍】钮

按【单拍】钮

按【单拍】钮 按【单拍】按钮

按【返回】键

③保持当前“取指”与PC+1状态,每按一次【单拍】按钮,uPC 依次变址为700h 、780h 、7FEh ……随机,当PC ≥004h 后,每按一次【单拍】按钮,uPC 随机散转。

2. 后续微地址的形成实验

找到初始微地址,开始执行相应的微程序,每条微指令执行完毕,都要根据要求形成后续微地址。后续微地址的形成方法对微程序编制的灵活性影响很大。本系统采用断定方式,其后续微地址的定义可由设计者指定或由设计者指定的下址与识别判断字段指定的条件组合产生。

⑴增量计数实践

默认当前uPC ,K23~K0置“1”,在M23~M0控制灯全灭的状态下,令K4=0,按【单拍】按钮,uPC 执行现行微地址的增1计数操作。

⑵绝对变址实践

微程序控制器支持设计者在微程序控制器的004~7FF 范围内任意选择与指定后续微地址。实验中通过IO 设置后续微地址,令K4 K1 K0=001,按【单拍】钮实现变址操作。

⑶条件变址实践

条件变址的后续微地址由非因变分量和因变分量两部分组成,非因变分量是由设计者直接指定,对应下址段ud10~ud1。因变分量以当前运算标志为条件产生,对应下址段ud0。

①进位变址实验

我们以准双向I/O 部件S10~S0模拟非因变分量部分的微地址,因变分量部分通过进位标志的置位清零操作产生,形成以进位标志为条件的后续微地址。K23~K0置“1”,灭M23~M0控位显示灯,按【返回】键后照下流程操作。

②零标志变址实验

我们仍以准双向I/O 部件S10~S0模拟非因变分量部分的微地址,因变分量部分通过运

算操作动态产生零标志,形成以零标志为条件的后续微地址。

首先按【返回】键,清零运算寄存器A 、B ,K23~K0置“1”,然后照下流程操作。

按【单拍】按钮

K10~K7=1000

K14=1

按【单拍】按钮

按【单拍】按钮 按【单拍】按钮

K4=0

按【单拍】按钮

按【单拍】按钮

按【单拍】按钮

K4 K1 K0=001

按【单拍】按钮

按【单拍】按钮

⑷取指与中断变址

控制器把机器指令最后一个机器周期定义为中断测试微周期,它的后续微地址由取指公用微地址与中断请求源INQ 两个部分组成,微总线指定为“001h ”,其中ud1=/INQ 。当INQ=

“1”时,即无中断请求时它的后续微地址为001h ,执行机器指令的取指操作;遇INQ=“0”它的后续微地址为003h ,执行中断响应微程序。

实验中我们模拟中断组成机制,产生中断请求信号INQ ,观察取指与中断响应微程序入口地址的形成。

实验时用一双头实验导线将中断请求源输入插孔XINT 与中断源产生插孔INT 相连接,按【返回】键,K23~K0置“1”,灭M23~M0控位显示灯,照下流程实施“取指”与“变址”操作。

实验心得

实验过程中,因为接线的问题一度不能成功,录入了数据无法跳转不到要去的地方。以为是输入数据时出错,重新输了好多遍,但是都还是一样的结果。经过请教老师同学的帮助之后终于得出了正确的结果。

这次实验使我懂得要认真弄清楚每一步实验的原理和所需要的知识点,这样才可以有速度完成实验。 通过这次实验我掌握了微程序控制器的功能、组成知识,学会了指令格式和各字段功能,学会了微程序的编制、写入、观察微程序的运行,学习了基本指令的执行流程。

这对我来说真是一次有意义的实验,在实验中我学到了很多知识。

按【单拍】按钮 按【中断】按钮

按【单拍】按钮

K4 K1 K0=000 按【单拍】按钮

K4 K1 K0=111 按【单拍】按钮

按【单拍】按钮

按【单拍】按钮 按【单拍】按钮

按【单拍】钮

计算机组成原理实验题

一.这是一个判断某一年是否为润年的程序,运行可执行程序Ifleap.exe后,输入具体的年份,可输出是本年是否为闰年的提示信息。 DATA SEGMENT ;定义数据段 INFON DB 0DH,0AH,'PLEASE INPUT A YEAR: $' Y DB 0DH,0AH,'THIS IS A LEAP YEAR! $' N DB 0DH,0AH,'THIS IS NOT A LEAP YEAR! $' W DW 0 BUF DB 8 DB ? DB 8 DUP(?) DATA ENDS STACK SEGMENT STACK DB 200 DUP(0) STACK ENDS CODE SEGMENT ASSUME DS:DATA,SS:STACK,CS:CODE START:MOV AX,DATA MOV DS,AX LEA DX,INFON ;在屏幕上显示提示信息 MOV AH,9 INT 21H LEA DX,BUF ;从键盘输入年份字符串 MOV AH,10 INT 21H MOV CL, [BUF+1] LEA DI,BUF+2 CALL DATACATE CALL IFYEARS JC A1 LEA DX,N MOV AH,9 INT 21H

JMP EXIT A1: LEA DX,Y MOV AH,9 INT 21H EXIT: MOV AH,4CH INT 21H 二.这是一个显示系统日期和时间的程序,运行时,在出现的提示信息中输入大写字母“D”,可显示系统当前日期;输入大写字母“T”,可显示系统当前时间;输入大写字母“Q”,可结束程序。 DATACATE PROC NEAR; PUSH CX; DEC CX LEA SI,BUF+2 TT1: INC SI LOOP TT1 ;LEA SI,CX[DI] POP CX MOV DH,30H MOV BL,10 MOV AX,1 L1: PUSH AX SUB BYTE PTR [SI],DH MUL BYTE PTR [SI] ADD W,AX POP AX MUL BL DEC SI LOOP L1 RET DATACATE ENDP

