文档库 最新最全的文档下载
当前位置:文档库 › 给水全程控制系统设计.

给水全程控制系统设计.

给水全程控制系统设计.
给水全程控制系统设计.

《给水全程控制系统》设计

专业:自动化

班级:B120410

学号:B12041014

姓名:陈修鹤

本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。

关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

摘要............................................................................................................................. I 第一章汽包水位全程控制的介绍 (1)

第二章给水控制对象的动态特性 (2)

2.1 给水流量扰动下水位的动态特性 (2)

2.1.1 给水流量扰动下水位的动态特性 (2)

2.1.2 蒸汽流量扰动下水位的动态特性 (2)

2.1.3 炉膛热负荷扰动下水位的动态特性 (3)

第三章热工测量信号 (5)

3.1 水位信号 (5)

3.2 蒸汽流量信号 (6)

3.3 给水流量信号 (6)

第四章调节阀和调速泵的特性 (7)

4.1调节阀门的静特性 (7)

4.2调速泵的安全特性 (7)

第五章控制过程分析 (9)

5.1水位调节主回路及电动给水泵跟随系统 (9)

5.2汽动给水泵副回路控制系统 (9)

5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统 (10)

5.4流量测量信号 (11)

5.5旁路辅助及保护回路 (12)

5.6汽包水位自动失灵切手动保护 (13)

结论 (15)

参考文献 (16)

第一章汽包水位全程控制的介绍

目前,大型火电单元机组都采用机、炉的联合启动的方式,锅炉、汽轮机按照启动曲线要求进行滑参数启动。具有中间再热的单元机组多采用定压法进行滑参数启动。随着机组容量的增大、参数的提高,在启动和停机过程中需要监视和操作的项目增多,操作的频率也增高,采用人工调节已不适应生产要求,而必须在启、停过程中也实现自动控制。所谓全程控制系统是指机组在启停过程和正常运行时均能实现自动控制的系统。全程控制是相对常规控制系统而言的,全程控制包括启停控制和正常运行工况下控制两方面的内容。常规控制系统一般只适用于机组带大负荷工况下运行,在启停过程或低负荷工况下,一般要用手动进行控制,而全程控制系统能使机组在启动、停机、不同负荷工况下自动运行。以给水控制系统为例,常规串级三冲量给水系统只能在负荷达到额定负荷70%时,才能投入自动,在此以前全部为手动操作,而全程给水系统从锅炉点火启动开始便可以投入自动。

第二章给水控制对象的动态特性

2.1 给水流量扰动下水位的动态特性

汽包水位是由汽包中的储水量和水面下的汽泡容积决定的,因此凡是引起汽包中储水量变化和水面下的汽泡容积变化的各种因素都是给水控制对象的扰动。其中主要的扰动有:给水流量W、锅炉蒸发量D、汽包压力Pb、炉膛热负荷等。给水控制对象的动态特性是指上述引起水位变化的各种扰动与汽包水位间的动态关系。

汽包水位动态特性较为复杂,一是对汽包水位扰动有四个来源,二是“虚假水位”问题的存在,特别是后一个问题使得人们设计出“三冲量”给水控制系统。了解、掌握汽包水位动态特性是保证给水自动控制系统顺利投入的基本要求。2.1.1 给水流量扰动下水位的动态特性

给水流量是调节机构所改变的控制量,给水流量扰动是来自控制侧的扰动,又称内扰。给水流量扰动下水位的阶跃响应曲线如图2.1 所示。当给水流量阶跃增加ΔW 后,水位H 的变化如图中曲线H 所示。水位控制对象的动态特性表现为有惯性的无自平衡能力的特点。当给水流量突然增加后,给水流量虽然大于蒸汽流量,但由于给水温度低于汽包内饱和水的温度,给水吸收了原有饱和水中的部分热量使水面下汽泡容积减少,实际水位响应曲线可视为由H1 和H2 两条曲线叠加而成,所以扰动初期水位不会立即升高。当水面下汽泡容积的变化过程逐渐平衡,水位就反应出由于汽包中储水量的增加而逐渐上升的趋势,最后当水面下汽泡容积不再变化时,由于进、出工质流量不平衡,水位将以一定的速度直线上升。

