文档库 最新最全的文档下载
当前位置:文档库 › 基于CAN总线的PC与RFID读写器通信实现

基于CAN总线的PC与RFID读写器通信实现

基于CAN总线的PC与RFID读写器通信实现
基于CAN总线的PC与RFID读写器通信实现

基于CAN总线的PC与RFID读写器通信实现

射频识别(Radio Frequency Identification,RFID)是一种非接触的无线自动识别技术,其基本原理是利用射频信号和空间耦合(电感耦合或电磁耦合)传输特性实现对被识别物体的自动识别?。近年来,RFID技术迅速发展,被广泛应用于工业、农业、体育休闲、交通管理和防伪防盗等众多领域。根据RFID应用的具体特点,本文以制衣流程过程为基础,提出了一种RFID技术在制造业生产流水线上的应用通信方案及其详细实现。

制衣生产线和很多其他工业生产线一样,每条流水线上有几个、几十个甚至更多的加工站点。为了在这种多站点生产线上应用RFID技术,一般需要在每一个工作站点部署一到两个RFID读写器(Reader)用以控制各个工作站点的任务调度,实现各工作站点和工作人员的自动

管理。然而,由于工作站点的个数较多,生产线监控管理上位机(Pc)还要实现各个工作站点

的实时信息采集和监控,这就要求PC与各个工作站点的RFID读写器之间实现可靠的实时通信。为此,本文提出了用CAN总线实现PC与RFID读写器通信的方案。

1 CAN总线与RS485总线

RS485总线曾经在工业控制系统的发展过程中发挥了重要作用。但是,随着工业控制系统

功能分散化、任务多元化、整体复杂化程度的提高,工业控制系统对于可靠性、实时性、灵

活性的要求也越来越高,工业数据总线领域中原有的RS485总线通信标准已经不能满足工业

过程控制和制造业自动化的需要。在这种情况下,现场总线(Field Bus)技术以其自身的高性

价比而成为了工业数据领域中的一种新通信方式。控制局域网络(Control Area Network,CAN)总线是目前业界公认的最有前途的几种现场总线之一。

RS485总线的局限性主要表现在:(1)RS485总线可以互联的设备节点数一般不超过32个,这显然不能够满足多点工作站的需求和生产线的规模扩展的需要,比如每条制衣生产线的工

作站点很多都在40个以上;(2)RS485总线多为查询工作方式,由上位机定时轮询各个工作

站点,效率低,实时性差;(3)RS485总线构成的通信系统可靠性不好,当由于某种原因使得

两个或更多从节点同时向总线发送数据时,将导致通信混乱甚至RS485驱动损坏;(4)RS485

总线通信过程实现复杂,由于RS485仅仅是一种电气协议规定,并没有实现可靠的通信方法,这给通信软件开发与程序调度实现增加了额外负担。

CAN总线是20世纪80年代德国Bosch公司为了解决现代汽车中众多控制与测试仪器之间

的数据交换而开发的一种串行数据通信协议,其对应的国际标准ISO11898已经在1993年11

月由ISO组织颁布。与RS485总线相比较,CAN总线的主要技术优势表现在:(1)CAN总线

可同时互联的节点数目多,实际可连接1 10个节点;(2)CAN总线用数据块编码的方式替代

了节点地址编码,各节点通过滤波的方式实现多地址帧传送;实现了面向数据而不是节点的

通信,方便系统配置;(3)CAN 总线采用基于节点优先权设定的非破坏性总线仲裁技术,有

效避免了总线上的数据传输冲突,使网络在高负载运行的情况下也不会出现网络瘫痪的情况,可靠性高;(4)CAN 总线有自己的用户层可靠通信协议和数据错误自诊断功能,采用循环冗

余校验判断报文是否有传输错误,采用8B数据段区域,既满足了工业领域中控制命令、数

据传输等的一般要求,又保证了通信的实时性。这不仅方便了上位机软件开发,还有利于系

统的稳定可靠运行。

2通信实现的系统结构

图1显示了使用USB—CAN智能转换卡连接PC与RFID读写器的生产线控制系统结构。

在这一系统中,USB—CAN智能转换卡是上位机PC 采集和发送信息的通道接13,USB—

CAN 智能转换卡下端通过双绞线连接各个控制节点—— RFID读写器。RFID读写器通过延长线连接的天线读取电子标签信息,经过RFID读写器处理后再经过CAN总线传送到上位机处理,同时通过CAN总线接收上位机的各种控制命令和信息提示。上位机负责整个系统的监控和管理,其控制信息经过CAN总线而传送到RFID读写器。

图1应用CAN总线连接PC与RFID读写器的系统结构

2.1 CAN总线通信中应该注意的问题

(1)USB—CAN 智能转换卡所支持的最扩展帧转换率为5000帧/s,如果是标准帧或者请求帧,其速率会更快。在使用USB—CAN智能转换卡实现CAN总线与上位机的连接时要充分考虑节点的规模和应用中的最大的瞬间数据传输总量,以保证系统的实时性和可靠性。

(2)上位机PC中USB—CAN设备的驱动程序安装,不同于RS485总线和CAN/RS232接13卡,USB接13需要安装USB—CAN设备自带的设备驱动程序才能正常工作。