计算机组成原理实验1-汇编语言实验

微处理器与接口技术 实验指导

实验一监控程序与汇编语言程序设计实验 一、实验要求 1、实验之前认真预习,明确实验的目的和具体实验内容,设计好主要的待实验的程序,做好实验之前的必要准备。 2、想好实验的操作步骤,明确通过实验到底可以学习哪些知识,想一想怎么样有意识地提高教学实验的真正效果。 3、在教学实验过程中,要爱护教学实验设备,认真记录和仔细分析遇到的现象与问题,找出解决问题的办法,有意识地提高自己创新思维能力。 4、实验之后认真写出实验报告,重点在于预习时准备的内容,实验数据,实验过程、遇到的现象和解决问题的办法,自己的收获体会,对改进教学实验安排的建议等。善于总结和发现问题,写好实验报告是培养实际工作能力非常重要的一个环节,应给以足够的重视。 二、实验目的 【1】学习和了解TEC-XP16教学实验系统监控命令的用法; 【2】学习和了解TEC-XP16教学实验系统的指令系统;

【3】学习简单的TEC-XP16教学实验系统汇编程序设计。 三、实验注意事项 (一)实验箱检查 【1】连接电源线和通讯线前TEC-XP16实验系统的电源开关一定要处于断开状态,否则可能会对TEC-XP16实验系统上的芯片和PC机的串口造成损害。 【2】五位控制开关的功能示意图如下: 【3】几种常用的工作方式【开关拨到上方表示为1,拨到下方为0】 (二)软件操作注意事项 【1】用户在选择串口时,选定的是PC机的串口1或串口2,而不是TEC-XP16实验系统上的串口。即选定的是用户实验时通讯线接的PC机的端口; 【2】如果在运行到第五步时没有出现应该出现的界面,用户需要检查是不是打开了两个软件界面,若是,关掉其中一个再试; 【3】有时若TEC-XP16实验系统不通讯,也可以重新启动软件或是重新启动PC再试; 【4】在打开该应用软件时,其它的同样会用到该串口的应用软件要先关掉。

计算机组成原理实验

计算机组成原理 一、8 位算术逻辑运算 8 位算术逻辑运算实验目的 1、掌握简单运算器的数据传送通路组成原理。 2、验证算术逻辑运算功能发生器74LS181的组合功能。 8 位算术逻辑运算实验内容 1、实验原理 实验中所用的运算器数据通路如图3-1所示。其中运算器由两片74LS181以并/串形成8位字长的ALU构成。运算器的输出经过一个三态门74LS245(U33)到ALUO1插座,实验时用8芯排线和内部数据总线BUSD0~D7插座BUS1~6中的任一个相连,内部数据总线通过LZD0~LZD7显示灯显示;运算器的两个数据输入端分别由二个锁存器74LS273(U29、U30)锁存,两个锁存器的输入并联后连至插座ALUBUS,实验时通过8芯排线连至外部数据总线EXD0~D7插座EXJ1~EXJ3中的任一个;参与运算的数据来自于8位数据开并KD0~KD7,并经过一三态门74LS245(U51)直接连至外部数据总线EXD0~EXD7,通过数据开关输入的数据由LD0~LD7显示。 图中算术逻辑运算功能发生器74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M并行相连后连至SJ2插座,实验时通过6芯排线连至6位功能开关插座UJ2,以手动方式用二进制开关S3、S2、S1、S0、CN、M来模拟74LS181(U31、U32)的功能控制信号S3、S2、S1、S0、CN、M;其它电平控制信号LDDR1、LDDR2、ALUB`、SWB`以手动方式用二进制开关LDDR1、LDDR2、ALUB、SWB来模拟,这几个信号有自动和手动两种方式产生,通过跳线器切换,其中ALUB`、SWB`为低电平有效,LDDR1、LDDR2为高电平有效。 另有信号T4为脉冲信号,在手动方式下进行实验时,只需将跳线器J23上T4与手动脉冲发生开关的输出端SD相连,按动手动脉冲开关,即可获得实验所需的单脉冲。 2、实验接线 本实验用到4个主要模块:⑴低8位运算器模块,⑵数据输入并显示模块,⑶数据总线显示模块,⑷功能开关模块(借用微地址输入模块)。

计算机组成原理上机实验报告

《计算机组成原理实验》课程实验报告 实验题目组成原理上机实验 班级1237-小 姓名 学号 时间2014年5月 成绩

实验一基本运算器实验 1.实验目的 (1)了解运算器的组成原理 (2)掌握运算器的工作原理 2.实验内容 输入数据,根据运算器逻辑功能表1-1进行逻辑、移位、算术运算,将运算结果填入表1-2。 表 1-1运算器逻辑功能表 运算类 A B S3 S2 S1 S0 CN 结果 逻辑运算65 A7 0 0 0 0 X F=( 65 ) FC=( ) FZ=( ) 65 A7 0 0 0 1 X F=( A7 ) FC=( ) FZ=( ) 0 0 1 0 X F=( ) FC=( ) FZ=( ) 0 0 1 1 X F=( ) FC=( ) FZ=( ) 0 1 0 0 X F=( ) FC=( ) FZ=( ) 移位运算0 1 0 1 X F=( ) FC=( ) FZ=( ) 0 1 1 0 0 F=( ) FC=( ) FZ=( ) 1 F=( ) FC=( ) FZ=( ) 0 1 1 1 0 F=( ) FC=( ) FZ=( ) 1 F=( ) FC=( ) FZ=( ) 算术运算 1 0 0 0 X F=( ) FC=( ) FZ=( ) 1 0 0 1 X F=( ) FC=( ) FZ=( ) 1 0 1 0X F=( ) FC=( ) FZ=( ) 1 0 1 0X F=( ) FC=( ) FZ=( ) 1 0 1 1 X F=( ) FC=( ) FZ=( ) 1 1 0 0 X F=( ) FC=( ) FZ=( ) 1 1 0 1 X F=( ) FC=( ) FZ=( ) 表1-2运算结果表