图2.1 给水流量阶跃扰动下水位响应曲线

2.1.2 蒸汽流量扰动下水位的动态特性

蒸汽流量扰动主要来自汽轮发电机组的负荷变化,属外部扰动。在蒸汽流量D 扰动下水位变化的阶跃响应曲线如图2.2 所示。当蒸汽流量突然阶跃增大时,

由于汽包水位对象是无自平衡能力的,这时水位应下降,如图2.2 中H1 曲线所示。但当锅炉蒸发量突然增加时,汽包水下面的汽泡容积也迅速增大,即锅炉的蒸发强度增加,从而使水位升高,因蒸发强度的增加是有一定限度的,故汽泡容积增大而引起的水位变化可用惯性环节特性来描述,如图2.2 中H2 曲线所示。实际的水位变化曲线H 则为H1 和H2 的合成。由图2.2 可以看出,当锅炉蒸汽负荷变化时,汽包水位的变化具有特殊的形式:在负荷突然增加时,虽然锅炉的给水流量小于蒸发量,但开始阶段的水位不仅不下降,反而迅速上升(反之,在负荷突然减少时,水位反而先下降),这种现象称为“虚假水位”现象。这是因为在负荷变化的初期阶段,水面下汽泡的体积变化很快,它对水位的变化起主要影响作用的缘故,因此水位随汽泡体积增大而上升。只有当汽泡体积与负荷适应而不再变化时,水位的变化就仅由物质平衡关系来决定,这时水位就随负荷增大而下降,呈无自平衡特性。

虚假水位现象与锅炉参数及蒸汽负荷变化大小有关,对于100~670t/h 中、高压锅炉,当负荷阶跃变化10%时,虚假水位可达30~40mm。

图2.2 蒸气流量阶跃扰动下水位响应曲线

2.1.3 炉膛热负荷扰动下水位的动态特性

当燃料量扰动时,例如燃料量增加使炉膛热负荷增强,从而使锅炉蒸发强度增大。若此时汽轮机负荷未增加,则汽轮机侧调节阀开度不变。随着炉膛热负荷的增大,锅炉出口压力提高,蒸汽流量也相应增加,这样蒸汽流量大于给水流量,水位应该下降。但是蒸发强度增大同样也使水面下汽泡容积增大,因此也会出现虚假水位现象。燃料量扰动下的水位阶跃响应曲线如图2.3 所示,由图可以看出,这种扰动下的“虚假水位”现象不太严重,这是因为蒸汽流量增加的同时汽压也增大了,因而使汽泡体积的增加比蒸汽流量扰动时要小,从而使水位上升幅度较小。另外,由于蒸发量随燃料量的增加有惯性和时滞,如图2.3 虚线所示,

这就导致迟延时间τ较长。对汽包水位的第四种扰动是汽包压力的变化,汽包压力对汽包水位的影响是通过汽包内部汽水系统在压力升高时“自凝结过程”和压力降低时的“自蒸发”过程起作用的。

图2.3 燃烧量阶跃扰动下水位响应曲线

上述四种扰动在锅炉运行中都可能经常发生,给水流量扰动作为内部扰动,汽包水位对其响应的动态参数(τ、ε)是给水控制系统调节器参数整定的依据。蒸汽流量D、燃料量B 和汽包压力Pb 扰动作为外部扰动,会造成水位波动。蒸汽流量D 和燃料量B 的变化是产生“虚假水位”的根源。所以在给水控制系统里常常引入D、B 信号作为前馈信号,以改善外部扰动时的控制品质,而这也是目前大型锅炉给水控制系统采用三冲量或多冲量的根本原因。

第三章热工测量信号

锅炉从启动到正常运行的过程中,蒸汽参数和负荷在很大范围内变化,这就使水位、给水流量和蒸汽流量测量的准确性受到影响。为了实现给水全程自动控制,必须对这些测量信号自动进行压力、温度校正(补偿)。在实际应用时,补偿公式中一些参数的确定要依据理论计算及现场调试综合求取,通过动态补偿回路确保上述信号在负荷变化时的精度。