(3)CAN总线终端匹配电阻的连接,为了增强CAN总线通信的可靠性,CAN总线网络的两个断电通常要连接两个终端匹配电阻。匹配电阻值的大小根据CAN总线网络使用的传输介质的阻抗特性而定。系统中采用的是阻抗特性为120欧姆的双绞线,连接方式如图2所示。

图2用双绞线连接的CAN总线网络

2.2通信协议说明

CAN总线的ISO标准中规定了自己的通信协议格式,在这个应用中为使用方便并满足更多节点扩展的需要,信息帧统一采用符合CAN2.0B协议(表1)实现系统中的信息传输。与RFID 读写器通信的协议帧的意义表示(表2)以及与CAN总线协议扩展帧的对应解释如下,其中表1中x表示CAN协议中的保留位。

表1 CAN总线CAN2.0B协议奠结构

表2 RFID通信协议奠的规定

在RFID通信协议帧的规定中,信息被分为4个域(表1),其中,信号类型域用来表示信息的传输方向,即是上位机发送到RFID读写器还是相反,占用CAN2.0协议扩展帧数据域的第1个字节(字节6)。站点域,即报文识别码区域,总共有4个字节(29位二进制数+3位保留位,字节2~5),此处采用报文识别码的前两个字节作为目的地址字节,作为识别符参与滤波的有效部分,以达到表示每个工作站的目的地址的作用;采用后两个字节的13位二进制数表示信息的来源地址,它们不参与滤波;通信中采用的是数据帧,而非远程帧,所以数据域的长度为1-8个字节,由CAN2.0协议扩展帧中的DLC区域表示;规定中的数据域实际上只剩下7个字节(字节7—13),用以表示通信中的命令或信息内容。这里的信息对应内容即是CAN 总线通信协议帧解析时,程序要做的工作。

RFID读写器天线设计中比较实用的方法

RFID读写器天线设计中比较实用的方法 射频识别技术(Radio Frequency Identification,缩写RFID),射频识别技术是20世纪90年代开始兴起的一种自动识别技术,射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到识别目的的技术。RFID应用将继续以供应物流领域为主,在这个领域用RFID 收发器进行包括各种各样的可移动货物/产品的记录和跟踪,在RFID收发器(信用卡大小的塑料/纸标签,内含芯片、射频部分和天线)上的必要存储将继续成为主要的应用。另外的一个可能应用就是将收发器标签贴到纺织品、药品包装或者甚至是单个药盒内。然而,未来RFID还将被用在如地方公共交通、汽车遥控钥匙、传送轮胎气压以及在移动电话等领域内。本文主要通过实际工作中对于各种RFID读写系统的对比,总结研究RFID读写器天线设计中比较实用的方法。 1 实际RFID天线设计主要考虑物理参量 磁场强度 磁场强度是线圈安匝数的一个表征量,反映磁场的源强弱。磁感应强度则表示磁场源在特定环境下的效果。打个不恰当的比方,你用一个固定的力去移动一个物体,但实际对物体产生的效果并不一样,比如你是借助于工具的,也可能你使力的位置不同或方向不同。对你来说你用了一个确定的力。而对物体却有一个实际的感受,你作用的力好比磁场强度,而物体的实际感受好比磁感应强度。它定义为磁通密度[1]B除以真空磁导率μ0再减去磁化强度μ,即-μH为矢量。这样,在恒定磁场中磁场强度的闭合环路积分仅与环路所链环的传导电流Ic有关而不含束缚分子电流。 运动的电荷或者说电流会产生磁场,磁场的大小用磁场强度来表示。RFID天线的作用距离,与天线线圈电流所产生的磁场强度紧密相关。 圆形线圈的磁场强度(在近场耦合有效的前提下,近场耦合有效与否的判断在节)可用式(1)进行计算: 式中:H是磁场强度;I是电流强度;N为匝数;R为天线半径;x为作用距离。

