文档库 最新最全的文档下载
当前位置:文档库 › 证明圆的切线经典例题

证明圆的切线经典例题

证明圆的切线经典例题
证明圆的切线经典例题

证明圆的切线方法及例题

证明圆的切线常用的方法

O A,证明OA⊥l 就行了,简称“连

一、若直线l 过⊙O 上某一点A,证明l 是⊙O 的切线,只需连

半径,证垂直”,难点在于如何证明两线垂直.

例1 如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于D,交AC 于E,B 为切点的切线交OD 延长线于 F.

E F 与⊙O 相切.

求证:

O E,AD.

证明:

连结

∵AB 是⊙O 的直径,

∴AD ⊥BC.

又∵AB=BC ,

∴∠3=∠4.

⌒⌒

∴BD=DE ,∠1=∠2.

又∵OB=OE ,OF=OF ,

∴△BOF≌△EOF(SAS).

∴∠OBF= ∠OEF.

∵BF 与⊙O 相切,

∴OB⊥BF.

∴∠OEF=90 0.

∴EF 与⊙O 相切.

说明:

此题是通过证明三角形全等证明垂直的

1

P A=PD.

B C 延长线上一点,且

例2 如图,AD 是∠BAC 的平分线,P为

P A 与⊙O 相切.

求证:

结EC.

作直径AE,连

证明一:

∵AD 是∠BAC 的平分线,

∴∠DAB= ∠DAC.

∵PA=PD,

∴∠2=∠1+∠DAC.

∵∠2=∠B+ ∠DAB ,

∴∠1=∠B.

又∵∠B=∠E,

∴∠1=∠E

∵AE 是⊙O 的直径,

∴AC⊥EC,∠E+∠EAC=90 0 .

∴∠1+∠EAC=90 0.

即OA ⊥PA.

∴PA 与⊙O 相切.

结OA ,OE.

延长AD 交⊙O 于E,连

证明二:

∵AD 是∠BAC 的平分线,

⌒⌒

∴BE=CE,

∴OE⊥BC.

∴∠E+∠BDE=90 0.

∵OA=OE ,

∴∠E=∠1.

∵PA=PD,

∴∠PAD=∠PDA.

又∵∠PDA= ∠BDE,

∴∠1+∠PAD=90

即OA ⊥PA.

∴PA 与⊙O 相切

合运

用.

此题是通过证明两角互余,证明垂直的,解题中要注意知识

说明:

2

例3 如图,AB=AC ,AB 是⊙O 的直径,⊙O 交BC 于D,DM ⊥AC 于M

求证:DM 与⊙O 相切.

证明一:连结OD.

∵AB=AC ,

∴∠B= ∠C.

∵OB=OD ,

∴∠1=∠B.

D

∴∠1=∠C.

∴OD∥AC.

∵DM ⊥AC ,

∴DM ⊥OD.

∴DM 与⊙O 相切

证明二:连结OD,AD.

∵AB 是⊙O 的直径,

∴AD⊥BC.

又∵AB=AC,

∴∠1=∠2.

∵DM ⊥AC ,

∴∠2+∠4=90

∵OA=OD ,

C

∴∠1=∠3.

∴∠3+∠4=90 .

即OD⊥DM.

∴DM 是⊙O 的切线

说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.

3

例4 如图,已知:

A B 是⊙O 的直径,点 C 在⊙O 上,且∠CAB=30 0,BD=OB ,D 在AB 的延长线上.

求证:

D C 是⊙O 的切线

证明:

连结

O C、BC.

∵OA=OC ,

∴∠A=∠1=∠30 .

∴∠BOC= ∠A+ ∠1=60

0.

D 又∵OC=OB ,

∴△OBC 是等边三角形.

∴OB=BC.

∵OB=BD ,

∴OB=BC=BD.

∴OC⊥CD.

∴DC 是⊙O 的切线.

说明:

此题是根据圆周角定理的推论 3 证明垂直的,此题解法颇多,但这种

好.

例5 如图,AB 是⊙O 的直径,CD⊥AB ,且OA 2=OD ·OP.