3.1 水位信号

由于汽包中饱和水和饱和蒸汽的密度随压力变化,因而影响水位测量的准确性。这里拟考虑采用电气校正回路进行压力校正,即在差压变送器后引入校正回路。

图3.1燃烧量阶跃扰动下水位响应曲线

式子中:△P为平衡容器输出的差压,ρc,ρw,ρs分别是平衡容器内水的密度,汽包内饱和水的密度,汽包内饱和蒸汽的密度。

当L、A 一定时,水位h 是差压和汽、水密度的函数。密度c . 与环境温度有关,一般可取60℃时水的密度。在锅炉启动过程中,水温稍有增加,但同时由于压力也升高,两种因素对c . 的影响基本上可抵消,即可近似地认为c . 是

恒值。而饱和水和饱和蒸汽的密度w . 和s . 均为汽包压力的函数。

根据上式,即可实现水位的压力自动校正功能。

3.2 蒸汽流量信号

过热蒸汽流量测量通常采用标准喷嘴,这种喷嘴基本上是按定压运行额定工况的参数设计,在该参数下运行时,测量精度是较高的。但在全程控制时,运行工况不能基本固定。当被测过热蒸汽的压力和温度偏离设计值时,蒸汽的密度变化很大,这就会给流量测量造成误差,所以要进行压力和温度的校正。一般可以按下列经验公式进行校正:

式子中,D-过热蒸汽的流量,P-过热蒸汽的压力,T-过热蒸汽的温度,△P-节流件差压,K-流量系数。

为了避免高温高压节流元件因磨损带来的误差,美国Leeds & Northrup 公司提出了用汽机调节级压力P1 的温度补偿信号来代替蒸汽流量信号,如图3.2 所示。实验证明,这种方法是准确和行之有效的。

3.3 给水流量信号

计算和试验结果表明:当给水温度为100℃不变,压力在0.196~19.6MPa 范围变化时,给水流量的测量误差为0.47%;若给水压力为19.6MPa 不变,给水温度在100~290℃范围内变化时,给水流量的测量误差为13%。所以,对给水流量测量信号可以只采用温度校正,如图3.2所示。若给水温度变化不大,则可不必对给水流量测量信号进行校正。

图3.2 用P1代替蒸汽流量信号及给水流量温度矫正

第四章调节阀和调速泵的特性

当机组容量很大时,用调节门的开度控制给水流量时,因给水调节门的节流而造成的能量损耗也随之增大。而且高压水流对调节阀的冲击也不可忽视。为了降低损耗提高机组的效率,延长设备的使用寿命,往往采用调节给水泵的转速的方法来控制给水流量。或者低负荷时用调节门控制给水量,高负荷时用泵的速度控制。因此有必要对调节阀门的静特性和调速泵的安全特性进行了解。

4.1调节阀门的静特性

调节阀静特性的好坏直接影响到控制系统的调节品质。一般控制系统对阀门静特性的要求主要体现在以下六个方面[23]。在条件允许的情况下应进行调节阀静特性试验,以保证控制系统能正常投入运行。

⑴最大流量:在调节阀门全开时,其流量应满足额定负荷的要求,并应具有10%~30%的裕量;

⑵漏流量:调节阀门全关时,其漏流量一般应要求小于调节门最大流量的10%;

⑶线性工作段:一般要求调节阀门特性曲线的线性工作段应大于全行程的70%;

⑷线性比:在调节阀开度为15%~85%的范围内,最大斜率与最小斜率之比不超过2;

⑸回程误差:一般应小于最大流量的3%;

⑹饱和区:流量变化的饱和区应出现在开度85%以上的范围内。

4.2调速泵的安全特性

现代大型单元机组从考虑节能及经济性角度出发都采用变速泵来控制给水流量。300MW 以下的单元机组多采用电动变速泵作主给水泵,通过调整液力联轴器的勺管位置来调节泵的转速。300MW 以上的单元机组多采用汽动变速泵作主给水泵,再配置多台电动变速泵作启动给水泵并作为系统的备用泵使用。无论使用哪种变速泵,在给水系统全过程运行中,保证给水泵总是工作在安全工作区内,始终是一个重要问题。

变速给水泵的安全工作区可在泵的流量-压力特性曲线上表示出来,如图4.1 所示。变速泵的安全工作区由六条曲线围成:泵的最高转速曲线Nmax 和最低转速曲线Nmin;泵的上限特性曲线Qmin 和下限特性曲线Qmax;泵出口最高压力Pmax 和最低压力线Pmin。