计算机组成原理实验

实验一基础汇编语言程序设计 一、实验目的: 1、学习和了解TEC-XP16教学实验系统监控命令的用法。 2、学习和了解TEC-XP16教学实验系统的指令系统。 3、学习简单的TEC-XP16教学实验系统汇编程序设计。 二、预习要求: 1、学习TEC-XP16机监控命令的用法。 2、学习TEC-XP16机的指令系统、汇编程序设计及监控程序中子程序调用。 3、学习TEC-XP16机的使用,包括开关、指示灯、按键等。 4、了解实验内容、实验步骤和要求。 三、实验步骤: 在教学计算机硬件系统上建立与调试汇编程序有几种操作办法。 第一种办法,是使用监控程序的A命令,逐行输入并直接汇编单条的汇编语句,之后使用G命令运行这个程序。缺点是不支持汇编伪指令,修改已有程序源代码相对麻烦一些,适用于建立与运行短小的汇编程序。 第二种办法,是使用增强型的监控程序中的W命令建立完整的汇编程序,然后用M命令对建立起来的汇编程序执行汇编操作,接下来用G命令运行这个程序。适用于比较短小的程序。此时可以支持汇编伪指令,修改已经在内存中的汇编程序源代码的操作更方便一些。 第三种办法,是使用交叉汇编程序ASEC,首先在PC机上,用PC机的编辑程序建立完整的汇编程序,然后用ASEC对建立起来的汇编程序执行汇编操作,接下来把汇编操作产生的二进制的机器指令代码文件内容传送到教学机的内存中,就可以运行这个程序了。适用于规模任意大小的程序。

在这里我们只采用第一种方法。 在TEC-XP16机终端上调试汇编程序要经过以下几步: 1、使教学计算机处于正常运行状态(具体步骤见附录联机通讯指南)。 2、使用监控命令输入程序并调试。 ⑴用监控命令A输入汇编程序 >A 或>A 主存地址 如:在命令行提示符状态下输入: A 2000↙;表示该程序从2000H(内存RAM区的起始地址)地址开始 屏幕将显示: 2000: 输入如下形式的程序: 2000: MVRD R0,AAAA ;MVRD 与R0 之间有且只有一个空格,其他指令相同 2002: MVRD R1,5555 2004: ADD R0,R1 2005: AND R0,R1 2006: RET ;程序的最后一个语句,必须为RET 指令 2007:(直接敲回车键,结束A 命令输入程序的操作过程) 若输入有误,系统会给出提示并显示出错地址,用户只需在该地址重新输入正确的指令即可。 ⑵用监控命令U调出输入过的程序并显示在屏幕上 >U 或>U 主存地址

计算机组成原理实验一

_计算机_学院计算机科学与技术专业_10(5)班______组、学号3210006075 姓名钟柳贤协作者___________ 教师评定 实验题目_基础汇编语言程序设计_______________________ 一、实验目的: 1.学习和了解TEC-XP教学实验系统监控命令的用法; 2.学习和了解TEC-CP教学实验系统的指令系统; 3.学习简单的TEC-XP教学实验系统汇编程序设计; 二、实验设备与器材: TEC-XP+教学实验系统 仿真终端软件PCEC 三、实验内容: 1.学习联机使用TEC-XP教学实验系统和仿真终端软件PCEC。 2.使用监控程序的R命令显示/修改寄存器内容,D命令显示存储器内容,E命令修改存储器内容: 3.使用A命令写一小段汇编程序,U命令反汇编刚输入的程序,用G命令连续运行该程序,用T,P命令单步运行并观察程序单步执行情况: 四、实验步骤: 一、实验具体操作步骤 1.准备一台串口工作良好的PC机; 2.将TXC-XP放在实验台上,打开实验箱的盖子,确定电源处于断开状态; 3.将黑色的电源线一端接220V交流电源,另一端插在TEC—XP实验箱的电源插座里;4.取出通讯线,将通讯的9芯插头接在TEC—XP实验箱上的串口“COM1”或“COM2”上,另一端接到PC机的串口上; 5.将TEC—XP实验系统左下方的五个黑色的控制机器运行状态的开关置于正确的位置,在这个实验中开关应置为00110(连续、内存读指令、组合逻辑、联机、16位),控制开关的功能在开关上、下方有标示;开关拨向上方表示“1”,拨向下方表示“0”,“X”表示任意,其它实验相同; 6.打开电源,船形开关和5V电源指示灯亮。 7.在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为“1” 或“2”,其它设置一般不作改动,直接回车即可。 8.按一下“RESET”按键,再按一下“START”按键,主机上显示:

计算机组成原理-实验一

《计算机组成原理-实验一》 实验报告 韶关学院数信学院 2010级信息与计算科学 2012年 9月

实验一:本实验分三部分: 1熟悉Linux常用命令(上) 2 Linux下程序设计基础(中) 3汇编语言与机器指令(下)(暂略) 实验一熟悉Linux常用命令(上) 一,实验要求: 1,熟练Linux下的常用命令. 2,熟练地操作linux. 二,实验内容: 练习使用Linux常用命令; 三,实验环境: windows7的vmware的Redhat。 四,Linux下常用命令实验操作:(以下命令若权限不够,要在命令前加sudo) 1. 写出下面命令每个部分含义,字符C表示命令(Command)、O表示选项(Option)、OA表示选项的参数(Option Argument)、CA表示命令的参数(Command Argument),如: C OOA O OA C A Answer $ lpr –Pspr –n 3 proposal.ps Command line Linux命令行的语法结构: $ command [[-]option(s)] [option argument(s)] [command argument(s)] 含义: ● $:linux系统提示符,您的linux系统可能是其他的提示符 ● Command :linux命令的名字 ● [[-]option(s)] :改变命令行为的一个或多个修饰符,即选项 ● [option argument(s)] :选项的参数 ● [command argument(s)] :命令的参数 1) ls -la convert.txt 2) more convert.txt 3) pwd 4) cat file1 file2 file3 5) rm -r temp 6) ping –c 3 https://www.wendangku.net/doc/59391138.html, 7) telnet https://www.wendangku.net/doc/59391138.html, 13 8) cc -o short short.c -lbaked 9) chmod u+rw file1.c 10) uname –n

