文档库 最新最全的文档下载
当前位置:文档库 › 压力容器钢板厚度计算例题

压力容器钢板厚度计算例题

压力容器钢板厚度计算例题
压力容器钢板厚度计算例题

压力容器的计算,管体高=1450mm D=300mm,400mm,600mm 用4MM钢板能否承受

1.2MPa的压力,是怎样计算的?在线等

最佳答案

依据GB150-1998<钢制压力容器》设计要求。以上题目缺少两个条件:介质和温度。假设介质为压缩空气,温度为常温。计算如下:

已知:公称直径Di=300mm、400mm、600mm。

设计压力P=1.2MPa,

设计温度t=50℃。

介质为压缩空气。

确定参数:腐蚀裕量=1mm

钢板负偏差=0.6mm。

设计温度下的钢板许用应力【σ】t=133MPa。

焊缝系数Φ=0.85

则计算厚度δ=(PDi)/(2【σ】tΦ-P)

=(1.2*300)/(2*133*0.85-1.2)=1.60mm。(300)

=(1.2*400)/(2*133*0.85-1.2)=2.13mm (400)

=(1.2*600)/(2*133*0.85-1.2)=3.20mm (600)以上计算的结果,可以看做是验证了4mm钢板在300、400、600mm 的厚度,可以承受1.2MPa的压力。

如果是制造容器的单位进行设计,还要进行以下计算:

设计厚度:δn=δ+C

=1.6+1.6=3.2mm (300)

=1.6+2.13=3.73mm (400)

=1.6+3.2=4.8mm (600)

根据《容规》的规定。制造压力容器的钢板厚度不得小于6mm。因此设计厚度取6mm钢板。

还需要进行各种校核。

尺寸链试题及答案

第十二章尺寸链 12-1填空: 1、零、部件或机器上若干首尾相接并形成封闭环图形的尺寸系统称为尺寸链。 2、尺寸链按应用场合分装配尺寸链零件尺寸链和工艺尺寸链。 3、尺寸链由封闭环和组成环构成。 4、组成环包含增环和减环。 5、封闭环的基本尺寸等于所有增环的基本尺寸之和减去所有减环的基本尺寸之和。 6、当所有的增环都是最大极限尺寸,而所有的减环都是最小极限尺寸,封闭环必为最大极限尺寸。 7、所有的增环下偏差之和减去所有减环上偏差之和,即为封闭环的下偏差。 8、封闭环公差等于所有组成环公差之和。 9、如图所示,若加工时以Ⅰ面为基准切割A2和A3,则尺寸A1 为封闭环;若以Ⅰ面为基准切割A1和A2,则尺寸A3 为封闭环。 10、“入体原则”的含义为:当组成环为包容尺寸时取下偏差为零。 12-2 选择题: 1、一个尺寸链至少由C 个尺寸组成,有A 个封闭环。 A、1 B、2 C、3 D、4 2、零件在加工过程中间接获得的尺寸称为 C 。 A、增环 B、减环 C、封闭环 D、组成环 3、封闭环的精度由尺寸链中 C 的精度确定。 A、所有增环 B、所有减环 C、其他各环 4、按“入体原则”确定各组成环极限偏差应A 。 A、向材料内分布 B、向材料外分布 C、对称分布 12-3 判断题: 1、当组成尺寸链的尺寸较多时,封闭环可有两个或两个以上。(×) 2、封闭环的最小极限尺寸等于所有组成环的最小极限尺寸之差。(×) 3、封闭环的公差值一定大于任何一个组成环的公差值. ( √) 4、在装配尺寸链中,封闭环时在装配过程中最后形成的一环,(√)也即为装配的 精度要求。(√) 5、尺寸链增环增大,封闭环增大(√),减环减小封闭环减小(×). 6、装配尺寸链每个独立尺寸的偏差都将将影响装配精度(√)。 四、简答题: 1、什么叫尺寸链它有何特点 答:在一个零件或一台机器的结构中,总有一些互相联系的尺寸,这些尺寸按一定顺序连接成一个封闭的尺寸组,称为尺寸链。 尺寸链具有如下特性: (1) 封闭性:组成尺寸链的各个尺寸按一定的顺序排列成封闭的形式。 (2) 相关性:其中一个尺寸的变动将会影响其它尺寸变动。 2、如何确定尺寸链的封闭环能不能说尺寸链中未知的环就是封闭环 答:装配尺寸链的封闭环往往是机器上有装配精度要求的尺寸,如保证机器可靠工作的相对位置尺寸或保证零件相对运动的间隙等。在建立尺寸链之前,必须查明在机器装配和验收的技术要求中规定的所有集合精度要求项目,这些项目往往就是这些尺寸链的封闭环。 零件尺寸链的封闭环应为公差等级要求最低的环,一般在零件图上不需要标注,以免引起加工中的混乱。 工艺尺寸链的封闭环是在加工中自然形成的,一般为被加工零件要求达到的设计尺寸或工艺过程中需要的尺寸。 不能说尺寸链中未知的环就是封闭环。 3、解算尺寸链主要为解决哪几类问题 答:解算尺寸链主要有以下三类任务: (1)正计算:已知各组成环的极限尺寸,求封闭环的极限尺寸。 (2)反计算:已知封闭环的极限尺寸和组成环的基本尺寸,求各组成环的极限偏差。

机械制造工艺学三种计算题-(1)