图4.1 变速泵的流量-压力特性曲线

若泵的工作点在上限特性之外,则给水流量太小,将使泵的冷却水量不够而引起泵的汽蚀,甚至振动;若泵的工作在下限特性之外,则泵的流量太大,将使泵的工作效率降低。此外,变速泵的运行还必须满足锅炉安全运行的要求,即泵出口压力(给水压力)不得高于锅炉正常运行的最高给水压力Pmax 且不得低于最低给水压力Pmin。因此,采用变速泵的给水全程控制系统,在控制给水流量过程中,必须保证泵的工作点落在安全区域内。

防止出现这种情况,最有效的措施是低负荷时增加给水泵的流量。目前采取的办法是在泵的出口至除氧器之间安装再循环管道,当泵的流量低于设定的最小流量时,再循环门自动开启,增加泵体内的流量,让一部分水回到除氧器中,从而使低负荷阶段的给水泵工作点也在上限特性曲线之内,随着机组负荷的增加,给水流量也增大,当泵的流量高于设定的最大流量时,再循环门将自动关闭。

第五章控制过程分析

5.1水位调节主回路及电动给水泵跟随系统

汽包水位主要由汽包的给水和汽包的蒸发组成,汽包的水位的调节主要由给水泵的转速来调整给水流量,给水流量属于副回路可以消除汽轮机负荷和锅炉负荷产生的压力的变化对给水流量的扰动。

图5.1 水位调节主回路及电泵给水跟随副回路

图5.1中气压补偿后汽包水位反馈与设定值比较作为主调节器PI的两个输入。反馈来的调速级的压力输入PI调节器作为辅助控制,调速级的压力受阀门的开度的影响保证水泵工作在安全工作区。省煤器前的给水流量包含进入汽包的给水和过热器减温器的给水。所以省煤器前的给水作为总的给水能比较精确的得出汽包的给水流量,而不用考虑给水泵的压力变化,过热后水中含有气泡的误差。省煤器的给水作为控制水位的最最要的参数,调速级压力主要保护水泵安全和给回的品质。

5.2汽动给水泵副回路控制系统

汽泵作为给水可以提高发电效率,汽泵直接将内能转化为机械能,所以比电动给水泵效率高很多,但在启动时锅炉汽压低,所以仅启动和停机时用电动给水泵给水,同时电动给水泵作为汽动给回泵的备用给水也增加系统的可靠性。一般负荷超过30%时都用汽泵。

图5.2 汽动给水副回路系统

汽动给水泵的调节与电动给水泵类似,有手自动无扰切换调节阀信号上下限幅,调节阀失灵信号,流量品质检测,汽泵大偏差和差流量品质自动切换到到手动。由图可知自动调节自动切手动可能是自动调节器失灵,自动调节品质差时或调节阀失灵都会触发自动切手动。

5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统

锅炉的启动时要从单冲量自动的无扰切换到三冲量给水调剂系统,还包括在单冲量和三冲量手制动切换的跟踪。汽泵可以作为自动跟踪的执行器,也可以作

为手动远程调速当自动失灵或自动品质较差时。

图5.3 给水单冲量与三冲量无扰切换与汽动给水泵转速控制

由图可以知道当主汽流量小于X%时是单冲量,没有手动时,三冲量跟踪单冲量。当流量大于X%时,单冲量跟踪三冲量,形成了单冲量与三冲量的无扰切换。汽动给水泵的转速可以远程调速,也可以作为控制水位的主要执行器。

5.4流量测量信号

给水泵的水和省煤器入口的水都是未饱和水,影响测量的最大的因素是温度,所以给水泵出口流量和省煤器入口流量都是有温度补偿的。

图5.4 给水流量测量信号

省煤器前的给水一部分进入汽包作为水冷壁的减温水,另一部分作为过热器的减温水。所以省煤器入口给水流量是锅炉的最终负荷。省煤器入口的水流量在启动时还会有一部分水作为锅炉的排污直接排出。大选小选器对主给水的温度和压力品质监控,当主给水流量坏品质时,自动品质差,切换到手动状态。