计算机组成原理实验七

图16 启停单元布局图 序电路由1片74LS157、2片74LS00、4个LED PLS2、PLS3、PLS4)组成。当LED发光时 图17

图17 时序单元布局图 (二)启停、脉冲单元的原理 1.启停原理:(如图18) 启停电路由1片7474组成,当按下RUN按钮,信号输出RUN=1、STOP=0,表示当前实验机为运行状态。当按下STOP 按钮,信号RUN=0、STOP=1,表示当前实验机为停止状态。当 系统处于停机状态时,微地址、进位寄存器都被清零,并且可 通过监控单元来读写内存和微程序。在停止状态下,当HALT 时有一个高电平,同时HCK有一个上升沿,此时高电平被打入 寄存器中,信号输出RUN=1、STOP=0,使实验机处于运行状态。

图18 启停单元原理图 2.时序电路: 时序电路由监控单元来控制时序输出(PLS1、PLS2、PLS3、PLS4)。实验所用的时序电路(如图19)可产生4个等间隔的时序信号PLS1、PLS2、PLS3、PLS4。为了便于监控程序流程,由监控单元输出PO信号和SIGN脉冲来实现STEP(微单步)、GO (全速)和HALT(暂停)。当实验机处于运行状态,并且是微单步执行,PLS1、PLS2、PLS3、PLS4分别发出一个脉冲,全速执行时PLS1、PLS2、PLS3、PLS4脉冲将周而复始的发送出去。在时序单元中也提供了4个按钮,实验者可手动给出4个独立的脉冲,以便实验者单拍调试模型机。

图19 时序电路图 实验步骤 1.交替按下“运行”和“暂停”,观察运行灯的变化(运行:RUN 亮;暂停:RUN灭)。 2.把HALT信号接入二进制拨动开关,HCK接入脉冲单元的PLS1。按下表接线 接入开关位号 信号定 义 HCK PLS1孔 HALT H13孔 3.按启停单元中的停止按钮,置实验机为停机状态,HALT=1。 4.按脉冲单元中的PLS1脉冲按键,在HCK上产生一个上升

计算机组成原理实验完整版

河南农业大学 计算机组成原理实验报告 题目简单机模型实验 学院信息与管理科学学院 专业班级计算机科学与技术2010级1班 学生姓名张子坡(1010101029) 指导教师郭玉峰 撰写日期:二○一二年六月五日

一、实验目的: 1.在掌握各部件的功能基础上,组成一个简单的计算机系统模型机; 2.了解微程序控制器是如何控制模型机运行的,掌握整机动态工作过程; 3定义五条机器指令,编写相应微程序并具体上机调试。 二、实验要求: 1.复习计算机组成的基本原理; 2.预习本实验的相关知识和内容 三、实验设备: EL-JY-II型计算机组成原理试验系统一套,排线若干。 四、模型机结构及工作原理: 模型机结构框图见实验书56页图6-1. 输出设备由底板上上的四个LED数码管及其译码、驱动电路构成,当D-G和W/R均为低电平时将数据结构的数据送入数据管显示注:本系统的数据总线为16位,指令、地址和程序计数器均为8位。当数据总线上的数据打入指令寄存器、地址寄存器和程序寄存器时,只有低8位有效。 在本实验我们学习读、写机器指令和运行机器指令的完整过程。在机器指令的执行过程中,CPU从内存中取出一条机器指令到执行结束为一个指令周期,指令由微指令组成的序列来完成,一条机器指令对应一段微程序。另外,读、写机器指令分别由相应的微程序段来完成。

为了向RAM中装入程序和数据,检查写入是否正确,并能启动程序执行,必须设计三个控制操作微程序。 存储器读操作(MRD):拨动清零开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“00”时,按“单步”键,可对RAM连续读操作。 存储器写操作(MWE):拨动清零开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“10”时,按“单步”键,可对RAM连续写操作。 启动程序(RUN):拨动开关CLR对地址、指令寄存器清零后,指令译码器输入CA1、CA2为“11”时,按“单步”键,即可转入第01号“取指”微指令,启动程序运行。 注:CA1、CA2由控制总线的E4、E5给出。键盘操作方式有监控程序直接对E4、E5赋值,无需接线。开关方式时可将E4、E5接至控制开关CA1、CA2,由开关控制。 五、实验内容、分析及参考代码: 生成的下一条微地址 UA5 UA0 MS5 MS0 微地址

计算机组成原理实验报告

实验报告书 实验名称:计算机组成原理实验 专业班级:113030701 学号:113030701 姓名: 联系电话: 指导老师:张光建 实验时间:2015.4.30-2015.6.25

实验二基本运算器实验 一、实验内容 1、根据原理图连接实验电路

3、比较实验结果与手工运算结果,如有错误,分析原因。 二、实验原理 运算器可以完成算术,逻辑,移位运算,数据来自暂存器A和B,运算方式由S3-S0以及CN来控制。运算器由一片CPLD来实现。ALU的输入和输出通过三态门74LS245连接到CPU内总线上。另外还有指示灯进位标志位FC和零标志位FZ。 运算器原理图: 运算器原理图 暂存器A和暂存器B的数据能在LED灯上实时显示。进位进位标志FC、零标志FZ 和数据总线D7…D0 的显示原理也是如此。 ALU和外围电路连接原理图:

ALU和外围电路连接原理图运算器逻辑功能表:

三、实验步骤 1、按照下图的接线图,连接电路。 2、将时序与操作台单元的开关KK2 置为‘单拍’档,开关KK1、KK3 置为‘运行’档。 3、打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。然后按动CON 单元的CLR 按钮,将运算器的A、B 和FC、FZ 清零。 4、用输入开关向暂存器A 置数。 ①拨动CON 单元的SD27…SD20 数据开关,形成二进制数01100101 (或其它数值),数据显示亮为‘1’,灭为‘0’。 ②置LDA=1,LDB=0,连续按动时序单元的ST 按钮,产生一个T4 上沿,则将二进制数01100101 置入暂存器A 中,暂存器A 的值通过ALU 单元的 A7…A0 八位LED 灯显示。 5、用输入开关向暂存器B 置数。 ①拨动CON 单元的SD27…SD20 数据开关,形成二进制数10100111 (或其它数值)。 ②置LDA=0,LDB=1,连续按动时序单元的ST 按钮,产生一个T4 上沿,则将二进制数10100111 置入暂存器B 中,暂存器B 的值通过ALU 单元的 B7…B0 八位LED 灯显示。 6、改变运算器的功能设置,观察运算器的输出。置ALU_B=0 、LDA=0、LDB=0,然后按表2-2-1 置S3、S2、S1、S0 和Cn的数值,并观察数据总线LED 显示灯显示的结果。如置S3、S2、S1、S0 为0010 ,运算器作逻辑与运算,置S3、S2、

计算机组成原理实验报告材料

福建农林大学计算机与信息学院信息工程类实验报告系:计算机科学与技术专业:计算机科学与技术年级: 09级 姓名:张文绮学号: 091150022 实验课程:计算机组成原理 实验室号:___田405 实验设备号: 43 实验时间:2010.12.19 指导教师签字:成绩: 实验一算术逻辑运算实验 1.实验目的和要求 1. 熟悉简单运算器的数据传送通路; 2. 验证4位运算功能发生器功能(74LS181)的组合功能。 2.实验原理 实验中所用到的运算器数据通路如图1-1所示。其中运算器由两片74181

以并/串形式构成8位字长的ALU。运算器的输出经过一个三态门(74245)和数据总线相连,运算器的两个数据输入端分别由两个锁存器(74373)锁存,锁存器的输入连接至数据总线,数据开关INPUT DEVICE用来给出参与运算的数据,并经过一个三态门(74245)和数据总线相连,数据显示灯“BUS UNIT”已和数据总线相连,用来显示数据总线内容。 图1-2中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信号,其它均为电平信号。由于实验电路中的时序信号均已连至W/R UNIT的相应时序信号引出端,因此,在进行实验时,只需将W/R UNIT 的T4接至STATE UNIT的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲,而S3,S2,S1,S0,Cn,LDDR1,LDDR2,ALU-B,SW-B各电平控制信号用SWITCH UNIT中的二进制数据开关来模拟,其中Cn,ALU-B,SW-B为低电平控制有效,LDDR1,LDDR2为高电平有效。 3.主要仪器设备(实验用的软硬件环境) ZYE1603B计算机组成原理教学实验系统一台,排线若干。 4.操作方法与实验步骤

计算机组成原理实验实验报告

计算机组成原理实验报告 学院信息与管理科学学院 专业班级计算机科学与技术2010级2班学生姓名毛世均 1010101046 指导教师郭玉峰 撰写日期:二○一二年六月四日

SA4=1 1.根据上边的逻辑表达式,分析58页图6-2的P1测试和P4测试两条指令的微地址转移方向。 P1测试:进行P1测试时,P1为0,其他的都为1, 因此SA4=1, SA3=I7,SA2=I6,SA1=,SA0=I4 微地址011001,下址字段为001000下址字段001000译码后,高两位不变,仍然为00,低四位受到机器指令的高四位I7-I4的影响。 机器指令的高四位为0000时,下一条微指令地址为001000,转到IN 操作。机器指令高四位0010时,下一条微指令地址为001010,转到MOV 操作。机器指令高四位为0001时,下一条微指令地址为001001,转到ADD 操作。机器指令高四位为0011时,下一条微指令地址为001011,转到OUT 操作。机器指令高四位为0100时,下一条微指令地址001100,转到JMP 操作 P4测试:进行P4测试时,P4为0,其他的都为1. 因此SA4=SA3=SA2=1,SA1=CA2,SA0=CA1 微地址000000,下址字段为010000. 010000被译码之后,高四位不变,0100低两位由CA2和CA1控制。CA2和CA1的值是由单片机的键盘填入控制的。 当实验选择CtL2=1时,CA2和CA1被填入0和1,这时低两位被译码电路翻译成01,所以下一条微地址就是010001,然后进入写机器指令的状态。当实验选择CtL2=2时,CA2和CA1被填入1和0,这时低两位被译码电路翻译成10,所以下一条微地址就是010010,然后进入读机器指令的状态。当实验选择CtL2=2时,CA2和CA1被填入1和1,这时低两位被译码电路翻译成 11,所以下一条微地址就是010011,然后进入运行机器指令的状态。 2.分析实验六中五条机器指令的执行过程。