求证:

P C 是⊙O 的切线.

证明:

连结

O C

∵OA 2=OD ·OP,OA=OC ,

∴OC

2=OD ·OP,

OC OD OP OC

.

又∵∠1=∠1,

∴△OCP∽△ODC.

∴∠OCP=∠ODC.

∵CD⊥AB ,

∴∠OCP=90 .

∴PC 是⊙O 的切线.

说明:

此题是通过证三角形相似证明垂直的

4

例6 如图,ABCD 是正方形,G 是BC 延长线上一点,AG 交BD 于E,交CD 于F.

.

求证:CE 与△CFG 的外接圆相切

分析:此题图上没有画出△CFG 的外接圆,但△CFG 是直角三角形,圆心在斜边FG 的中点,为

结OC,证明CE⊥OC 即可得解.

此我们取FG 的中点O,连

结OC.

证明:取FG 中点O,连

∵ABCD 是正方形,

∴BC⊥CD,△CFG 是Rt△

∵O 是FG 的中点,

∴O 是Rt△CFG 的外心.

∵OC=OG ,

∴∠3=∠G,

∵AD ∥BC,

∴∠G= ∠4.

∵AD=CD ,DE=DE ,

∠ADE= ∠CDE=45 0,

∴△ADE ≌△CDE(SAS)

∴∠4=∠1,∠1=∠3.

∵∠2+∠3=900,

∴∠1+∠2=900.

即CE⊥OC.

∴CE 与△CFG 的外接圆相切

5

二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA⊥l,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径”

例7 如图,AB=AC ,D 为BC 中点,⊙ D 与AB 切于 E 点.

求证:AC 与⊙ D 相切.

证明一:连

结DE,作DF⊥AC ,F 是垂足.

∵AB 是⊙ D 的切线,

∴DE⊥AB.

∵DF⊥AC ,

∴∠DEB= ∠DFC=90 0.

∵AB=AC ,

∴∠B=∠C.

又∵BD=CD ,

∴△BDE ≌△CDF(AAS )

∴DF=DE.

∴F 在⊙ D 上.

∴AC 是⊙ D 的切线

结DE,AD ,作DF⊥AC ,F 是垂足.

证明二:连

∵AB 与⊙ D 相切,

∴DE⊥AB.

∵AB=AC ,BD=CD ,

∴∠1=∠2.

∵DE⊥AB ,DF⊥AC,

∴DE=DF.

∴F 在⊙ D 上.

∴AC 与⊙ D 相切.

说明:证明一是通过证明三角形全

等证明DF=DE 的,证明二是利用角平分线的性质证明DF=DE

的,这类习题多数与角平分线有关.

例8 已知:如图,AC,BD 与⊙O 切于A 、B,且AC ∥BD ,若∠COD=90 0.

求证:CD 是⊙O 的切线.

结OA,OB,作OE⊥CD,E 为垂足.

证明一:连

6

∵AC ,BD 与⊙O 相切,

∴AC ⊥OA,BD ⊥OB.

∵AC ∥BD ,

∴∠1+∠2+∠3+∠4=180 .

∵∠COD=90 0,O

0,∠1+∠4=900.

∴∠2+∠3=90

∵∠4+∠5=90

0.

∴∠1=∠5.

∴Rt△AOC∽Rt△BDO.

∴A C

OB

OC

OD

.

∵OA=OB ,

∴A C

OA

OC

OD

.

又∵∠CAO= ∠COD=90 0,

∴△AOC ∽△ODC,

∴∠1=∠2.

又∵OA⊥AC ,OE⊥CD,

∴OE=OA.

∴E 点在⊙O 上.

∴CD 是⊙O 的切线.

证明二:

连结

O A,OB,作OE⊥CD 于E,延长DO 交CA 延长线

于 F.

∵AC,BD 与⊙O 相切,

∴AC⊥OA ,BD ⊥OB.

∵AC∥BD ,

∴∠F=∠BDO.