一:工艺尺寸链计算 1 :右图所示衬套,材料为38CrMoAlA ,孔径为040 .00145+Φmm 的表面需要渗氮,精加工渗 层厚度为0.30 05.0-(单边),加工过程为: (1)镗孔Φ144.5 080.00+; (2)粗磨Φ144.75040 .00 +; (3)渗氮; (4)精磨Φ145 040.00+。 求渗氮深度t(单边)。 解:如图所示尺寸链。 0.3=(275144.+0.02)+tmax -(2145 ) 得tmax =0.3+72.5-72.395=0.405 0.25=(275144.)+tmin -(2145 +0.02) 得tmin =0.25+72.52-72.375=0.395 渗碳深度 t =0.400500050.+.- 2.如图4-17所示齿轮内孔,加工工艺过程为:先粗镗孔至Ф84.8 +0.07 0 mm,插键槽 后,再精镗孔尺寸至Ф85.00 +0.036 0mm,并同时保证键槽深度尺寸87.90 +0.23 0mm ,试求插键槽工序中的工序尺寸A 及其误差。 解:据题意,加工最后形成的深度尺寸87.90+0.23 0㎜为封闭环尺寸,画尺寸链图(答案图4-2)。 根据公式计算计算工序尺寸A 及公差、极限偏差。由画箭头方法可判断出A 、85+0.036 0mm 为增环,84.8+0.07 0/2 mm 为减环。 A=(87.9+84.8/2-85/2) =(87.9+42.4-42.5) mm=87.8mm

ES=(+0.23+0-0.036/2)mm=+0.212mm EI=(0+0.07/2-0)mm=+0.035mm 故工序尺寸为87.8 +0.212 +0.035 mm 85/ 84.4/2 A 87.9 答案图 4-2 3:(10分)如图所示零件加工时,图纸要求保证尺寸6±0.1,因这一尺寸不便直接测量,只好通过度量尺寸L来间接保证,试求工序尺寸L?

压型钢板混凝土组合楼承板计算实例

压型钢板混凝土楼承组合板计算书 工程资料: 该工程楼层平台采用压型钢板组合楼板,计算跨度m l 4=,剖面构造如图1所示。压型钢板的型号为YX76-305-915,钢号Q345,板厚度mm t 5.1=,每米宽度的截面面积m mm A S /20492=(重量0.152/m kN ),截面惯性矩m mm I S /1045.20044?=。顺肋两跨连续板,压型钢板上浇筑mm 89厚C35混凝土。 图1 组合楼板剖面

1 施工阶段压型钢板混凝土组合板计算 1.1 荷载计算 取m b 0.1=作为计算单元 (1)施工荷载 施工荷载标准值m kN p k /0.10.10.1=?= 施工荷载设计值m kN p /4.10.14.1=?= (2)混凝土和压型钢板自重 混凝土取平均厚度为mm 127 混凝土和压型钢板自重标准值 m kN m m kN m kN m k /325.30.1)/15.0/25127.0(g 23=?+?= 混凝土和压型钢板自重设计值 m kN m kN g /0.4/325.32.1=?= (3)施工阶段总荷载 m kN m kN m kN g p q k k k /325.4/325.3/0.1=+=+= 1.2 内力计算 跨中最大正弯矩为 m kN m kN l g p M ?=??+?=+=+05.60.4)0.44.1(07.0)(07.022max 支座处最大负弯矩为 m kN m kN l g p M ?=??+?=+=-8.100.4)0.44.1(125.0)(125.022max 故m kN M M ?==- 8.10max max 支座处最大剪力 kN kN l g p V 5.130.4)0.44.1(625.0)(625.0max =?+?=+= 1.3 压型钢板承载力计算 压型钢板受压翼缘的计算宽度et b

压力容器的强度计算]

压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

压力容器、常压容器钢板壁厚计算选择和标准公式

压力容器、常压容器钢板壁厚计算选择和标准公式 容器标准: 《GB 150-2011压力容器》 《NB/T 47003.1-2009钢制焊接常压容器》 钢材标准: 《GB 713-2008锅炉和压力容器用钢板》―― GB 150碳素钢和低合金钢的钢板标准 牌号Q245R、Q345R、Q370R、18MnMoNbR、13MnNiMoR、15CrMoR、14Cr1MoR、12Cr2Mo1R、12Cr1MoVR 《GB/T 3274-2007碳素结构钢和低合金结构钢热轧厚钢板和钢带》——GB150 Q235B钢板标准 《GB 24511-2009承压设备用不锈钢钢板及钢带》――GB150高合金钢的钢板标准 《GB/T 4237-2007不锈钢热轧钢板和钢带》―― NB/T 47003高合金钢板标准,化学成分、力学性能 《GB/T 3280-2007不锈钢冷轧钢板和钢带》 《GB/T 20878-2007不锈钢和耐热钢牌号及化学成分》 《GB/T 699-1999优质碳素结构钢》 牌号08F、10F、15F、08、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、15Mn、 20Mn、25Mn、30Mn、35Mn、40Mn、45Mn、50Mn、60Mn、65Mn、70Mn 《GB/T 700-2006 碳素结构钢》――牌号Q195、Q215、Q235、Q275 《GB/T 709-2006热轧钢板和钢带的尺寸、外形、重量级允许偏差》 不锈钢牌号对照表 《不锈钢和耐热钢牌号及化学成分》,有详细的不锈钢对照