125kHzRFID读写器的硬件设计_

中国高新技术企业125kHzRFID读写器的硬件设计 文/王萍曾宝国 【摘要】射频识别(RFID)是利用无线方式对电子数据载体(电子标签)进行识别的一种新兴技术。本文针对 工作频率为125kHz的电子标签AT88FR256-12,介绍了其识读系统的组成及读写终端的硬件设计。 【关键词】RFID读写器硬件设计 射频识别技术(RFID)是近年迅速发展起来的一项新技术,它利用射频信号通过空间耦合(交变磁场或电磁场)实现非接触式信息传递,达到自动识别目的。与接触式IC卡和条形码识别技术相比,射频识别技术最大的优势在于特别适合对数量大、分布区域广的信息进行智能化管理和高效快捷地运作,因此在物流、交通航运、自动收费、服务领域等方面有着广泛的应用前景。针对工作频率为125kHz的电子标签AT88FR256-12,本文介绍了其识读系统的组成及读写终端的硬件设计。 1读写器的系统组成 本文所研究的RFID系统为125kHz近耦合射频识别系统,系统组成如图1所示。RFID读写器硬件主要由三部分构成:接口电路、控制模块、射频模块及天线。控制中心或I/O设备通过接口电路与控制模块通信,向控制模块发送控制命令或接收来自控制模块的数据与操作报告。控制模块采用ATMEL公司生产的AT89S52单片机,实现过程控制、数据处理以及通过接口电路完成与控制中心的数据通信或I/O设备的数据传输。射频模块用于实现数据调制、解调及收发信号,本系统采用RFID专用无线基站芯片EM4095作为电子标签与识读终端之间的接口。电子标签采用Atmel公司的AT88FR256-12无源可读写标签,使用时可根据用户要求通过读写器将相关信息写入标签。当标签进入读写器的工作范围内时,标签被激活,读写器发送读数据给标签,标签根据接收到的读数据信号将存储单元中指定的数据通过天线发送至读写器,读写器再将处理后的数据通过接口电路送回控制中心;若需要修改标签的数据,可由读写器发送写数据信号给标签,标签收到数据后自动修改内存数据。 图1RFID识读系统的组成 2读写器的硬件设计 2.1电源电路设计 EM4095和AT89S52的工作电压均为+5V,可用220V市电经整流、滤波、稳压后输出稳定的+5V的直流电为其供电。+5V稳压器采用CW7805,其应用电路如图2所示。图中,滤波电容C1和C3的值为1000μF,C2和C4为0.33μF。发光二极管D的作用是显示读写器的电源是否接通,若接通则D灯亮,无接通则D灯灭。 图2电源电路原理图 2.2射频收发模块电路设计 EM4095兼容多种传输协议(如EM4OOX、EM4150等),工作频率100kHz ̄150kHz;不需外接晶振,利用内部锁相环PLL就可得到与天线匹配的谐振频率;采用调幅同步解调技术,具有睡眠模式,与微控制器的接口简单。 EM4095的内部结构如图3所示。接收模块由采样保持器、滤波器、比较器组成。DMOD-IN端输入的AM信号在VCO输出信号的同步控制下被采样,采样输出信号由端脚CDEC外接的电容隔离直和带通滤波采样(消除输出中的载频成分、高频和低频噪声)后,经异步比较得到对应的数字信号。发送模块由锁相环PLL、天线驱动器和调制器组成。其中PLL由环路滤波器、相位比较器、压控制振荡器组成。天线感生的信号经耦合电容输入DMOD-IN端,该信号与天线驱动器的输入信号由相位比较器进行相位比较,形成与相位差对应的电压,作为压控振荡器的控制信号,最终实现对天线发射信号频率的锁定。 图3射频芯片EM4095内部结构图 EM4095的工作受输入信号SHD和MOD控制。MOD=0时,芯片工作于只读模式;MOD=1时,芯片工作于读/写模式。SHD=1时,为睡眠模式。芯片供电之后,SHD应先为高电平,以初始化芯片,然后再接低电平,芯片即处于收发状态。天线感生到的AM信号中携带的数据经解调模块解调后由DMOD-0UT端输出。RDY/CLK端用于向微控制器提供芯片内部的状态以及与收发信号同步的参考时钟。SHD=1时,RDY/CLK端输出低电平;SHD由高电平变为低电平后,经过约35ms,RDY/CLK端输出同步时钟信号,该参考时钟信号的出现表示发射模块和接收模块已经启动。通过查询RDY/CLK端信号状态,微控制器即可确定从DMOD-OUT端接收数据的时刻。 由EM4095构成的射频收发模块电路如图4所示,LA、CRES、CDV1和CDV2组成LC串联谐振天线,谐振频率为f0=1/[2π×(LA、C0)1/2],其中C0=CRES+CDV1‖CDV2。天线的工作电流与谐振电路Q值有关,可在天线线圈LA上并联一个电阻调节Q值。 图4射频收发/控制模块电路设计 2.3控制模块电路设计 微控制器AT89S52负责启动EM4095并接收由EM4095解调的编码数据。EM4095的DMOD-OUT端接P1.0,SHD接P1.1,MOD接P1.2,RDY/CLK端接P3.4,用作编解码的同步时钟。 图5AT89S52与MAX232A电路连接图 (下转88页 )科技论坛 85 --

MHz RFID读写器设计与制作

RFID技术及应用实训报告 题目: RFID读写器设计与制作 班级: 学号: 姓名: 指导教师: 二〇一五年七月一日

目录 第1章RFID读写器的设计与制作..................... 错误!未定义书签。 读写器组成与分析.............................. 错误!未定义书签。 读写器原理图与PCB设计........................ 错误!未定义书签。 读写器原理图............................... 错误!未定义书签。 读写器PCB设计............................. 错误!未定义书签。 读写器装配与功能测试.......................... 错误!未定义书签。 装配....................................... 错误!未定义书签。 功能调试................................... 错误!未定义书签。第2章RFID上位机软件开发与调试................... 错误!未定义书签。 数据访问层设计与实现.......................... 错误!未定义书签。 数据访问层设计............................. 错误!未定义书签。 实现过程及代码分析......................... 错误!未定义书签。 窗体表示层设计与实现.......................... 错误!未定义书签。 设计与实现................................. 错误!未定义书签。总结.............................................. 错误!未定义书签。