5.5旁路辅助及保护回路

汽包的水位因为水冷壁带气泡的因素所以受压力变化影响较大所以水位用压

力补偿,来提高水位的测量精度。当发生主蒸汽流量过小时

给水控制系统逻辑

课程实验总结报告 实验名称:给水控制系统逻辑 课程名称:专业综合实践:大型火电机组热控系统设计及实现(2)

1 前言 2 1.1 汽包炉和直流炉的区别 (2) 1.2 给水控制系统的重要性 (2) 2 给水控制系统 (2) 2.1 给水流量控制方案 (3) 2.1.1 控制方式 (3) 2.1.2 控制方案 (4) 2.1.3 控制原理 (5) 2.2 给水流量计算 (6) 2.2.1 相关图纸 (6) 2.2.2 逻辑分析 (6) 2.3 给水流量设定值控制(给水控制一) (7) 2.3.1 相关图纸 (7) 2.3.2 控制系统原理 (7) 2.3.3 控制系统结构 (7) 2.3.4 控制逻辑分析 (8) 2.3.4.1 中间点温度(焓值)的设定值校正 (8) 2.3.4.2 给水流量设定值计算 (9) 2.3.5 小结 (10) 2.4 给水泵控制(给水控制二) (11) 2.4.1 相关图纸 (11) 2.4.2 控制系统原理 (11) 2.4.3 控制系统结构 (11) 2.4.4 控制逻辑分析 (12) 2.4.4.1 电泵控制 (12) 2.4.4.2 汽泵与给水旁路阀控制 (14) 2.4.5 小结 (16)

1 前言 1.1 汽包炉和直流炉的区别 汽包锅炉和直流锅炉的最大区别在于有无汽包了,而因为有无汽包的关系又决定了他们的另一个不同之处就是:有无循环水泵。有汽包锅炉为低压锅炉,依靠汽水密度差产生的上升力使从汽包下降的水和汽再回到汽包进行分离,合格的蒸汽进入过热器内加热、控温;而直流锅炉多数应用在压力大于19.2MPa的条件下,在这样高的压力下汽水密度差几近为零,汽水密度差的上升力也就为零,因此需要在下降管中串联循环水泵将工质直接打到过热器中加入,一次性完成预热、汽化和过热,故这种锅炉也称强制循环锅炉。 1.2 给水控制系统的重要性 汽包锅炉给水自动控制的任务是维持汽包水位在设定值。汽包水位是锅炉运行中的一个重要的监控参数,它间接地表示了锅炉负荷和给水的平衡关系。维持汽包水位是保证机炉安全云心的重要条件。锅炉汽包水位过高,影响汽包内汽水分离装置的正常工作,造成出口蒸汽中水分过高,结果使过热器受热面结垢而导致过热器烧坏,同时还会使过热气温产生急剧变化,直接影响机组运行的经济性和安全性;汽包水位过低,则可能是炉水循环泵正常运行的工况破坏,造成供水设备损坏或者水冷壁管因供水不足而烧坏。 给水控制的任务实际上包括两方面内容:即在保持水位在工艺允许的范围内变化的条件下,尽量保持给水流量稳定。 2 给水控制系统 机组中的给水泵有三台,包括一台电动给水泵和两台汽动给水泵。在机组冷态启动初期使用电动给水泵给锅炉上水,当汽轮机冲转完成后,待主汽温度、压力满足一定条件后,启动小汽机即汽动给水泵给锅炉上水,并逐渐关闭电动给水泵。

300MW火电机组给水控制系统的设计

目录 1选题背景 (2) 1.1引言 (2) 1.2设计目的及要求 (2) 2方案论证 (3) 2.1方案一 (3) 2.2方案二 (4) 3过程论述 (5) 3.1总体设计 (5) 3.2详细设计 (6) 3.2.1信号的测量部分 (6) 3.2.2单冲量控制方式 (10) 3.2.3串级三冲量控制方式 (11) 3.3信号监测 (12) 3.3.1给水旁路调节阀控制强制切到手动 (12) 3.3.2电动给水泵强制切到手动 (13) 3.3.3汽动给水泵强制切到手动 (13) 3.4工作方式 (13) 3.5切换与跟踪 (13) 3.5.1切换 (13) 3.5.2跟踪 (14) 3.6控制器选型 (14) 4结论 (14) 5课程设计心得体会 (15) 6参考文献 (15)