又∵OA=OB ,

∴△AOF ≌△BOD (AAS )

∴OF=OD.

∵∠COD=90 0,

∴CF=CD ,∠1=∠2.

7

圆的切线专题证明题

1、.已知:如图,CB 是⊙O 的直径,BP 是和⊙O 相切于点B 的切线,⊙O 的弦AC 平行于OP . (1)求证:AP 是⊙O 的切线.(2)若∠P=60°,PB=2cm ,求AC . 2、⊿ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于D ,D E ⊥AC 于E.求证:DE 为⊙O 的切线 3、、如图,AB=BC ,以AB 为直径的⊙O 交AC 于D ,作D E ⊥BC 于E 。(1)求证:DE 为⊙O 的切线(2)作DG ⊥AB 交⊙O 于G ,垂足为F ,∠A=30°.AB=8,求DG 的长 4、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线. 5、如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .求证:BD 是⊙O 的切线; 6 .如图,在中, ,以 为直径的分别交、于点、,点在的延长 线上,且 求证:直线 是⊙0的切线; O A B P E C

7、如图 9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上, 连接DB,且AD=DB。(1)判断DB与⊙O的位置关系,并说明理由。(2)若AD=1,PB=BO,求弦AC的长 8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。 9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P. 若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径. 10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线. 11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O 的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线; (2)若DE=3,⊙O的半径为5,求BF的长. F E D A C O B P M B D C O N

(完整版)证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直? 例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F. 求证:EF与O 0相切. 证明:连结OE, AD. ?/ AB是O 0的直径, ??? AD 丄BC. 又??? AB=BC , ???/ 3= / 4. —— ? BD=DE,/ 1 = / 2. 又??? OB=OE , OF=OF , ???△ BOF ◎△ EOF ( SAS) ???/ OBF= / OEF. ??? BF与O O相切, ?OB 丄BF. ???/ OEF=9O°. ?EF与O O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD 是/ BAC 的平分线, 求证:PA 与O O 相切. 证明一:作直径AE ,连结EC. ?/ AD 是/ BAC 的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2= / 1+ / DAC. ???/ 2= / B+ / DAB , ???/ 1 = / B. ?/ AE 是O O 的直径, ? AC 丄 EC ,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA 丄PA. ? PA 与O O 相切. ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, 证明二:延长AD 交O O 于E ,连结 ?/ AD 是/ BAC 的平分线, ? BE=CE , ? OE 丄 BC. ???/ E+/ BDE=90 0. ?/ OA=OE , ???/ E=/ 1. P P 为BC 延长线上一点,且 PA=PD.

切线长定理典型练习题

切线长定理典型练习题 一、填空题 1、如图AB 为⊙O 的直径,CA 切⊙O 于点A ,CD=1cm ,DB=3cm ,则AB=______cm 。 2、已知三角形的三边分别为 3、 4、5,则这个三角形的内切圆半径是 。 3、三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 。 二、选择题 1、△ABC 内接于圆O ,AD ⊥BC 于D 交⊙O 于E ,若BD=8cm , CD=4cm ,DE=2cm ,则△ABC 的面积等于( ) A.248cm B.296cm C.2108cm D.232cm 2、正方形的外接圆与内切圆的周长比为( ) A. 1:2 B. 2:1 C. 4:1 D. 3:1 3、在三角形内,与三角形三条边距离相等的点,是这个三角形的 ( ) A.三条中线的交点, B.三条角平分线的交点, C.三条高的交点, D.三边的垂直平分线的交点。 4、△ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠FDE 与∠A 的关系 是 ( ) A. ∠FDE=21∠A B . ∠FDE+21∠A=180° C . ∠FDE+2 1∠A=90° D . 无法确定 三、解答题: 1、如图,AB 、CD 分别与半圆O 切于点A 、D ,BC 切⊙O 于点E ,若AB =4,CD =9,求⊙O 的半径。 2、等腰三角形的腰长为13cm ,底边长为10 cm ,求它的内切圆的半径。 3、如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N 。 (1)求证:B A ·BM=BC ·BN ; (2)如果CM 是⊙O 的切线,N 为OC 的中点。当AC=3时,求AB 的值。