基于单片机的RFID读写器设计毕业设计

摘要 射频识别(Radiofrequency identification ,RFID),又称电子标签(E-Tag),是一种利用射频信号自动识别目标对象并获取相关信息的技术。随着技术的进步,RFID应用领域日益扩大,现已涉及到人们日常生活的各个方面,并将成为未来信息社会建设的一项基础技术。因此,研究、设计和开发RFID系统具有十分重要的理论意义和实际意义。 论文系统地论述了射频识别系统和读卡器的理论分析,研究了射频识别系统中的许多关键技术,并提出了射频识别读卡器的设计方案。 本文首先分析了射频识别技术的基本原理、研究方向和应用情况。在充分研究了射频卡的基本原理、技术特点、国际相关标准后,进而提出了基于STC11F32单片机的射频读卡器系统设计的方法。设计采用MFRC522射频读写模块在STC11F32单片机的控制下实现对Mifare卡的读写访问操作。 硬件部分设计主要包括单片机控制电路设计,射频模块设计,天线电路设计,串行通信电路设计,声音提示及显示电路设计等,其中详细讨论了读卡器的软件设计方法。软件设计包括单片机处理程序,射频基站芯片RC522的基本操作、Mifare卡操作程序设计、声音提示及显示部分程序等。论文中系统地讨论了软件实现读卡器与Mifare卡之间通信所要求的请求应答、防冲撞、选卡片、认证、读写等功能模块的实现原理。 关键词:射频识别,读卡器,IC卡,STC11F32,MFRC522

Abstract Radio frequency identification (radio frequency identification, RFID), also known as electronic tags (e-Tag), is an RF signal automatic target recognition and access to relevant information technology. With the advances in technology, RFID applications widening, has been involved in all aspects of people's daily lives, and will become a basic technology of the future information society. Therefore, research, design and development of RFID systems has important theoretical and practical significance. Discusses the theoretical analysis of radio frequency identification system and card reader to the paper system, many of the key technology of radio frequency identification system, and the design of radio frequency identification reader. This paper firstly analyzes the basic principle of radio frequency identification technology, the research direction and application. In the full study of RF Card basic principle, technical characteristics, relevant international standards, and then put forward based on STC11F32 single chip RF card reader system design method. The design adopts MFRC522radio frequency read write module in STC11F32under the control of a single-chip microcomputer to realize Mifare card read and write access operations. The hardware part of the design including the MCU control circuit design, design of the RF module, Antenna circuit design, circuit design of the serial communication, voice prompts and display circuit design, including detailed discussion of the reader software design methods. Software design, including the microcontroller handler, the basic operation of the RF base station chip RC522, Mifare card operating procedures, voice prompts and display part of the program. The paper discussed the request response communication between the software implementation of the reader with Mifare card required, anti-collision, election card, certification, read and write function module principle. Key words:RFID, reader, IC card, STC11F32, MFRC522

基于单片机的RFID读写器设计

基于单片机的RFID读写器设计 摘要 射频识别(Radiofrequency identification ,RFID),又称电子标签(E-Tag),是一种利用射频信号自动识别目标对象并获取相关信息的技术。随着技术的进步,RFID应用领域日益扩大,现已涉及到人们日常生活的各个方面,并将成为未来信息社会建设的一项基础技术。因此,研究、设计和开发RFID系统具有十分重要的理论意义和实际意义。 论文系统地论述了射频识别系统和读卡器的理论分析,研究了射频识别系统中的许多关键技术,并提出了射频识别读卡器的设计方案。 本文首先分析了射频识别技术的基本原理、研究方向和应用情况。在充分研究了射频卡的基本原理、技术特点、国际相关标准后,进而提出了基于STC11F32单片机的射频读卡器系统设计的方法。设计采用MFRC522射频读写模块在STC11F32单片机的控制下实现对Mifare卡的读写访问操作。 硬件部分设计主要包括单片机控制电路设计,射频模块设计,天线电路设计,串行通信电路设计,声音提示及显示电路设计等,其中详细讨论了读卡器的软件设计方法。软件设计包括单片机处理程序,射频基站芯片RC522的基本操作、Mifare卡操作程序设计、声音提示及显示部分程序等。论文中系统地讨论了软件实现读卡器与Mifare卡之间通信所要求的请求应答、防冲撞、选卡片、认证、读写等功能模块的实现原理。 关键词:射频识别,读卡器,IC卡,STC11F32,MFRC522

Abstract Radio frequency identification (radio frequency identification, RFID), also known as electronic tags (e-Tag), is an RF signal automatic target recognition and access to relevant information technology. With the advances in technology, RFID applications widening, has been involved in all aspects of people's daily lives, and will become a basic technology of the future information society. Therefore, research, design and development of RFID systems has important theoretical and practical significance. Discusses the theoretical analysis of radio frequency identification system and card reader to the paper system, many of the key technology of radio frequency identification system, and the design of radio frequency identification reader. This paper firstly analyzes the basic principle of radio frequency identification technology, the research direction and application. In the full study of RF Card basic principle, technical characteristics, relevant international standards, and then put forward based on STC11F32 single chip RF card reader system design method. The design adopts MFRC522radio frequency read write module in STC11F32under the control of a single-chip microcomputer to realize Mifare card read and write access operations. The hardware part of the design including the MCU control circuit design, design of the RF module, Antenna circuit design, circuit design of the serial communication, voice prompts and display circuit design, including detailed discussion of the reader software design methods. Software design, including the microcontroller handler, the basic operation of the RF base station chip RC522, Mifare card operating procedures, voice prompts and display part of the program. The paper discussed the request response communication between the software implementation of the reader with Mifare card required, anti-collision, election card, certification, read and write function module principle.