1选题背景: 1.1引言 火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 1.2设计目的及要求 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。 设计要求: (1)设计功能基本全面的全程给水控制系统,要求图纸采用SAMA标准图例,系统布局规范。 (2)参考输入参数:汽包水位、汽包压力、给水流量、给水温度、汽机第一级压力、主汽温度、过热减温水流量等信号。 (3)参考输出参数: A、B汽动泵转速、电动给水泵转速、给水旁路调节阀开度。 (4)信号准确性:考虑汽包水位、给水流量和蒸汽流量等信号的修正。 (5)信号监测与报警:重要信号需要监测与报警,同时注意信号的可靠性,

300MW火电机组给水控制系统的设计

目录 1选题背景 (2) 引言 (2) 设计目的及要求 (2) 2方案论证 (3) 方案一 (3) 方案二 (4) 3过程论述 (5) ^ 总体设计 (5) 详细设计 (6) 信号的测量部分 (6) 单冲量控制方式 (10) 串级三冲量控制方式 (11) 信号监测 (12) 给水旁路调节阀控制强制切到手动 (12) 电动给水泵强制切到手动 (13) ) 汽动给水泵强制切到手动 (13) 工作方式 (13) 切换与跟踪 (13) 切换 (13) 跟踪 (14) 控制器选型 (14) 4结论 (14) 5课程设计心得体会 (15) } 6参考文献 (15) 《

1选题背景: 引言 - 火电厂在我国电力工业中占有主要地位,大型火力发电机组具有效率高,投资省,自动化水平高等优点,在国内外发展很快,如今随着科技的进步,大型火力发电厂地位显得尤为重要。但由于其内部设备组成很多,工艺流程的复杂,管道纵横交错,有上千个参数需要监视、操作和控制,这就需要有先进的自动化设备和控制系统使之正常运行,并且电能生产要求高度的安全可靠和经济性。大型发电单元机组是一个以锅炉,高压和中、低压汽轮机和发电机为主体的整体。锅炉作为电厂中的一个重要设备,起着重要的作用,根据生产流程又可以分为燃烧系统和汽水系统。其中,汽包锅炉给水及水位的调节已经完全采用自动的方式加以控制。给水全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 设计目的及要求 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持汽包水位在规定的范围内。 设计要求: (1)设计功能基本全面的全程给水控制系统,要求图纸采用SAMA标准图例,系统布局规范。 (2)参考输入参数:汽包水位、汽包压力、给水流量、给水温度、汽机第一级压力、主汽温度、过热减温水流量等信号。

给水全程控制系统设计

《给水全程控制系统》设计 专业:自动化 班级:B120410 学号:B12041014 姓名:陈修鹤

本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。 关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

摘要............................................................................................................................. I 第一章汽包水位全程控制的介绍 (1) 第二章给水控制对象的动态特性 (2) 2.1 给水流量扰动下水位的动态特性 (2) 2.1.1 给水流量扰动下水位的动态特性 (2) 2.1.2 蒸汽流量扰动下水位的动态特性 (2) 2.1.3 炉膛热负荷扰动下水位的动态特性 (3) 第三章热工测量信号 (5) 3.1 水位信号 (5) 3.2 蒸汽流量信号 (6) 3.3 给水流量信号 (6) 第四章调节阀和调速泵的特性 (7) 4.1调节阀门的静特性 (7) 4.2调速泵的安全特性 (7) 第五章控制过程分析 (9) 5.1水位调节主回路及电动给水泵跟随系统 (9) 5.2汽动给水泵副回路控制系统 (9) 5.3锅炉单冲量三冲量无扰切换和汽泵转速控制系统 (10) 5.4流量测量信号 (11) 5.5旁路辅助及保护回路 (12) 5.6汽包水位自动失灵切手动保护 (13) 结论 (15) 参考文献 (16)