圆筒直径: 钢板卷焊的筒体,规定内径为公称直径。 其值从300?6000mm , DN1000 以内50mm 进一档,DN1000 ?6000mm 以100mm 进一档。 钢板厚度: 《GB 150-2011压力容器》,Q235B钢板厚度,用于容器壳体时 < 16mm用于其他受压元件时 < 30mm 《NB/T 47003.1-2009钢制焊接常压容器》 不包括腐蚀裕量的圆筒最小厚度:对碳素钢及低合金钢为3mm;对高合金钢为2 mm。 Q235A , Q235B, Q235C:钢板厚度,用于容器壳体时 < 40mm(与大气连通的不受限制) 1、平面支承的底板,当壁板厚度小于10mm时,底板厚度不小于6mm;当壁板厚度为10mm?20mm时, 底板厚度不小于8mm。 2、在平基础上全平面支撑的底板,底板最小厚度常用4mm?6mm (或与壁板等厚),同时考虑腐蚀裕量来确定底板的名义厚度。 钢板厚度=计算厚度+ C1负偏差+ C2腐蚀裕量 考虑刚度要求的最小壁厚: 碳素钢和低合金钢,内径w 3800mm,最小壁厚为内径的0.002倍,且不小于3 mm,腐蚀裕量另加。 内径〉3800mm时,按运输和现场安装条件确定。 常用钢板厚度:(mm ) 2、3、4、5、6、8、10、12、14、16、18、20、22、25、28、30... 焊接系数: a)双面焊和相当于双面焊的全焊透对接: 1 )全部无损检测, 2 )局部无损检测, 3 )不做无损检测,?= 1.0 ?= 0.85 片0.7《NB/T 47003钢制焊接常压容器》 b)单面焊对接,沿根部全长有紧贴的垫板: 1 )全部无损检测, 2 )局部无损检测, 3 )不做无损检测,?= 0.9 ?= 0.8 片0.65《NB/T 47003钢制焊接常压容器》 腐蚀裕量: a)橡胶、玻璃钢衬里及涂层设备:0 b)材质为碳素钢的其它水处理设备:> 1 rm c)材质为不锈钢的其它水处理设备:0 筒体、封头的腐蚀裕量

尺寸链计算(带实例)

尺 寸 链 的 计 算 一、尺寸链的基本术语: 1.尺寸链——在机器装配或零件加工过程中,由相互连接的尺寸形成封闭的尺寸组,称为尺寸链。如下图间隙A0与其它五个尺寸连接成的封闭尺寸组,形成尺寸链。 2.环——列入尺寸链中的每一个尺寸称为环。如上图中的A0、A1、A2、A3、A4、A5都是环。长度环用大写斜体拉丁字母A,B,C……表示;角度环用小写斜体希腊字母α,β等表示。 3.封闭环——尺寸链中在装配过程或加工过程后自然形成的一环,称为封闭环。如上图中 A0。封闭环的下角标“0”表示。 4.组成环——尺寸链中对封闭环有影响的全部环,称为组成环。如上图中A1、A2、A3、A4、 A5。组成环的下角标用阿拉伯数字表示。 5.增环——尺寸链中某一类组成环,由于该类组成环的变动引起封闭环同向变动,该组成环 为增环。如上图中的A3。 6.减环——尺寸链中某一类组成环,由于该类组成环的变动引起封闭环的反向变动,该类组 成环为减环。如上图中的A1、A2、A4、A5。 7.补偿环——尺寸链中预先选定某一组成环,可以通过改变其大小或位置,使封闭环达到规 定的要求,该组成环为补偿环。如下图中的L2。

二、尺寸链的形成 为分析与计算尺寸链的方便,通常按尺寸链的几何特征,功能要求,误差性质及环的相互关系与相互位置等不同观点,对尺寸链加以分类,得出尺寸链的不同形式。 1.长度尺寸链与角度尺寸链 ①长度尺寸链——全部环为长度尺寸的尺寸链,如图1 ②角度尺寸链——全部环为角度尺寸的尺寸链,如图3

2.装配尺寸链,零件尺寸链与工艺尺寸链 ①装配尺寸链——全部组成环为不同零件设计尺寸所形成的尺寸链,如图4 ②零件尺寸链——全部组成环为同一零件设计尺寸所形成的尺寸链,如图5 ③工艺尺寸链——全部组成环为同一零件工艺尺寸所形成的尺寸链,如图6。工艺尺寸指工艺尺寸,定位尺寸与基准尺寸等。

压型钢板专项施工方案

压型钢板专项施工方案 目录 一、编制依据 (1) 二、工程概况 (1) 三、楼板压型钢板计算 (1) 四、支撑架搭设 (5) 五、楼板混凝土浇筑 (5) 六、质量保证措施 (7) 七、成品保护 (7) 八、安全环保措施 (8)