不同厂家RFID读写器统一编程接口的实现

不同厂家RFID读写器类做成统一编程接口的实现设计模式:采用工厂模式 一:准备工作: 1:准备好不同厂家的RFID读写器及配置天线和馈线,RFID标签若干 2:收集不同厂家读写器及其编程接口API 二:编写一个RFID读写器操作基类 下面是核心代码: ///

/// 不同厂家RFID读写器操作基类 /// public class BaseSpeedReader { protected Form mFrmScan = null; protected DataTable mDtEPC = null; public delegate void MethodInvoke(); public delegate void NoticeEPC_EventHandler(object sender, Common.Args.NoticeEPCEventArgs e); [Category("DMZ"), Description("通知界面层处理标签"), DefaultValue((true))] public event NoticeEPC_EventHandler NoticeEPCHandler; //EventHandler [Category("DMZ"), Description("通知界面层已连接读写器"), DefaultValue((true))] public event EventHandler NoticeConnectedHandler; /// /// 通知界面层告知标签的读取信息 /// public void NoticeEPC() {

UHF RFID读写器设计方案

[导读]为了分析UHF RFID读写器系统抗干扰性能,本文提出了基于ISO18000-6 type B 协议下UHF RFID读写器的设计方案,并对其通信过程进行了Simulink仿真,给出了曼彻斯特编解码以及2ASK调制解调的模型。 为了分析UHF RFID读写器系统抗干扰性能,本文提出了基于ISO18000-6 type B 协议下UHF RFID读写器的设计方案,并对其通信过程进行了Simulink仿真,给出了曼彻斯特编解码以及2ASK调制解调的模型。 最后,结合实际中经常遇到的高斯白噪声信道分析了系统的信道抗干扰性能,给出了系统的误码率随信噪比变化曲线。仿真表明本方案所设计的UHF RFID读写器系统具有较高的抗干扰性能。 0 引言 射频识别系统是一种非接触的自动识别系统,通过射频无线信号自动识别目标对象,并进行读、写数据等相关操作,这种无线获取数据的方式在工业自动化、商业自动化、交通运输控制管理众多领域得到广泛应用。 RFID系统由阅读器、电子标签和计算机网络构成,其中读写器是RFID系统信息控制和处理中心,在系统工作中起着举足轻重的作用,其性能的好坏直接影响到数据获取的可靠性和有效性。而超高频读写器在远距离识别以及高速数据读取方面有着显着的优势,为此本文研究基于ISO 18000-6标准的Type B协议下的高频读写器具有重要的现实意义。 1 RFID工作原理

不同的RFID系统,工作原理略有不同,但其依据的基本工作原理是一样的。RFID系统读写器与电子标签基本结构如图1所示。由读写器模块中振荡器产生射频振荡信号,经过载波形成电路产生载波信号,再经过发送通道编码、调制和功率放大后经天线发出射频信号,当电子标签进入到工作区域,读取读写器发送的信号,一部分用于产生能量驱动电源激活自身工作,一部分用于获取信息,并根据指令将带有自身信息的信号经过编码、调制后由天线发送给读写器。读写器再将读取的信号传送给数据处理模块进行相应操作。 读写器在RFID 系统中扮演重要的角色,主要负责与电子标签的双向通信,同时接收来自主机系统的控制指令。各种读写器虽然在耦合方式、通信流程、数据传输方法,特别是在频率范围等方面有着根本的差别,但是在功能原理上,以及由此决定的构造设计上,各种读写器是十分类似的。在ISO18000-6 Type B 协议下RFID 系统是基于读写器先发言原理工作,即读写器先发送出一定频率的射频信号,当电子标签进入到该工作区域时,首先产生感