计算机组成原理实验报告

计算机组成原理实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

计算机组成原理实验报告 ——微程序控制器实验一.实验目的: 1.能看懂教学计算机(TH-union)已经设计好并正常运行的数条基本指令的功能、格式及 执行流程。并可以自己设计几条指令,并理解其功能,格式及执行流程,在教学计算机上实现。 2.深入理解计算机微程序控制器的功能与组成原理 3.深入学习计算机各类典型指令的执行流程 4.对指令格式、寻址方式、指令系统、指令分类等建立具体的总体概念 5.学习微程序控制器的设计过程和相关技术 二.实验原理: 微程序控制器主要由控制存储器、微指令寄存器和地址转移逻辑三大部分组成。 其工作原理分为: 1、将程序和数据通过输入设备送入存储器; 2、启动运行后从存储器中取出程序指令送到控制器去识别,分析该指令要求什么事; 3、控制器根据指令的含义发出相应的命令(如加法、减法),将存储单元中存放的操作数据取出送往运算器进行运算,再把运算结果送回存储器指定的单元中; 4、运算任务完成后,就可以根据指令将结果通过输出设备输出 三.微指令格式: 微指令由下地址字段及控制字段组成.TH—UNION教学机的微指令格式如下: 其中高八位为下地址字段.其余各位为控制字段. 1)微地址形成逻辑 TH—UNION 教学机利用器件形成下一条微指令在控制器存储器的地址. 下地址的形成由下地址字段及控制字段中的CI3—SCC控制.当为顺序执行时,下地址字段不起作用.下地址为当前微指令地址加1;当为转移指令(CI3— 0=0011)时,由控制信号SCC提供转移条件,由下地址字段提供转移地址. 2)控制字段

计算机组成原理实验1-运算器

《计算机组成原理》 实验报告 实验一运算器实验

一、实验目的 1.掌握运算器的组成及工作原理; 2.了解4位函数发生器74LS181的组合功能,熟悉运算器执行算术操 作和逻辑操作的具体实现过程; 3.验证带进位控制的74LS181的功能。 二、实验环境 EL-JY-II型计算机组成原理实验系统一套,排线若干。 三、实验内容与实验过程及分析(写出详细的实验步骤,并分析实验结果) 实验步骤:开关控制操作方式实验 1、按图1-7接线图接线: 连线时应注意:为了使连线统一,对于横排座,应使排线插头上的箭头面向自己插在横排座上;对于竖排座,应使排线插头上的箭头面向左边插在竖排座上。 图1-1 实验一开关实验接线图 2、通过数据输入电路的拨开关开关向两个数据暂存器中置数: 1)拨动清零开关CLR,使其指示灯。再拨动CLR,使其指示灯亮。置ALU-G =1:关闭ALU的三态门;再置C-G=0:打开数据输入电路的三态门; 2)向数据暂存器LT1(U3、U4)中置数:

(1)设置数据输入电路的数据开关“D15……D0”为要输入的数值; (2)置LDR1=1:使数据暂存器LT1(U3、U4)的控制信号有效,置LDR2=0:使数据暂存器LT2(U5、U6)的控制信号无效; (3)按一下脉冲源及时序电路的【单脉冲】按钮,给暂存器LT1送时钟,上升沿有效,把数据存在LT1中。 3)向数据暂存器LT2(U5、U6)中置数: (1)设置数据输入电路的数据开关“D15……D0”为想要输入的数值; (2)置LDR1=0:数据暂存器LT1的控制信号无效;置LDR2=1:使数据暂存器LT2的控制信号有效。 (3)按一下脉冲源及时序电路的“单脉冲”按钮,给暂存器LT2送时钟,上升沿有效,把数据存在LT2中。 (4)置LDR1=0、LDR2=0,使数据暂存器LT1、LT2的控制信号无效。 4)检验两个数据暂存器LT1和LT2中的数据是否正确: (1)置C-G=1,关闭数据输入电路的三态门,然后再置ALU-G=0,打开ALU 的三态门; (2)置“S3S2S1S0M”为“F1”,数据总线显示灯显示数据暂存器LT1中的数,表示往暂存器LT1置数正确; (3)置“S3S2S1S0M”为“15”,数据总线显示灯显示数据暂存器LT2中的数,表示往暂存器LT2置数正确。 3、验证74LS181的算术和逻辑功能: 按实验步骤2往两个暂存器LT1和LT2分别存十六进制数“1234H”和“5678H”,在给定LT1=1234H、LT2=5678H的情况下,通过改变“S3S2S1S0MCn”的值来改变运算器的功能设置,通过数据总线指示灯显示来读出运算器的输出值F,填入上表中,参考表1-1的功能表,分析输出F值是否正确。分别将“AR”开关拨至“1”和“0”的状态,观察进位指示灯“CY”的变化并分析原因。 实验结果表为:

计算机组成原理实验6

第六节 CPU组成与机器指令执行实验 一、实验目的 (1)将微程序控制器同执行部件(整个数据通路)联机,组成一台模型计算机; (2)用微程序控制器控制模型机数据通路; (3)通过CPU运行九条机器指令(排除中断指令)组成的简单程序,掌握机器指令与微指令的关系,牢固建立计算机的整机概念。 二、实验电路 本次实验用到前面四个实验中的所有电路,包括运算器、存储器、通用寄存器堆、程序计数器、指令寄存器、微程序控制器等,将几个模块组合成为一台简单计算机。因此,在基本实验中,这是最复杂的一个实验,也是最能得到收获的一个实验。 在前面的实验中,实验者本身作为“控制器”,完成数据通路的控制。而在本次实验中,数据通路的控制将由微程序控制器来完成。CPU从内存取出一条机器指令到执行指令结束的一个机器指令周期,是由微指令组成的序列来完成的,即一条机器指令对应一个微程序。 三、实验设备 (1)TEC-9计算机组成原理实验系统一台 (2)双踪示波器一台 (3)直流万用表一只 (4)逻辑测试笔一支 四、实验任务 (1)对机器指令系统组成的简单程序进行译码。 (2)按照下面框图,参考前面实验的电路图完成连线,控制器是控制部件,数据通路(包括上面各模块)是执行部件,时序产生器是时序部件。连线包括控制台、时序部分、数据通路和微程序控制器之间的连接。其中,为把操作数传送给通用寄存器组RF,数据通路上的RS1、RS0、RD1、RD0应分别与IR3至IR0连接,WR1、WR0也应接到IR1、IR0上。 开关控制 控制台时序发生器 时序信号 开关控制指示灯信号控制信号时序信号 控制信号 微程序控制器数据通路 指令代码、条件信号