圆证明切线的练习题

圆证明切线的练习题 1. 如图,AB是⊙O的直径,⊙O交BC的中点 于D,DE⊥AC,E是垂足. 求证:DE是⊙O的切线;如果AB=5,tan∠B=的长. 2.如图,△ABC中,AB=AE,以AB为直径作⊙O交BE 于C,过C作CD⊥AE于D, 1C ,求CE B DC的延长线与AB的延长线交于点P . 求证:PD是⊙O的切线;若AE=5,BE=6,求DC的长. 3.在Rt△ABC 中,∠C=90 ? , BC=9, CA=12,∠ABC的平分线 BD交AC于点D, DE⊥DB交AB于点E,⊙O是△BDE的外接圆, 交BC于点F 求证:AC是⊙O的切线; 联结EF,求 4.已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G. 求证:FG是⊙O的切线;求AD的长.

证明: 1 A EF 的值. AC 5.如图,点A、B、F在?O上,?AFB?30?,OB的延长线交直线AD于点D,过点 B作BC?AD于C,?CBD?60?,连接AB. 求证:AD是?O 的切线; 若AB?6,求阴影部分的面积. 6.已知:如图,AB是⊙O的直径,E是AB延长线上的一点,D是⊙O上的一点,且AD平分∠FAE,ED⊥AF交AF 的延长线于点C.判断直线CE与⊙O的位置关系,并证明你的结论; A 若AF∶FC=5∶3,AE=16,求⊙O的直径AB的长. 7.如图,以等腰?ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE?AC,垂足为E.求证:DE为⊙O的切线; 8.如图,已知R t△ABC,∠ABC=90°,以直角边 AB为直径作O,交斜边AC于点D,连结BD.

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

《切线性质与判定》练习题

《切线性质与判定》练习题 一.选择题(共12小题) 1.如图,AB是⊙O的弦,PA是⊙O的切线,若∠PAB=40°,则∠AOB=() A.80° B.60° C.40° D.20° 2.如图,AB、AC是⊙O的两条弦,∠A=35°,过C点的切线与OB的延长线交于点D,则∠D的度数为() A.20° B.30° C.35° D.40° 第1题图第2题图第3题图 3.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20° B.30° C.40° D.50° 4.如图,PA、PB切⊙O于A、B两点,∠APB=80°,C是⊙O上不同于A、B的任一点,则∠ACB等于() A.80° B.50°或130° C.100° D.40° 第4题图第5题图第6题图 5.如图,在平面直角坐标系中,点在第一象限,⊙P与x轴相切于点Q,与y轴交于M(2,0),N(0,8)两点,则点P的坐标是() A.(5,3) B.(3,5)C.(5,4)D.(4,5) 6.如图,PC是⊙O的切线,切点为C,割线PAB过圆心O,交⊙O于点A、B,PC=2,PA=1,则PB的长为() A.5 B.4 C.3 D.2 7.如图,在同心圆中,大圆的弦AB切小圆于点C,AB=8,则圆环的面积是() A.8 B.16 C.16π D.8π 8.如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数() A.50° B.60° C.70° D.75° 9.如图,AB是⊙O的直径,下列条件中不能判定直线AT是⊙O的切线的是() A.AB=4,AT=3,BT=5 B.∠B=45°,AB=A T C.∠B=55°,∠TAC=55° D.∠A TC=∠B 第7题图第8题图第9题图 11.如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论正确的个数是() ①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线.