火电厂给水控制系统仿真

第一章绪论 1.1 课题的研究背景及意义 火力发电厂在我国电力工业中占有主要的地位,是我国的重点能源工业之一。大型火力发电具有效率高、投资省、自动化水平高等优点,在国内外发展快。随着电力需求的日益增长,以及能源和环保的要求,我国的火电建设开始向大容量、高参数的大型机组靠拢。但是,火电机组越大,其设备结构就越复杂,自动化程度也要求越高。 给水控制系统是火电厂非常重要的控制子系统。汽包水位是锅炉安全运行的重要参数,同时他还是衡量锅炉汽水系统物质是否平衡的标志。 随着机组容量的增大,运行参数的不断提高,对汽包水位的的控制品质要求也会越高,为了机组的安全、经济运行,需要采用设计更合理、功能更完善的控制系统,给水自动控制系统可以大大减轻人员的劳动强度,汽包水位的稳定性也得到极大的提高,保障了几组的安全、稳定运行。 为了实现电能生产的“高效‘洁净、经济、可靠、安全”的要求,火电厂汽轮机的参数经历了低压、中压、高压、超高压、亚临界和超临界参数的发张阶段,目前正向超临界参数的方向发展。 1.2 国内外的发展状况 我国自上世纪80 年代引进亚临界火电机组技术以来,虽在改进、优化和发展取得一定的经验,并使300MW、600MV的亚临界火电机组成为我国火力发电的主力机组,但这种亚临界机组依然存在重大问题,这已成为制约我国电力工业发展的瓶颈。因此,借鉴国际上最先进的技术,研究并发展600MW~1000M超临界火电机组,是提高电机机组的热效率,实现节能降耗和改善环保状况的有效途径。 随着火电机组的参数的提高,水的饱和温度相应提高,气化潜热减少;当压力提高倒22.115MPa时,气化潜热为零,气和水的密度差也等于零,该压力成为临界压力。在临界点时,饱和水与饱和蒸汽之间不再有汽、水共存的两相区存在。当机组工作参数高于这一临界状态参数时,称之为超临界机组。对蒸汽动力装置循环的理论分析表明,提高循环蒸汽的初始参数和降低循环的终结参数都可以提高循环的热效率。实际上,蒸

智能给水【控制专区】器设计

智能给水控制器设计 引言 随着经济的快速发展和城市高层建筑的不断涌现,人们对供水质量和供水系统可靠性的要求不断提高,加上目前能源紧缺对节能的要求,因此利用先进的电子测控技术和自动化控制技术,设计高性能、高可靠性、低成本、低能耗,以及能适用不同领域的恒压供水系统也就成为必然趋势。随着近年来变频调速技术的飞速进步,变频恒压供水也在其基础上慢慢发展起来,并成为一种新兴的现代化供水技术。 目前,国外的恒压供水工程设计都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,这种方式不但投资成本较高,且功能单一。 为此设计了在变频调速控制系统中加入基于C8051F410的单片机系统,构成了功能更强的复合控制系统,它不但克服了以上缺点,而且具有安装调试方便,功能全面,可靠性高。抗干扰能力强等优点,且可以广泛应用于工业生产、社会生活的各个领域。 1 控制原理 在恒压供水系统中,安装于管网的远传压力表提供水压力信号,并经过光电隔离和电压转换电路,传送给系统的中心控制器,控制器将采集到的压力数据与预设压力进行比较,得出偏差值,再经PID运算之后得出控制参数,D/A模块将控制参数转换为模拟电压输出,调节变频器的输出频率,从而控制水泵的转速,以保证管网压力基本恒定。当用水量增大时,管网压力低于预设值,变频器频率就会升高,水泵转速加快,从而提升管道水压,但若达到水泵额定输出功率仍无法满足用户供水要求时,该泵自动转换成工频运行状态,并变频启动下一台水泵;反之,当用水量减少,则降低水泵运行频率直至设定的下限运行频率,若供水量仍大于用水量,则减泵直至全部泵停止工作,经过一定的延时,控制器重新比较压力,并计算控制输出,从而维持恒压供水。它的系统原理框图如图1所示。

热水给水系统自动控制的设计

成绩 _______ 楼宇自动化系统与应用原理 课程设计报告 题目热水给水系统自动控制的设计 系别 专业名称 班级 学号 姓名 指导教师

热水给水系统自动控制的设计 1、热水给水系统运行参数与状态监控点版/位及常用传感器,电 气控制一、二次接线图和原理图设计。 2、热水给水系统连锁控制; 3、热水给水系统运行与调节控制; 4、热水给水系统连锁控制流程图; 5、热水给水系统PID调节原理框图; 6、使用西门子PLC STEP7完成热水给水系统连锁控制和PID调节编程及仿真。