一、编制依据 1.《建筑工程施工质量验收统一标准》(GB50300-2001); 2.《钢结构工程施工质量及验收规范》(GB50205-2001); 3.《混凝土工程施工质量及验收规范》(GB50204-2002); 4.北京杰西卡制衣有限公司综合楼施工图纸; 5.北京杰西卡制衣有限公司综合楼工程施工组织设计。 二、工程概况 本工程位于北京市大兴亦庄开发区,北京杰西卡制衣厂院内。东临规划道路,南侧为现有厂房,西侧为拟建工程,北侧为规划市政主干道。本工程主体结构地下一层,地上五层,局部七层。建筑物檐高29.700米,首层面积3371.6 m2,总建筑面积20130m2。地下部分基础为筏板基础,主体结构为钢结构。 本工程楼板为压型钢板与现浇钢筋混凝土叠合层组合而成,压型钢板采用YX75-200-600型(7520),板厚0.8mm,混凝土强度等级为C25,内掺10%HEA膨胀剂。膨胀带内掺15%HEA膨胀剂,首层楼板厚180mm,二层及二层以上楼板厚为125mm。 三、楼板压型钢板计算 1、压型钢板底部支撑布置 因结构梁是由钢梁通过剪力栓与混凝土楼面结合而成的组合梁,在浇

捣混凝土并达到一定强度前抗剪强度和刚度较差,为解决钢梁和永久模板的抗剪强度不足,以支撑施工期间楼面混凝土的自重,通常需设置简单排架支撑(见附图) 2、计算依据: (1)《混凝土结构工程施工及验收规范》〈GB50204-92〉 (2)在进行压型钢板计算时,考虑以下几项荷载: ①压型钢板自重; ②新浇混凝土自重; ③钢筋自重; ④施工人员及施工设备荷载; ⑤压型钢板的荷载设计值采用标准值乘以相应的荷载分项系数,荷载 分项系数按下表取用: 3、楼板压型钢板计算: 楼板混凝土浇筑过程中,由压型钢板与碗扣式脚手架共同组成支撑体系。在压型钢板跨中设一道支撑,支架采用碗扣式脚手架,立杆间距为1.2m,上设可调顶托,顶托上设龙骨,龙骨用100mm×100mm方木。 (1)荷载计算

压型钢板屋面板计算

屋面板的验算 屋面材料采用压型钢板,檩条间距为0.9M, 设计活荷载0.75KN/M2, 恒载0.2KN/M2, 基本风压2.59 KN/M2, 选用830型PU发泡板,板厚0.426mm, 截面形状及尺寸见: W x=4.02Cm3=4020mm3 I x=7.98Cm4=79800mm4 分析: (1)内力计算: 压型钢板采用单波线荷载 q x1=0.75KN/m2 x1mx1.5=1.125KN/m q x2=2.59KN/m2 x1mx1.5=3.885KN/m q x=0.2KN/m2x1m x1.35=0.27KN/m q=1.125KN/m+3.885KN/m+0.27KN/m=5.28KN/m 按简支梁计算压型钢板跨中最大弯距 M max=1/8qL2 =1/8 x 5.28KN/M x( 0.9m)2=0.594KN.M (2)截面几何特性 由830型PU发泡板,板厚0.426mm得知: W x=4.02Cm3=4020mm3 δ=M max/W x =0.594kN.M/4020mm3 =0.594x103x1x103mm/4020 mm3

=147.76N/mm2<[w]=215N/mm2 满足要求 (3)强度验算 (a)正应力验算 δ= M max/W x =0.594KN.M/79800mm3=74.436N/mm2<[w]=215N/mm2 满足要求 (b)剪应力验算 V max=1/2qL =1/2 x 5.28KN/m x 0.9m=2.376KN (c)腹板最大剪应力: δ=V/∑ht = 2.376KN x 103/( 2 x25mm x 0.5mm) =2.376 x 103 / (2 x 25 x 0.5) =95.04N/mm2 < [ f ]=120N/mm2 满足要求 (4)钢度验算 按单跨简支板计算跨中最大挠度 W max=5q x L4 / 384EI x =5 x 0.27KN/N /1.4 x 0.9M x 1012 / (384 x 2.06 x 105 x79800 mm4) =0.13mm < [w] = L/300 = 3.4mm 满足要求 通过以上计算,可知满足设计要求.

压力容器厚度计算 (2)

目前,我国压力容器设计依据GB150-98《钢制压力容器》,是国内普遍遵循的原则。一般情况下,板厚增加,元件强度会提高,但有时板厚增加强度反而降低。如何按照该标准进行厚度的恰当选取,更好地满足强度需求,对压力容器设计具有重要意义。 GB150-98规定,计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。我们这里讨论的厚度是名义厚度。从定义中可以看出,名义厚度不包括加工减薄量,元件的加工减薄量由制造单位根据各自的加工工艺和加工能力自行选取,只要保证产品的实际厚度不小于名义厚度减去钢材厚度负偏差就可以。这样可以使制造单位根据自身条件调节加工减薄量,从而更能主动地保证产品强度所要求的厚度,更切合实际地符合制造要求。 按照GB150-98等国家标准的原则,制造工艺人员要根据图样厚度考虑加工减薄量而增加制造元件的毛坯厚度。在我国材料标准中,钢板厚度范围变化,钢板的σb、σs也有变化,一般是板厚增加,σb、σs有所降低。我国压力容器用钢板许用应力随板厚厚度范围增厚而有所降低,因而可能出现虽然有时板厚增加,强度反而降低的现象,尤其是封头,这种现象更明显。 2 实例 为了证明上述现象存在,举例如下:首先我们给出常用钢板在不同状态下的强度指标,如下表所示:

常用钢板在不同状态下的强度指标表 2.1 例1 某台储气罐,其封头为标准椭圆形,材质15MnVR,设计内径Di=2000mm,腐蚀裕度C2=1mm,焊缝系数φ=1,设计压力P=2.6MPa,设计温度t=20℃,标准椭圆封头形状系数K=1,侧十图样上封头名义厚度δn=16mm.制造厂选用18mm厚度钢板压制封头,该制造厂压制封头时最大成型减薄量为δx10%,即18x10%=1.8(包含钢板厚度负偏差在内)。 (1)选用18mm厚度钢板压制封头,满足GB150-98设计要求。15MnVR钢板厚度负偏差C1=0.25mm,封头成型后最小厚度δmin=18-1.8=16.2mm,图样厚度一钢板厚度负偏差=16-0.25=15.75mm,即满足GB150-98的要求。 (2)16mm图样厚度满足设计强度要求。对图样封头厚度16mm进行强度校核,由 GB150-98(7-1)椭圆封头厚度计算公式(标准椭圆K=1): 式中,由GB150-98表4-1,16mm厚度的15MnVR[σ]=177MP a,则封头计算厚度: 考虑腐蚀裕量C2=1MM,封头设计厚度δa=δ+C2=14.74+1=15.74mm,再考虑钢板厚度负偏差C1=0.25mm,δa+C1=15.74+0.25=15.99mm,现图样厚度B.=

尺寸链例题

第五章 工艺规程设计 例1:图示零件,2面设计尺寸为 2522 .00 +mm ,尺寸 600 12.0-mm 已经保证,现以1面定位用调整法 精铣2面,试计算工序尺寸。 解:(1)建立尺寸链 设计尺寸2522 .00 +mm 是间接保证的,是封 闭环,A 1(600 12.0-mm )和A 2为组成环。 (2)计算 根据 A 0=∑=m i i A 1-∑-+=11 n m i i A A 2 = A 1-A 0=35 ES 0=∑=m i i ES 1- ∑-+=11 n m i i EI EI 2=ES 1-ES 0=-0.22 EI 0=∑=m i i EI 1-∑-+=11 n m i i ES 2=EI 1-EI 0=-0.12 则:工序尺寸A 2=3512.022.0--=34.880 10.0-mm 。 例2:下图所示工件外圆、内孔及端面均已加工完毕,本序加工 A 面,保证设计尺寸8±0.1 mm 。由于不便测量,现已B 面作为测量基准,试求测量尺寸及其偏差。 解:(1)建立尺寸链 设计尺寸8±0.1是 mm 是封闭环,A 1、 A 2、A 3是组成环。 (2)计算 根据 A 0=∑=m i i A 1-∑-+=1 1 n m i i A 1 = A 0-A 2+A 3=18 ES 0=∑=m i i ES 1-∑-+=1 1 n m i i EI ES 1=ES 0-ES 2+EI 3=0 EI 0=∑=m i i EI 1-∑-+=1 1 n m i i EI 1=EI 0-EI 2+ES 3=-0.05 则:测量尺寸A 1=180 05.0-=17.9505 .00 + mm 。

压型钢板计算手册

本软件针对压型钢板、铝合金板进行截面承载力、挠度、施工荷载及排水能力进行验算。在计算过程中,压型板按受弯构件考虑,主要遵循GB50018-2002《冷弯薄壁型钢结构技术规范》中关于压型钢板计算的条文规定、GB 50429-2007 《铝合金结构设计规范》中关于铝合金压型板相关的计算条文规定及《冷弯薄壁型钢结构设计手册》中关于屋面排水计算的相关条文。压型板截面计算过程中,考虑到其实际的受力情况,所以选择了在一个波距范围内进行验算。因为无论是屋面板、墙面板或者是楼承板其实际作用过程中,均是多块板横向搭接成为整体,所以选择其中一个波距来进行计算更贴近于压型板实际工作状态下的受力情况。压型板根据《建筑结构静力计算手册》计算各验算点的弯矩及剪力情况。 压型板的计算过程主要包含以下几个方面:毛截面惯性矩的计算、加劲肋是否有效的判别、腹板剪应力承载能力计算、支座处腹板局部受压承载力验算、跨中位置最大正负弯矩和剪力作用下截面承载力验算、支座位置最大负正弯矩和支座反力下截面承载力验算、最大正负挠度验算、屋面板排水能力验算。上述承载力验算过程中均包含该种情况下该位置的有效截面宽度的验算。 计算采用的组合情况如下: 1.2恒+1.4活; 1.0恒-1.4负风吸; 1.2恒+1.4正风压; 1.2恒+1.4活+0.84正风压; 1.0恒+1.4活-0.84负风吸; 1.2恒+0.98活+1.4正风压; 1.0恒+0.98活-1.4负风吸; 1.2恒+1.0施工(屋面板); 1.2恒+1.4活载(楼面均布施工荷载)(楼承板); 1.2恒+1.4施工(楼面集中施工荷载)(楼承板)。 一:压型钢板 一)板材力学参数的确定 对于规范中已给出抗拉、抗剪强度设计值的材料牌号,我们按规范中数值采用,如Q235、Q345等。对现今压型板常用的冷轧板牌号如G300、G550等,规范没有给出明确的抗拉、抗剪强度设计值,厂家在供货的时候仅提供材料的屈服强度为300 N/mm2、550 N/mm2,所以我们根据《冷弯薄壁型钢结构技 术规范》4.1.4条规定,取抗力分项系数,计算其抗拉强度设计值,抗剪强度设计值按抗拉强度设计值除以计。 二)截面惯性矩的计算 软件根据截面几何形状,通过线积分的方法求得截面的惯性矩。在计算过程中忽略了腹板上的一些加劲措施,但上下翼缘的加劲肋是考虑在其中的,其计算结果经过测试满足实际计算要求。用户也可以通过AutoCAD对需计算的板型直接查询面域特性得到截面惯性矩,并可与软件计算所得相比较。 三)上下翼缘加劲肋是否有效的判别 《冷弯薄壁型钢结构技术规范》7.1.4条,受压翼缘纵向加劲肋的规定: 因我们计算过程中取中间一个有效波距进行计算,所以无需考虑边加劲肋的作用效果,仅考虑中间加劲肋的判别。 针对中间加劲肋:

(整理)压型钢板组合楼板计算与构造.

压型钢板组合楼板 1.定义 组合楼板由压型钢板、混凝土板通过抗剪连接措施共同作用形成。 2.组合楼板的优点 1)压型钢板可作为浇灌混凝土的模板,节省了大量木模板及支撑; 2)压型钢板非常轻便,堆放、运输及安装都非常方便; 3)使用阶段,压型钢板可代替受拉钢筋,减少钢筋的制作与安装工作。 4)刚度较大,省去许多受拉区混凝土,节省混凝土用量,减轻结构自重; 5)有利于各种管线的布置、装修方便; 6)与木模板相比,施工时减小了火灾发生的可能性; 7)压型钢板也可以起到支撑钢梁侧向稳定的作用。 3.组合楼板的发展 二十世纪30-50年代 早在三十年代,人们就认识到压型钢板与混凝土楼板组合结构具有省时、节力、经济效益好的优点,到50年代,第一代压型钢板在市场上出现。 二十世纪60年代-70年代 六十年代前后,欧美、日本等国多层和高层建筑的大量兴起,开始使用压型钢板作为楼板的永久性模板和施工平台,随后人们很自然的想到在压型钢板表面做些凹凸不平的齿槽,使它和混凝土粘结成一个整体共同受力,此时压型钢板可以代替或节省楼板的受力钢筋,其优越性很大。 二十世纪80年代-现在 组合板的试验和理论有了新进展,特别是在高层建筑中,广泛地采用了压型钢板组合楼板。日本、美国、欧洲一些国家相应的制定了相关规程。 我国对组合楼板的研究和应用是在20世纪80年代以后,与国外相比起步较晚,主要是由于当时我国钢材产量较低,薄卷材尤为紧缺,成型的压型钢板和连接件等配套技术未得到开发。近年来由于新技术的引进,组合楼板技术在我国已较为成熟。 4 常用的压型钢板的截面形式 给出了几种实际工程中采用的压型钢板,通过图片使学生对压型钢板有感性的认识,图中所示设置凹槽的压型钢板,设置凹槽后可明显提高钢板和混凝土板的组合作用。

压力容器厚度计算

关于压力容器设计时材料和壁厚的讨论 作者:云天宇 2012年5月

关于压力容器设计时材料和壁厚的讨论 摘要:讨论压力容器设计时材料与壁厚的选取进行讨论,以及厚度的变化对强度的影响。 关键词:压力容器;设计;选材;厚度;强度;标准 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,为了与一般容器(常压容器)相区别,只有同时满足下列三个条件的容器,才称之为压力容器:(1)工作压力(注1)大于或者等于0.1Mpa(工作压力是指压力容器在正常工作情况下,其顶部可能达到的最高压力(表压力)); (不含液体静压力)(2)内直径(非圆形截面指其最大尺寸)大于等于0.15m。且容积(V)大于等于0.025立方米,工作压力与容积的乘积大于或者等于2.5MPa-L(容积,是指压力容器的几何容积); (3)盛装介质为气体、液化气体以及介质最高工作温度高于或者等于其标准沸点的液体。 压力容器中的介质种类繁多,来源广泛,这些介质中具有易燃、易爆、有腐蚀的特性。因此压力容器选材根据介质特性的不同而不同。压力容器钢板有碳素钢板、低合金钢钢板、高合金钢钢板、不锈钢与碳素钢等多种材料,且每种钢板都有它的使用范围。选取时应考虑多方面因素。使设计的压力容器安全又经济合理。 GB150-2011计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。成型后最小厚度,一般指封头压形后会减薄,不同的制造工艺减薄量不同,所以封头都有成型后最小厚度。我们这里主要讨论名义厚度与最小厚度之间关系和选用。