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

圆的切线判定证明题电子教案

圆的切线判定证明题

仅供学习与交流,如有侵权请联系网站删除 谢谢2 1.如图,在平面直角坐标系xOy 中,⊙O 交x 轴于A 、B 两点,直线FA ⊥x 轴于点A ,点D 在 FA 上,且DO 平行于⊙O 的弦MB ,连DM 并延长交x 轴于点C . (1)判断直线DC 与⊙O 的位置关系,并给出证明; (2)设点D 的坐标为(-2,4),试求MC 的长及直线DC 的解析式. 2.在Rt △ABC 中,BC =9, CA =12,∠ABC 的平分线BD 交AC 与点D , DE ⊥DB 交AB 于点E . (1)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线; (2)设⊙O 交BC 于点F ,连结EF ,求EF AC 的值. (1)证明: (2)解: 3.如图,AB 是⊙O 的直径,AD 是弦,∠DAB =22.5o,延长AB 到点C ,使得∠ACD =45o. (1)求证:CD 是⊙O 的切线; (2)若AB =22,求BC 的长. 4.如图,四边形ABCD 内接于⊙O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分 BDE ∠.

仅供学习与交流,如有侵权请联系网站删除 谢谢3 5. 如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ; (2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径. 6. 如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD . (2)若E B =8cm ,CD =24cm ,求⊙O 的直径. 7. 如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥ AC ,垂足为E . (1)求证:AB =AC ; (2)求证:DE 为⊙O 的切线; (3)若⊙O 的半径为5,∠BAC =60°,求DE 的长. E C A

切线长定理—知识讲解

切线长定理—知识讲解 【学习目标】 1.了解切线长定义,掌握切线长定理; 2.了解圆外切四边形定义及性质; 3. 利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、圆外切四边形的性质 1.圆外切四边形 四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形. 2.圆外切四边形性质 圆外切四边形的两组对边之和相等. 【典型例题】 类型一、切线长定理 1.(2015秋?湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=50°求∠DOC. 【答案与解析】 解:(1)连接OE, ∵P A、PB与圆O相切, ∴PA=PB=6, 同理可得:AC=CE,BD=DE, △PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;

(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, , ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°. 【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键. 2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点. 求证:DE是⊙O切线. 【答案与解析】 连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC, ∠ADC=90°,∴△CDB是直角三角形. ∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD⊥ED, ∴DE是⊙O切线. 【总结升华】自然连接OD,可证OD⊥DE. 举一反三: 【变式】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥于点D.求证:DA为⊙O的切线. F C F C 【答案】连接AO. ∵ AO BO =,∴ 23 ∠=∠.

中考复习专题_圆切线证明

中考复习专题 --------圆的切线的判定与性质 知识考点: 1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。 精典例题: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切.

二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例7 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900 . 求证:CD 是⊙O 的切线. [习题练习] 例1如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上两点,并且OC=OD ,求证:AC=BD . 例2已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC?交于点E ,求证:△ DEC

切线长定理及其应用

切线长定理及其应用 一、基础知识总结 1.内切圆和内心 定义: 与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角平分 线的交点,叫做三角形的内心. 总结:判断一个多边形是否有内切圆,就是判断能否找到一个点到各边距离都 相等。 2.直角三角形的内切圆半径与三边关系 (1)一个基本图形; (2)两个结论: 1)四边形OECF 是正方形 2)r=(a+b-c)∕2或r=ab ∕(a+b+c) (3)两个方法 代数法(方程思想);面积法 3.切线长定义:过圆外一点作圆的切线,该点和切点之间的线段长叫做切线长。 4.切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的交角。 二、典型例题解析 【例1】如图△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相交于点D 、E 、F ,且AB=9 cm,BC=14 cm ,CA=13 cm ,求AF 、BD 、CE 的长 D E F O C B A 112 12902 a b c A B C A B C S s r p a b c p C r a b c ?∠∠∠==++∠=?=+-设、、分别为中、、的对边,面积为,则内切圆半径(),其中(); (),则()

【例2】如图,已知⊙O是△ABC的内切圆,切点为D、 E、F,如果AE=1, CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r. 【例3】如图,以等腰ABC ?中的腰A B为直径作⊙O,交底边BC于点D.过点D作⊥,垂足为E. D E A C (I)求证:D E为⊙O的切线; (II)若⊙O的半径为5,60 ∠= ,求D E的长. B A C 【例4】如上图等边三角形的面积为S,⊙O是它的外接圆,点P是⌒BC的中点.(1)试判断过C所作的⊙O的切线与直线AB是否相交,并证明你的结论;(2)设直线 CP与AB相交于点D,过点B作BE⊥CD垂足为E,证明BE是⊙O的切线,并求△ BDE的面积.