计算机组成原理实验报告(运算器组成、存储器)

计算机组成原理实验报告 一、实验1 Quartus Ⅱ的使用 一.实验目的 掌握Quartus Ⅱ的基本使用方法。 了解74138(3:8)译码器、74244、74273的功能。 利用Quartus Ⅱ验证74138(3:8)译码器、74244、74273的功能。 二.实验任务 熟悉Quartus Ⅱ中的管理项目、输入原理图以及仿真的设计方法与流程。 新建项目,利用原理编辑方式输入74138、74244、74273的功能特性,依照其功能表分别进行仿真,验证这三种期间的功能。 三.74138、74244、74273的原理图与仿真图 1.74138的原理图与仿真图 74244的原理图与仿真图

1. 4.74273的原理图与仿真图、

实验2 运算器组成实验 一、实验目的 1.掌握算术逻辑运算单元(ALU)的工作原理。 2.熟悉简单运算器的数据传送通路。 3.验证4位运算器(74181)的组合功能。 4.按给定数据,完成几种指定的算术和逻辑运算。 二、实验电路 附录中的图示出了本实验所用的运算器数据通路图。8位字长的ALU由2片74181构成。2片74273构成两个操作数寄存器DR1和DR2,用来保存参与运算的数据。DR1接ALU的A数据输入端口,DR2接ALU的B数据输入端口,ALU的数据输出通过三态门74244发送到数据总线BUS7-BUS0上。参与运算的数据可通过一个三态门74244输入到数据总线上,并可送到DR1或DR2暂存。 图中尾巴上带粗短线标记的信号都是控制信号。除了T4是脉冲信号外,其他均为电位信号。nC0,nALU-BUS,nSW-BUS均为低电平有效。 三、实验任务 按所示实验电路,输入原理图,建立.bdf文件。 四.实验原理图及仿真图 给DR1存入01010101,给DR2存入10101010,然后利用ALU的直通功能,检查DR1、

计算机组成原理实验1.

计算机组成原理实验1 运算器(脱机)实验 通过开关、按键控制教学机的运算器执行指定的运算功能,并通过指示灯观察运算结果。实验原理: 为了控制Am2901运算器能够按照我们的意图完成预期的操作功能,就必须向其提供相应的控制信号和数据。 控制信号包括 1、选择送入ALU的两路操作数据R和S的组合关系(实际来源)。 2、选择ALU的八种运算功能中我们所要求的一种。这可通过提供三位功能选择码I5、 I4、I3实现。 3、选择运算结果或有关数据以什么方式送往何处的处理方案,这主要通过通用寄存器 组合和Q寄存器执不执行接收操作或位移操作,以及向芯片输出信息Y提供的是 什么内容。这是通过I8、I7、I6三位结果选择码来控制三组选择门电路实现的。 外部数据包括 1、通过D接收外部送来的数据 2、应正确给出芯片的最低位进位输入信号C n 3、关于左右移位操作过程中的RAM3、RAM0、Q3和Q0的处理。 4、当执行通用寄存器组的读操作时,由外部送入的A地址选中的通用寄存器的内容送 往A端口,由B地址选中的通用寄存器的内容送往B端口,B地址还用作通用寄 存器的写汝控制。 对于芯片的具体线路,需说明如下几点: 1、芯片结果输出信号的有无还受一个/OE(片选)信号的控制。 2、标志位F=0000为集电极开路输出,容易实现“线与”逻辑,此管脚需经过一个电阻 接到+5V。 3、RAM3、RAM0、Q3和Q0均为双向三态逻辑,一定要与外部电路正确连接。 4、通用寄存器组通过A端口、B端口读出内容的输出处均有锁存器线路支持。 5、该芯片还有两个用于芯片间完成高速进位的输出信号/G和/P。 6、Am2901芯片要用一个CLK(CP)时钟信号作为芯片内通用寄存器、锁存器和Q寄 存器的打入信号。 实验步骤如下: (1)选择运算器要完成的一项运算功能,包括数据来源,运算功能,结果保存等;(2)需要时,通过数据开关向运算器提供原始数据; (3)通过24位的微型开关向运算器提供为完成指定运算功能所需要的控制信号; (4)通过查看指示灯或用电表量测,观察运算器的运行结果(包括计算结果和特征标志)。实验准备 12为微型开关的具体控制功能分配如下: A口和B口地址:送给Am2901器件用于选择源与目的操作数的寄存器编号; I8~I0:选择操作数来源、运算操作功能、选择操作数处理结果和运算器输出内容的3组3位控制码; Sci,SSH和SST:用于确定运算器最低位的进位输入、移位信号的入/出和怎样处理Am2901产生的状态标志位的结果。