超高频rfid读写器技术方案

健新科技JX-PU2902多功能RFID读写笔配合智能手机、智能平板等各类型终端,实现RFID 智能识别功能和智能移动终端功能的完美结合,轻松实现各行业资产盘点、智能巡检、人员物资管理等移动互联网应用。 ◆手写笔设计:纳米超纤触控笔头,手写笔外形设计,可作为触控笔使用; ◆RFID空口协议:EPCglobal UHF Class 1 Gen 2、ISO18000-6C、ISO 18000-6B ◆操作简单:两个按键即可实现所有操作功能 ◆状态指示:设备状态通过两组7色LED灯显示,清晰明了 ◆蓝牙4.0:内置蓝牙4.0模块,可与所有具备蓝牙功能的终端进行通信连接,所有具 备蓝牙功能的智能终端均可作为采集终端 ◆内置锂电池:内置350mAh锂电池,支持USB充电 一、技术指标 二、健新RFID读写笔产品优点 三、基于RFID读写笔的系统应用 四、应用系统的优点: 五、典型应用: 在某品牌空调外壳中嵌入超高频RFID标签,售后维修通过扫描空调RFID标签获得准确的产品信息,防止售后维修点虚假维修报账。 4S店车辆库存盘点:在一个区域的某类汽车品牌4S店管理中,采用超高频RFID 标签对车辆进行定位,采用RFID蓝牙读写笔对各4S店的车辆进行盘点,防止各 4S店之间库存车辆相互串货。 电力资产管理:在某电网公司,采用超高频RFID标签对资产进行标识, 使用RFID蓝牙读写笔及平板电脑对电力资产设备进行盘点,解决高压设备的远距离识别问题。 行业应用 电力:变电所、变压器、高压铁塔、线杆、高压线路、发电厂、电能表读数、安全用具巡检巡更 石油:输油管道、天然气管道、油罐库区、油田油井设施巡检巡更 铁路:路基、路轨、桥梁、水电、机车、库房、候车大厅、乘警巡逻巡检巡更 电信:光缆、电话线路、电话亭、线杆、发射机站巡检巡更 公安:巡警、交警、警车、岗哨、狱警巡逻巡检巡更 军队:边防、岗哨、弹药库、军需库巡逻巡检巡更 粮库:防火、防水、防虫、温度、湿度控制巡检巡更 林业:森林防火、森警巡逻、动植物保护、防猎巡检巡更 矿业:煤矿井下安全、井上设施、车辆、煤场巡检巡更 医院:护士查房、人员考核、保安巡逻巡检巡更 邮政:邮箱、库房、趟车的频次/时限管理巡检巡更

RFID 读写器的设计

RFID 读写器的设计 0 引言射频识别(Radio Frequency Identification,RFID)是利用感应、电磁场或电磁波为传输手段,完成非接触式双向通信,获取相关数据的一种自动识别技术。射频识别卡最大的优点就在于非接触,因此完成识别工作时无须人工干预,适于实现自动化且不易损坏,可识别高速运动物体并可同时识别多个射频卡,操作快捷方便。目前,射频识别技术己经广泛使用,准备接替目前许多人工完成的工作程序。 RFID 技术是一个崭新的技术应用领域,它不仅涵盖了射频技术,还包含了射频技术、密码学、通信原理和半导体集成电路技术,是一个多学科综合的新兴学科。因此,对 RFID 技术的认识和研究具有深远的理论意义。随着21世纪数字化时代的到来,基于远程信息化网络管理技术和移动商务的社会需求,RFID 技术智能管理系统将在各个领域中发挥巨大的作用。RFID 技术正在成为一个新的经济增长点,在全球范围内蔓延开来,研究开发 RFID 技术有着巨大的经济效益和社会意义。一个典型的 RFID 系统一般由 RFID 标签、读写器以及计算机系统等部分组成。其中 RFID 标签中一般保存有约定格式的编码数据,用以惟一标识标签所附着的物体。与传统的识别方式相比,RFID 技术无需直接接触、无需光学可视、无需人工干预即可完成信息输入和处理,且操作方便快捷。能够广泛应用于生产、物流、交通、运输、医疗、防伪、跟踪、设备和资产管理等需要收集和处理数据的应用领域,并且认为是条形码标签的未来代替品。RFID 系统的工作原理框图。 读写器通过天线发送出一定频率的射频信号:当 RFID 标签进入读写器工作场时,其天线产生感应电流,从而 RFID 标签获得能量被激活并向读写器发出自身编码等信息;读写器接收到来自标签的载波信号,对接收的信号进行解调和解码后送至计算机主机进行处理;计算机系统根据逻辑运算判断该标签的合法性,针对不同的设定做出相应的处理和控制,发出指令信号;RFID 标签的数据解调部分从接收到的射频脉冲中解调出数据并送到控制逻辑,控制逻辑接收指令完成存储、发送数据或其他操作。 RFID 针对常用的接触式识别系统的缺点加以改良,采用射频信号以无线方式传送数据资料,因此识别卡不必与读卡机接触就能读写数据资料。 1 系统总体简介本系统以 AT89252 单片机为控制核心,利用 RFID 读写基站 U2270B 对 Temic 公司的射频卡(本系统使用 EM4100卡)进行数据的读写。在通信方面使用 USB 高速通信接口,采用南京沁恒公司的 USB 主控芯片 CH375。数据库的存储管理利用 SD卡。系统总体框。 2 RFID 读写模块 U2270B的载波频率为100~150 kHz,其调制方式为曼彻斯特码和双相位码。U2270B 的电源供给可为 5 V 的稳压电源或者是12 V 的汽车蓄电池。它可以为RF场提供能量,其中在短距离运用时,外围驱动电路简单。U2270B 还具有信号微调能力,而且其读写距离可达7~10 cm。U2270B还具有电压输出功能可以给微处理器或其他外围电路供电。 U2270B具有省电模式和 STANDBY 控制可选,所以设计基站电路时可以按照功能的不同要求,设计基站的外围电路。具体电路图。 本系统采用9 V 电池供电,并通过 STANDBY 端进行省电模式的控制。同时通过桥式二极管来增强读写距离。通过调整RF引脚所接电阻的大小,可以将内部振荡频率固定在150 kHz,然后通过天线驱动器的放大作用,在天线附近形成150 kHz的射频场,当射频卡进入该射频场内时,由于电磁感应的作用,在射频卡的天线端会产生感应电势,该感应电势也是射频卡的能量来源。数据写入射频卡采用场间隙方式,即由数据的“O”和“1”控制振荡器的启振和停振,并由天线产生带有窄间歇的射频场,不同的场