圆切线证明的方法

切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD = OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =21 AB =OB . ∵BD =OB ,∴BC =2 1 OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接 OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 图1 图2

思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明 CD 是⊙O 的切线,只要证明∠ODC =90o即可. 证明:连接OD . ∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC , ∴△OBC ≌△ODC .∴∠OBC =∠ODC . ∵BC 是⊙O 的切线,∴∠OBC =90o.∴∠ODC =90o. ∴DC 是⊙O 的切线. 【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB . 思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径. 证明:连接OC . ∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB . 【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直 图3

圆的知识点总结及典型例题.

圆的知识点总结 (一)圆的有关性质 [知识归纳] 1. 圆的有关概念: 圆、圆心、半径、圆的内部、圆的外部、同心圆、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧、弓形、弓形的高; 圆的内接三角形、三角形的外接圆、三角形的外心、圆内接多边形、多边形的外接圆;圆心角、圆周角、圆内接四边形的外角。 2. 圆的对称性 圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性。 3. 圆的确定 不在同一条直线上的三点确定一个圆。 4. 垂直于弦的直径 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧; 推论1 (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。 垂径定理及推论1 可理解为一个圆和一条直线具备下面五个条件中的任意两个,就 可推出另外三个:①过圆心;②垂直于弦;③平分弦(不是直径); ④平分弦所对的优弧;⑤平分弦所对的劣弧。 1

推论2圆的两条平行弦所夹的弧相等。 5. 圆心角、弧、弦、弦心距之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;所对的弦的弦心距相等。 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。 此定理和推论可以理解成:在同圆或等圆中,满足下面四个条件中的任何一个就能推出另外三个:①两个圆心角相等;②两个圆心角所对的弧相等;③两个圆 心角或两条弧所对的弦相等;④两条弦的弦心距相等。 圆心角的度数等于它所对的弧的度数。 6. 圆周角 定理一条弧所对的圆周角等于它所对的圆心角的一半; 推论1同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等; 推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径; 推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 圆周角的度数等于它所对的弧的度数的一半。 7. 圆内接四边形的性质 圆内接四边形的对角互补,并且任何一个外角都等于它的内对角。 ※8. 轨迹 轨迹符合某一条件的所有的点组成的图形,叫做符合这个条件的点的轨迹。 (1)平面内,到一定点的距离等于定长的点的轨迹,是以这个定点为圆心,定长为半径的圆; (2)平面内,和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线; (3)平面内,到已知角两边的距离相等的点的轨迹,是这个角的平分线。 [例题分析] 例1. 已知:如图1,在⊙O中,半径OM⊥弦AB于点N。 图1 ①若AB =,ON=1,求MN的长; ②若半径OM=R,∠AOB=120°,求MN的长。 解:①∵AB =,半径OM⊥AB,∴AN=BN = ∵ON=1,由勾股定理得OA=2 ∴MN=OM-ON=OA-ON=1 ②∵半径OM⊥AB,且∠AOB=120°∴∠AOM=60° 2

圆切线证明题

圆切线证明题 1.如图,PA为O O的切线,A为切点,过A作OP的垂线AB,垂足为点C,交O O于点B,延长B0与O O交于点D,与PA的延长线交于点E, 求证:PB为O 0的切线; 2如图,AB=AC AB是O 0的直径,O O交BC于D, DML AC于M 求证:DM与O O相切.