计算机组成原理专题实验

计算机组成原理专题实验 课程设计方案 学院:电信学院 班级:计算机16 学号:2110505136 姓名:冯旭 指导老师:姜欣宁 提交日期:2014年4月1日

设计目的 通过对一个简单模型机的设计与实现,对计算机的基本组成、部件的设计、部件间的 连接、微程序控制器的设计、微指令和微程序的编制与调试等过程有更深的了解,加深对理论课程的理解。 在掌握部件单元电路实验的基础上,进一步将其组成系统地构造一台基本模型计算机。 指令集的设计 1.机器位数及寻址特性及时间特性 计划设计一个16位系统,提供256字的寻址空间和16个16位的通用寄存器。寻址方式提供立即数寻址、寄存器寻址和直接寻址3种方式。 计划每条指令由两个机器周期完成(第一个机器周期取指令,第二个机器周期执行指令),每个机器周期固定占4个时钟周期。 2.指令类型 计划提供16种指令,其中算逻类指令8条,其他类指令8条。 指令采用类似MIPS的方式,即只能使用load和store指令来访问存储器,一切运算均在寄存器之间进行。同时由于所设计的系统是简化系统不含I/O设备,所以指令集中不提供I/O类指令。 具体指令及其所采用的寻址方式,如下所示: 非算逻类指令: 指令名指令格式指令含义 LOAD Load dr,addr 将地址addr中的数存入dr寄存器 STORE Storedr,addr 将dr寄存器中的数写入地址addr所指的空间 JMP Jmp addr 跳转到地址addr JNE Jne addr 若标志位z无效跳转到地址addr JC Jc addr 若标志位c有效跳转到地址addr NOP nop 空指令 MOV Mov dr,sr 将sr寄存器中的值复制到sr寄存器 MOVI Movi dr,imm 将8位立即数imm写入dr寄存器 算逻类指令: ADD Add dr,sr 将dr寄存器中的值与sr寄存器中的值相加,结果存dr寄存器 SUB Sub dr,sr 将dr寄存器中的值与sr寄存器中的值相减,结果存dr寄存器 AND And dr,sr 将dr寄存器中的值与sr寄存器中的值按位做逻辑与,结果存dr寄存器 OR Or dr,sr 将dr寄存器中的值与sr寄存器中的值按位做逻辑或,结果存dr寄存器 NOT Not dr 将dr寄存器中的值按位取反 SHL Shl dr,sr 将dr寄存器中的值逻辑左移sr中值那么多位 SHR Shr dr,sr 将dr寄存器中的值逻辑右移sr中值那么多位 INC Inc dr 将dr寄存器中的值自增1 3.指令格式 我们采用16位固定位指令格式,根据操作数寻址方式的不同,对这16位可以划分为两种不同的理解方式,即可以认为是提供两种相似的格式: 其中操作码部分均为4位,占指令中15到12的高4位。DR和SR均为通用寄存器的编号,各占4位,ADDR/IMM部分为地址或立即数(8位)占指令中最低8位。 根据指令中操作数的数量和寻址类型的不同选用不同的格式,其主导思想为:

计算机组成原理实验一运算器组成实验

实验一运算器组成实验 一、实验目的 1.熟悉双端口通用寄存器堆的读写操作。 2.熟悉简单运算器的数据传送通路。 3.验证运算器74LS181的算术逻辑功能。 4.按给定数据,完成指定的算术、逻辑运算。 二、实验电路 S3 S2 S1 S0 M 图3.1 运算器实验电路 图3.1示出了本实验所用的运算器数据通路图。参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF中。 RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF中保存。双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A端口(左端口)读出的通用寄存器。而WR1、WR0用于选择写入的通用寄存器。LDRi是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。RF的A、

B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。

DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。DR1接ALU 的A输入端口,DR2接ALU的B输入端口。ALU(U31、U35)由两片74LS181构成,ALU的输出通过一个三态门(74LS244)发送到数据总线DBUS上。 实验台上的八个发光二极管DBUS7-DBUS0显示灯接在DBUS上,可以显示输入数据或运算结果。另有一个指示灯C显示运算器进位标志信号状态。 图中尾巴上带粗短线标记的信号都是控制信号,其中S3、S2、S1、S0、M、Cn#、LDDR1、LDDR2、ALU_BUS#、SW_BUS#、LDRi、RS1、RS0、RD1、RD0、WR1、WR0都是电位信号,在本次实验中用拨动开关K0—K15来模拟;T2、T3为时序脉冲信号,印制板上已连接到实验台的时序电路。实验中进行单拍操作,每次只产生一组T1、T2、T3、T4时序脉冲,需将实验台上的DP、DB开关进行正确设置。将DP开关置1,DB开关置0,每按一次QD按钮,则顺序产生T1、T2、T3、T4一组单脉冲。 三、实验设备 1.TEC-5计算机组成实验系统1台 2.逻辑测试笔一支(在TEC-5实验台上) 3.双踪示波器一台(公用) 4.万用表一只(公用) 四、实验任务 1.按图3.1所示,将运算器模块与实验台操作板上的线路进行连接。由于运算器模块 内部的连线已由印制板连好,故接线任务仅仅是完成数据开关、控制信号模拟开 关、与运算器模块的外部连线。注意:为了建立清楚的整机概念,培养严谨的科 研能力,手工连线是绝对必要的。 2.用开关SW7—SW0向通用寄存器堆RF内的R0—R3寄存器置数。然后读出R0—R3 的内容,在数据总线DBUS上显示出来。 3.验证ALU的正逻辑算术、逻辑运算功能。 令DR1=55H,DR2=0AAH,Cn#=1。在M=0和M=1两种情况下,令S3—S0的值从0000B变到1111B,列表表示出实验结果。实验结果包含进位C,进位C由指示灯显示。 注意:进位C是运算器ALU最高位进位Cn+4#的反,即有进位为1,无进位为0。 五、实验要求 1.做好实验预习,掌握运算器的数据传输通路及其功能特性,并熟悉本实验中所用 的模拟开关的作用和使用方法。 2.写出实验报告,内容是: (1)实验目的。 (2)按实验任务3的要求,列表表示出实验结果。 (3)按实验任务4的要求,在表中填写各控制信号模拟开关值,以及运算结果值。 六、实验步骤和实验结果 (1)实验任务2 的实验步骤和结果如下:(假定令R0=34H,R1=21H,R2=52H,R3=65H)1.置DP=1,DB=0,编程开关拨到正常位置。

相关文档
相关文档 最新文档