压力容器厚度计算

作者:云天宇2012年5月

摘要:讨论压力容器设计时材料与壁厚的选取进行讨论,以及厚度的变化对强度的影响。 关键词:压力容器;设计;选材;厚度;强度;标准 压力容器,是指盛装气体或者液体,承载一定压力的密闭设备,为了与一般容器(常压容器)相区别,只有同时满足下列三个条件的容器,才称之为压力容器:(1)工作压力(注1)大于或者等于(工作压力是指压力容器在正常工作情况下,其顶部可能达到的最高压力(表压力)); (不含液体静压力)(2)内直径(非圆形截面指其最大尺寸)大于等于。且容积(V)大于等于立方米,工作压力与容积的乘积大于或者等于(容积,是指压力容器的几何容积); (3)盛装介质为气体、液化气体以及介质最高工作温度高于或者等于其标准沸点的液体。 压力容器中的介质种类繁多,来源广泛,这些介质中具有易燃、易爆、有腐蚀的特性。因此压力容器选材根据介质特性的不同而不同。压力容器钢板有碳素钢板、低合金钢钢板、高合金钢钢板、不锈钢与碳素钢等多种材料,且每种钢板都有它的使用范围。选取时应考虑多方面因素。使设计的压力容器安全又经济合理。 GB150-2011计算厚度是指按各章公式计算得到的厚度;设计厚度是指计算厚度与腐蚀裕量之和;名义厚度指设计厚度加上钢板厚度负偏差后向上圆整至钢材标准规格厚度,即标注在图样上的厚度;有效厚度指名义厚度减去腐蚀裕量和钢板厚度负偏差。成型后最小厚度,一般指封头压形后会减薄,不同的制造工艺减薄量不同,所以封头都有成型后最小厚度。我们这里主要讨论名义厚度与最小厚度之间关系和选用。 GB150-2011规定等国家标准的原则,制造工艺人员要根据图样厚度考虑加工减薄量而增加制造元件的毛坯厚度。在我国材料标准中,钢板厚度范围变化,

压力容器材料厚度计算

■ - 卜— 设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P w :在正常的工作情况下,容器顶部可能达到的最高压力。 ① 由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力 和卧置时不同; ② 工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力( the maximum allowable working pressure )。 ③ 标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ① 对最大工作压力小于 0.1Mpa 的内压容器,设计压力取为 0.1Mpa ; ② 当容器上装有超压泄放装置时,应按 超压泄放装置”的 计算方法规定。 ③ 对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。 (详细内容,参考 GB150-1998,附录B (标准的附 录),超压泄放装置。) 计算压力P C 是GB150-1998新增加的内容,是指在相应设计温度下, 用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于 5%的设计压力时,可略去 静压力。 ① 注意与GB150-1989对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算 厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受 静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ② 一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③ 计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 设计温度(Design temperature 设计温度是指容器在正常工作情况下, 在相应的设计压力下,设定的受压元件的金属温 主要用于确定受压元件的材料选用、 强度计算中材料的力学性能和许用应力, 以及热应 力计 算时设计到的材料物理性能参数。 ?设计温度不得低于元件金属在工作状态可能达到的最高温度; ?当设计温度在 0C 以下时,不得高于元件金属可能达到的最低温度; ?当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values ) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小, 直接决定容器的强度, GB150-1998对钢板、锻件、紧固件均规定了材料的许用应力。 表3钢制压力容器中使用的钢材安全系数 ?下人沱创订y:汁i 叭埠虞卜-经I"嗣撕时r 号:驚 I 卜的屈融A 打小时怙童■卜为 強度乩 I '持%栄度(4 ! — —■— ||— — — =?- —— ■- -- =-[ — 亠 — -*■ — 3、 4、 度。

八、九、十、十一压型钢板和檩条计算

八、刚架位移核算

风载作用下的弯距图与荷载计算中图形相同,仅须将数值除以1.4,作为荷载标准值计算。 对AF 柱 32.21.408212.23.929.3813.93212.2323.939.51214.11m KN y =????????? ? ??????+????? ????=Ω∑ 对FG 梁 ()()()()∑? ????? ??????-?+????????-?++??= Ω331.012.2231.003.913.1139.5121231.012.203.913.114.11y 3.14.284m KN = 对GH 梁 ∑=?? ???????? ????+???? ?????= Ω3.72.6245.019.1032.421195.013.1171.4214.11m KN y 对BH 柱 ∑=Ω 0y 对HI 梁 ∑=?? ????????? ?????=Ω3.51.1135.032 55.1319.10214.11m KN y 对CJ 柱 ()()()()∑??? ?? ????-?+????????-?++???= Ω381.094.1281.0125.272.3533.5421294.181.0125.235714.11y ()3 2.84.303294.181.0125.262.281125.23294.132175.83 3.5421m KN =???+???? ??????+????? ????+对JK 柱 ()()()()∑? ????? ??????-?+????????-?++??= Ω 320.081.0220.008.2489.272.3521220.081.008.2489.24.11y 3.39.196m KN = 对DK 柱 ∑=????? ?????= Ω 3.79.73259.23 2 3.1261.9621 4.11m KN y 对KL 梁 ∑=?? ???????? ????+???? ?????= Ω3.83.45503.073.1066.2321164.031.189.2214.11m KN y

墙面压型钢板计算

十、墙面压型钢板设计与计算 墙面材料采用压型钢板,墙檩条间距1.6m ,选用YX35-125-750型压型钢板,板厚t=0.6㎜,截面形状及尺寸如图 (1)、内力计算 设计荷载: 压型钢板单波线荷载: m KN q x /074.04.18.0125.053.0=???=(0.53为风荷载的面荷载) 《风载 基本风压ω0=0.50KN/㎡ 地面粗糙程度为B 类 下面各高度为 准风压高度的变化系数为: H μZ w 1(KN/㎡) 9.30 0.97 0.47 10.05 1.00 0.50 10.30 1.01 0.51 max 8x 8 (2)、截面几何特性 采用“线性法”计算 D=35㎜ b 1=29㎜ b 2=29㎜ h=48.45㎜ mm h b b L 9.15445.4822929221=?++=++= mm L b h D y 5.179 .154)2945.48(35)(21=+?=+= mm y D y 5.175.173512=-=-= )32(2212h hL b b L tD I x -+=