3如图,已知:AB是O 0的直径,点C在O O上,且/ CAB=30, BD=OB D在AB的延长线上 求证:DC是O 0的切线 3.已知:如图,A是LI 0上一点,半径0C的延长线与过点A的直线交于B点,OC=BC , 1 AC OB ? 2 (1)求证:AB是L O的切线;一一 (2 )若丄ACD=45°OC=2,求弦CD 的长. / \ 4.知:如图,在Rt A ABC中,? C=90〃,点O在AB上,以O为圆心,OA长为半径的

圆与AC, AB 分别交于点D, E ,且.CBD A . (1 )判断直线BD 与LI O 的位置关系,并证明你的结论; 已知:如图,在 △ ABC 中, D 是AB 边上一点,圆 0过D B C 三点,.DOC2. ACD 90。 (1) 求证:直线AC 是圆0的切线; ,如图,AB=AC D 为BC 中点,O D 与AB 切于E 点. 求证:AC 与O D 相切. 如图,等腰三角形 ABC 中,AC= BC= 10,AB= 12。以BC 为直径作O O 交AB 于点D,交AC C B

于点G DF 丄AC 垂足为F ,交CB 的延长线于点 E 。 ⑴求证:直线EF 是O O 的切线; 如图,Rt △ ABC 中,N ABC = 90°以AB 为直径作O O 交AC 边于点D ,E 是边BC 的中点,连接DE . (1)求证:直线DE 是O O 的切线; 如图,点 O 在/ APB 的平分线上,O O 与PA 相切于点 C. (1) 求证:直线 PB 与O O 相切; 23.(2008年南充市)如图,已知]的直径』垂直于弦二 于点二,过」点作’ 交;的延长线于点 」,连接并延长交J U 于点;,且_[「__[」 . E B

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

圆的切线之经典练习题

圆的切线之----- A 班经典练习题 班级 姓名 一、选择题: 1、“圆的切线垂直于经过切点的半径”的逆命题是( ) A 、经过半径外端点的直线是圆的切线; B 、垂直于经过切点的半径的直线是圆的切线; C 、垂直于半径的直线是圆的切线; D 、经过半径的外端并且垂直于这条半径的直线是圆的切线。 2、如图,在Rt △ABC 中,∠A =900,点O 在BC 上,以O 为圆心的⊙O 分别与AB 、AC 相切于E 、F , 若AB =a ,AC =b ,则⊙O 的半径为( ) A 、ab B 、 ab b a + C 、b a ab + D 、2 b a + 3、如图,正方形ABCD 中,AE 切以BC 为直径的半圆于E ,交CD 于F ,则CF ∶FD =( ) A 、1∶2 B 、1∶3 C 、1∶4 D 、2∶5 4、如图,过⊙O 外一点P 作⊙O 的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,在AB 、PB 、PA 上分别取一点D 、E 、F ,使AD =BE ,BD =AF ,连结DE 、DF 、EF ,则∠EDF =( ) A 、900-∠P B 、900- 21∠P C 、1800-∠P D 、450-2 1 ∠P ? 第3题图 O F E D C B A ? 第4题图 P O F E D B A ?第6题图 C O E D B A 二、填空题: 5、已知PA 、PB 是⊙O 的切线,A 、B 是切点,∠APB =780,点C 是⊙O 上异于A 、B 的任一点,则∠ACB = 。 6、如图,AB ⊥BC ,DC ⊥BC ,BC 与以AD 为直径的⊙O 相切于点E ,AB =9,CD =4,则四边形ABCD 的面积为 。 7、如图,⊙O 为Rt △ABC 的内切圆,点D 、E 、F 为切点,若AD =6,BD =4,则△ABC 的面积为 。 8、如图,已知AB 是⊙O 的直径,BC 是和⊙O 相切于点B 的切线,过⊙O 上A 点的直线AD ∥OC , 若OA =2,且AD +OC =6,则CD = 。

关于圆的切线的练习题经典

圆的切线 1、直线和圆的位置关系有三种:相交、相切、相离 用数量关系表示是:如果O 0的半径为r,圆心0到直线I的距离为d,那么: (1)直线I和O O相交1 dr. 2、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 3、切线的性质定理及其推论切线的性质定理圆的切线垂直于经过切点的半径 推论1 经过圆心且垂直于切线的直线必经过切点 推论2 经过切点且垂直于切线的直线必经过圆心 、1、直线和圆的位置关系 2、切线的判定定理 例1、已知如图所示,AB为O O的直径,C D是直径AB同侧圆周上两点,且「_一二」,过D作DEL AC于点E,求证:DE是O 0的切线. 例2、( 1)如图所示,△ ABC内接于O 0,如果过点A的直线AE和AC所成的角/ EACN B, 那么EA是O 0的切线. 3、切线的性质及其推论 例3如图,已知AB是O 0的直径,AC是弦,CD BO 0于点C,交AB ?的延长线于点D, / ACD=120 ° , BD=10 . ( 1)求证:CA=CD ;(2)求O 0的半径.