13.56MHz_RFID读写器设计与制作

RFID技术及应用实训报告 题目: 13.56MHz RFID读写器设计与制作班级: 学号: 姓名: 指导教师: 二〇一五年七月一日

目录 第1章RFID读写器的设计与制作 (1) 1.1 读写器组成与分析 (1) 1.2 读写器原理图与PCB设计 (2) 1.2.1 读写器原理图 (2) 1.2.2 读写器PCB设计 (4) 1.3 读写器装配与功能测试 (5) 1.3.1 装配 (5) 1.3.2 功能调试 (5) 第2章RFID上位机软件开发与调试 (6) 2.1 数据访问层设计与实现 (6) 2.1.1 数据访问层设计 (6) 2.1.2 实现过程及代码分析 (6) 2.2 窗体表示层设计与实现 (7) 2.2.1 设计与实现 (7) 总结 (9)

第1章RFID读写器的设计与制作 1.1 读写器组成与分析 13.56MHz RFID读写器广泛用于校园一卡通,公交自动收费系统等。读写器一般由单片机最小系统电路、Mifare读写接口电路、天线匹配电路、声光提示电路、USB转串口通信接口电路及电源电路组成。如图1-1所示。 图1-1 读写器的组成 单片机最小系统由STC89C52单片机,时钟电路和复位电路组成,其中时钟电路与单片机的14,15号引脚相连,复位电路与单片机的4号引脚相连;Mifare 读写接口电路的C4、C5、X2构成振荡电路,提供给MF RC500的时钟作为同步系统编码器和解码器的时基。MF RC500的5,7和29引脚分别为射频信号收发端,需通过天线匹配电路连接天线;天线匹配电路利用变压器原理实现读写器和无源标签之间的能量传递和双向发送数据,因此要求读写器与标签一样,要有天线线圈;读卡器在读卡时需要声光提示,电路中三极管Q1、电阻R5、蜂鸣器Buz1构成声音提示电路,由单片机的P1.0口控制,在P1.0口输出低电平时,Buz1蜂鸣;发光二极管D1、电阻R4构成光提示电路,由单片机的P1.7口控制,在P1.7口输出低电平时,D1点亮。

RFID读写器常见问题解析

RFID读写器常见问题解析 关键字:RFID读写器常见问题 1、多读写器之间干扰 当有两台或两台以上的读写器同时工作时,为了使相邻读写器之间相互不干扰,读写器在安装调试时确保满足以下两点要求: 1) 相邻两台读写器的天线之间的中心间距大于3米; 2) 相邻两台读写器的工作频点分别设置为920MHz-925MHz的跳频,跳频间隔建议1MHz。 2、上电后上面板“PWR”指示灯不亮 1) 供电系统故障:检查电源适配器供电是否正常,交流电源电压是否满足100V~240V 之间; 2) 如果其他指示灯亮,则内部的MCU 故障,一旦MCU故障,用户只能联系远望谷公司洽谈维修事宜; 3、网口不能连接 读写器出厂时设置的缺省IP地址为:192.168.0.210,只要PC的IP地址与读写器的IP 地址在同一个网段,比如 “192.168.0.XXX”就可以和读写器可靠连接,如果忘记了读写器的IP地址,请找一台有RS-232串行接口的PC对读写器的IP地址进行重新设置。 4、串口不能连接 1) 读写器的波特率为115200bps,安装路径下sysit.cfg文件XC_BaudRate项值是否为115200。 2) 选择的COM口是不是跟读写器与PC连接的相符。 3) 串口电缆是否连接正确,电缆未连接或连接不牢靠会导致PC机的命令不能下发到读写器 5、不能读卡 1) 串口电缆、或网络电缆线是否连接正确,电缆未连接或连接不牢靠会导致PC机的命令不能下发到读写器。 2) 请检查天线SMA接头是否拧紧,标签是否损坏,否则读写器的MCU故障,用户只能联系远望谷公司洽谈维修事宜。 3) 检查天线号设置是否正确。如果天线接1#射频端口,则演示软件需要选1#天线。 4) 检查标签是否符合ISO18000-6B/C协议。不符合6B/C协议的标签将无法被读出。 5) 检查标签是否损坏。如果是无法读取ID号,则可以尝试换一台读写器读一下这张标签,看看是否是标签已损坏。如果是无法读取数据区,则需要检查一下标签数据区是否是由于被锁定导致。锁定的标签只需要解锁即可正常使用。 6、读卡距离近 1) 检查读写器频点设置是否正确。工作模式应选择跳频,跳频频点范围920MHz--925MHz,跳频点间隔1MHz。 2) 检查标签与天线的极化方向是否匹配。如果天线是垂直极化的,则标签需要竖直放置。 3) 检查标签表面是否覆盖有其他材料。如果标签表面覆盖有其他材料,并且这个材料使得标签天线的频点偏移,就会直接影响到读写器的读取效果。如果是金属材质,由于射频信号无法穿透金属,读写器将无法读取到标签。 4) 检查读写器与天线连接的射频线缆。如果射频线缆的接头松动或同轴线断了,使得射频信号变得很弱,则直接影响到读取的距离。 5) 检查标签的属性。金属标签一般要求安装在金属表面,这样才能充分发挥金属标签的性能。其他标签,尽可能不要靠近金属表面安装。