mm 6.16592)45.489.15445.483 22929(9.154356.022=-??+???= 311.9485 .176.16592mm y I W x cx === 321.9485.176.16592mm y I W x tx === (3)、有效截面计算 ① 上翼缘:为一均匀受压两边支承板,其应力为: 26max /0.391 .94810037.0mm N W M cx cx =?==σ 上翼缘的宽厚比3.486 .029==t b ,查《钢结构设计与计算》均匀受压板件的有效宽厚比表1-62知:上翼缘截面全部有效。 ② 腹板:系非均匀受压的两边支承板,其腹板上、下两端分别受压应力与拉 应力作用 2max max /39mm N W M cx ==σ (压) 2max min /0.39mm N W M tx -== σ (拉) 腹板宽厚比 8.806 .045.48==t h 20 .39)0.39(0.39max min max =--=-=σσσα 查《钢结构设计与计算》非均匀受压板件的有效宽厚比表1-63知:知板件截面全部有效。 ③ 下翼缘:下翼缘板件为均匀受拉,故下翼缘截面全部有效。 (4)、强度验算 ① 正应力验算: 226'max min max /205/0.391.94810037.0mm N mm N W M cx <=?===σσ ② 剪应力验算 : KN l q V x 037.00.2037.02 121max =??== 腹板最大剪应力

(完整版)尺寸链试题及答案

1、零、部件或机器上若干首尾相接并形成封闭环图形的尺寸系统称为尺寸链。 2、尺寸链按应用场合分装配尺寸链零件尺寸链和工艺尺寸链。 3、尺寸链由封闭环和组成环构成。 4、组成环包含增环和减环。 5、封闭环的基本尺寸等于所有增环的基本尺寸之和减去所有减环的基本尺寸之和。 6、当所有的增环都是最大极限尺寸,而所有的减环都是最小极限尺寸,封闭环必为最大极限尺寸。 7、所有的增环下偏差之和减去所有减环上偏差之和,即为封闭环的下偏差。 8、封闭环公差等于所有组成环公差之和。 9、如图所示,若加工时以Ⅰ面为基准切割A2和A3,则尺寸A1 为封闭环;若以Ⅰ面为基准切割A1和A2,则尺寸A3 为封闭环。 10、“入体原则”的含义为:当组成环为包容尺寸时取下偏差为零。 12-2 选择题: 1、一个尺寸链至少由3 个尺寸组成,有1 个封闭环。 2、零件在加工过程中间接获得的尺寸称为 C 。C、封闭环 3、封闭环的精度由尺寸链中 C 的精度确定。C、其他各环 4、按“入体原则”确定各组成环极限偏差应A 。A、向材料内分布 1、什么叫尺寸链?它有何特点? 答:在一个零件或一台机器的结构中,总有一些互相联系的尺寸,这些尺寸按一定顺序连接成一个封闭的尺寸组,称为尺寸链。 尺寸链具有如下特性: (1) 封闭性:组成尺寸链的各个尺寸按一定的顺序排列成封闭的形式。 (2) 相关性:其中一个尺寸的变动将会影响其它尺寸变动。 2、如何确定尺寸链的封闭环?能不能说尺寸链中未知的环就是封闭环? 答:装配尺寸链的封闭环往往是机器上有装配精度要求的尺寸,如保证机器可靠工作的相对位置尺寸或保证零件相对运动的间隙等。在建立尺寸链之前,必须查明在机器装配和验收的技术要求中规定的所有集合精度要求项目,这些项目往往就是这些尺寸链的封闭环。 零件尺寸链的封闭环应为公差等级要求最低的环,一般在零件图上不需要标注,以免引起加工中的混乱。 工艺尺寸链的封闭环是在加工中自然形成的,一般为被加工零件要求达到的设计尺寸或工艺过程中需要的尺寸。 不能说尺寸链中未知的环就是封闭环。 3、解算尺寸链主要为解决哪几类问题? 答:解算尺寸链主要有以下三类任务: (1)正计算:已知各组成环的极限尺寸,求封闭环的极限尺寸。 (2)反计算:已知封闭环的极限尺寸和组成环的基本尺寸,求各组成环的极限偏差。 (3)中间计算:已知封闭环的极限尺寸和部份组成环的极限尺寸,求某一组成环的极限尺寸。 4、完全互换法、不完全互换法、分组法、调整法和修配法各有何特点?各运用于何种场 合? 答:完全互换法的优点是:可实现完全互换,但往往是不经济的。 不完全互换法的优点是:组成环的公差扩大,从而获得良好的技术经济效益,也比较科学合理,常用在大批量生产的情况。 分组互换法优点:既可扩大零件的制造公差,又能保证高的装配精度。缺点:增加了检测费用,宜用于大批量生产中精度要求高,零件形状简单易测。环数少的尺寸链。 调整法的主要优点:可增大组成环的制造公差使制造容易,同时获得很高的装配精度,不需修配; 可以调整补偿环的位置或更换补偿环,以恢复原有精度。主要缺点:有时需要额外增加尺寸链零件数,使结构复杂,制造费用增高,降低结构的刚性。 调整法主要应用在封闭环的精度要求高,组成环数目较多的尺寸链。 修配法的优点:扩大了组成环的公差,又保证了高的装配精度。主要优点:增加了修配工作量和

相关文档