例4、已知:如图所示,AB为半圆0的直径,直线 MN于点E, BE交半圆于点F, AD=3cm BE=7cm (1 )求0 0的半径; (2)求线段DE的长. 例5、如图所示,AB为O 0的直径,BC CD为O 0的切线, 求证:AD// 0C 例6、已知如图所示,在梯形ABCD中, AD// BC, / D=90°, AD+ BC=AB以AB为直径作O 0, 求证:O 0和CD相切. 例7如图,AB是半圆0的直径,AD为弦, (1)求证:BC是半圆0的切线; (2)若0C // AD , 0C 交BD 于E, BD=6 , 例8、如图,AB为O 0的直径,弦CD丄AB于点M,过点B作BE // CD,交AC?的延长线于点E,连结BC. (1) 求证:BE为O 0的切线; 1 (2) 如果CD=6 , tan/ BCD= ,求O 0 的直径. 2 例9如图,AB为O 0的直径,BC切O 0于B, AC交O 0于P, CE=BE , E在BC上.求证:PE是O 0的切线. B E

切线长定理、弦切角定理、切割线定理、相交弦定理

切线长定理、弦切角定理、切割线定理、相交弦定理 以及与圆有关的比例线段 [学习目标] 1.切线长概念 切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。(PA 长) 2.切线长定理 对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。 3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。 直线AB 切⊙O 于P ,PC 、PD 为弦,图中几个弦切角呢?(四个) 4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。 5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。 6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。 7.与圆有关的比例线段 定理 图形 已知 结论 证法 相交弦定理 ⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD . 连结AC 、BD ,证:△APC∽△DPB . 相交弦定理的推论 ⊙O 中,AB 为直径,CD⊥AB 于P. PC 2 =PA·PB . (特殊情况) 用相交弦定理.

切割线定理 ⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于A PT 2 =PA·PB 连结TA 、TB ,证:△PTB∽△PAT 切割线定理推论 PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理 (记忆的方法方法) 圆幂定理 ⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C·P'D =r 2 -OP'2 PA·PB=OP 2-r 2 r 为⊙O 的半径 延长P'O 交⊙O 于M ,延 长OP'交⊙O 于N ,用相交 弦定理证;过P 作切线用切割线定理勾股定理证 8.圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。 【典型例题】 例1.如图1,正方形ABCD 的边长为1,以BC 为直径。在正方形内作半圆O ,过A 作半圆切线,切点为F ,交CD 于E ,求DE :AE 的值。 图1 解:由切线长定理知:AF =AB =1,EF =CE 设CE 为x ,在Rt△ADE 中,由勾股定理 ∴, ,

初中数学-证明圆的切线经典例题

初中数学-证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4. ⌒⌒ ∴BD=DE,∠1=∠2. 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E ∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA. ∴PA与⊙O相切. 证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线, ⌒⌒ ∴BE=CE, ∴OE⊥BC. ∴∠E+∠BDE=900. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE,

∴∠1+∠PAD=900 即OA⊥PA. ∴PA与⊙O相切 说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD, ∴∠1=∠B. ∴∠1=∠C. ∴OD∥AC. ∵DM⊥AC, ∴DM⊥OD. ∴DM与⊙O相切 证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=AC, ∴∠1=∠2. ∵DM⊥AC, ∴∠2+∠4=900 ∵OA=OD, ∴∠1=∠3. ∴∠3+∠4=900. D C

相关文档
相关文档 最新文档