RFID芯片T5557及其FSK读写器电路设计

T5557的Atmel公司生产的非接触式无源可读写RFID器件,这的工作频率(载波)为125kHz。可兼容e555x系列芯片。T5557芯片具有以下主要特性: *具有75pF的片上谐振电路电容; *独立的64位可追踪数据存储器; *EEPROM中的配置存储器可能设置芯片工作参数; *数据速率可在RF/2和RF/128之间的以2的幂次可选; *编码方式:NRZ、曼彻斯特及Biphase码; *调制方式:FSK、PSK、直接; *具有请求应答(AOR)、密码、常规读、直接访问等多种工作模式; *具有写保护特性; *OTP(一次可编程)功能。 2 T5557的应用系统构成 T5557的典型应用系统构成图如图1所示。图中,读写器向T5557(亦称之为tag)传送射频能量和读写命令,同时接收T5557芯片以负载调制方式送来的数据信号。

3 内部组成及工作原理 3.1 内部组成电路 实际上,T5557芯片的内部电路组成框图也示于图1,从图中可以看出,它由模拟前端、写解码、比特率产生器、调制器、模式寄存器、控制器、存储器、编程用高压产生器、测试逻辑等电路构成。其中:模拟前端电路主要完成芯片模拟信号的处理和变换,包括电流产生、时钟提取、载波中断(空隙gap)检测、负载调制、ESD保护等电路;写解码电路主要在读写器向芯片写数据时,用来解读有关写操作码,并对写数据流进行校验;HV产生器可产生对EEPROM进行编程写入所需的高电压;控制器主要完成四种功能:一是在上电(POR)有效后及读期间,用配置存储器数据(在EEPROM的块0中,见后述)装载模式寄存器,以保证芯片按设置方式工作。二是控制对存储器的访问。三是处理写命令和数据写入。四是在密码模式中,将接收操作码后的32位值与存贮的密码进行比较和判别;调制器用于实现FSK、PSK 调制;T5557具有330位EEPROM存储器,其结构如图2所示,分为页0和页1两页。页0的块0是配置存储器。每块的位0是块锁存位,一旦锁存置位,本块(包括锁存位)不能通过射频再次编程。T5557中EEPROM的可追踪数据是指Atmel在生产制造测试过程所保留的众多识别数据,可供查询,这是e555x系列没有的。 此外,T5557中配置存储器的功能结构位图如图3所示。 3.2 T5557的初始化及读写器通信 电源上电后(POR有效),T5557将对存储在EEPROM块0中的数据进行初始化,此时若图3中的POR位为0,则在约3ms后按块0的调制参数设置进行调制。若需置位POR,则其初始化时间约为67ms。在卡(tag)与读写器进行通信时:通常由卡将存贮在EEPROM中的数据以负载调制方式循环送至读写器。根据传送数据循环组织方式的不同又可分为常规(regular)读模式、块读模式和序列终止符模式。具体如下:

进步RFID读写器的读取效果的解决办法

、管路敷设技术,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接、电气课件中调试下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进、电气设备调试高中资料试卷技术卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试

通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用电力保护装置

可以看出,在零中频接收模拟输出除了所需要的标签回传数据外,数据帧同步头还混杂了直流偏移干扰以及高频噪声.由于距离较远,有用信号的p-p 值仅有110,波形畸变严重,信噪比较差。 经过CIC 及带通滤波,可以得到图4所示的曲线,此时滤波器去除了混杂的噪声,波 形变得比较圆滑整齐,能够较容易的分辨出数据帧的同步头和数据位.图中同时显示了过零检测的解码曲线(位于图形下方,方波上边标注的是过零检测的0和1及其样本点数量;下方标注解码结果。2B4 :0,表示第2字节的第4位解码为0),该算法在横轴坐标240左边出现了解码判决错误(1B5:1,码元0被判决为1),表明处理畸变干扰能力有限。 图4 直接过零检测解码的效果 同时采用直流偏移校正和相干检测方法对同一个数据进行处理,得到的曲线及效果参见图5。解码结果波形显示算法改善了同步头的解码效果。同时,横轴坐标240左边被正确的解码(1B5:0),证明了该算法在远距离标签返回信号幅度比较小或者标签信号中值波动的情况下,仍然可以正确获得EPC 数据。 图5 直流偏移校正及相干检测解码的效果 5 结论 本文通过分析零中频架构超高频RFID 读写器数字接收机设计中的性能瓶颈,明确了影响接收性能的噪声干扰、直流偏移及解码问题的成因及解决思路.从基带数字信号处理角度,在过采样滤波处理基础上,给出直流偏移校正和相关解码等解决办法.经过测试验证 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

相关文档