摘要 本文针对居民住宅小区的供水要求,设计了一套由PLC、传感器、远传压力表、多台水泵机组等主要设备构成的全自动恒压供水系统,具有全自动变频恒压运行、自动工频运行等功能。通过内置PID模块的变频器,利用远传压力表的水压反馈量,构成闭环系统,根据用水量的变化,采取PID调节方式,在全流量范围内利用变频泵的连续调节和工频泵的分级调节相结合,实现恒压供水且有效节能。 给排水系统是任何建筑必不可少的重要组成部分。一般建筑物的给排水系统包括生活给水系统、生活排水系统和消防水系统。这里主要介绍生活热水给水自动控制的设计。 随着电气控制技术的发展, 现代楼宇小区大都属于高层建筑, 其供水系统都向智能化方向发展.高层建筑高度大,一般的城市管网中的水压不能满足其用水要求,除了最下面几层可由城市管网供水外, 其余上部各层均需提升水压供水. 由于过高的水压对使用, 材料设备, 维修管理均不利,因此必须进行合理的竖向分区供水. 为了节省能量,应充分利用室外管网中的水压,在最地区可直接采用城市网管供水,并将大用水户如洗衣房,餐厅,理发室,浴室等布置在低区,以便城市管网直接供水,充分利用室外管道的压力,可以节省电能. 根据建筑给水高度,要求,分区压力等情况,进行合理分区,然后布置供水系统.供水系统形式有多种,各有其优缺点,但基本上可划分为两大类,即重力供水系统和压力供水系统.重力供水系统的特点是以水泵将水提升到最高水箱中,以重力给水管网配水,对楼顶水池水位的监测当高/低水位超限时报警,根据水箱的高/低水位控制水泵的启动/停止,监测给水泵的工作状态喝故障,如果当使用水泵出现故障时,备用水泵投入工作.重力供水系统供水压力稳定,且有水箱储水,供水较为安全,但水箱重量大,增加建筑符合,占用楼层建筑面积,且有产生噪声振动之弊,应根据具体情况使用.考虑到重力供水系统的缺点,为此可考虑压力供水系统. 不在楼层中或屋顶上设置水箱, 仅在地下室或者空余之处设置水泵机组, 气压水箱等设备, 采用压力供水满足供水要求. 压力供水系统可用并联的气压水箱给水系统, 也可采用无水箱的几台水泵并联供水系统.并联气压水箱需要金属制造,投资比较大,且运行效率低,还需设置空气压缩机为水箱补气,因此耗费动力较多,近年来有的采用密封式弹性隔膜气压水箱,可以不用空气压缩机充气,既节省了电能又防止了空气污染水质,有利于环境卫生. 水泵直接供水系统, 一般不采用水箱, 而是采用多台可自动控制的水泵并联运行, 根据用水量的变化,开停不同的水泵来满足用水要求,也可节省电能,如用计算机控制更为理想.一般采用调速水泵供水,即根据水泵出水量与转速成正比的关系的特性,调整水泵的转速满足用水量的变化, 同时可节省动力. 水泵的调速一般是采用水泵电动机可调速的联轴器或者采用调速电动机, 不过近年来国外研究一种自动控制水泵叶片角度的水泵, 即随着用水量的变化控制叶片角度来改变调节水泵的出水量, 以满足用水量的需要, 这种供水系统设备简单,使用方便,是一种恨有前途的新型水泵供水系统.不过无水箱的水泵供水系统,最好是用于水量变化不太大的建筑, 因为水泵要长时间不停的工作, 即便在夜间用水量不大的情况下,也要消耗动力,且水泵机组投资较高. 以上几个比较有代表性的供水系统,如何选用,应在使用要求,用水量大小,建筑物结构以及材料设备供应等具体问题上全面考虑.在用水安全可靠的前提下,考虑技术先进,经济上最合理的供水系统.

给水全程控制系统设计

300MW机组给水全程控制系统设计 摘要 本文在讨论给水调节系统的被控对象动态特性、热工测量信号、调节机构特性的基础上,分析了三冲量给水控制系统的结构及工作原理,提出了实现单元制给水全程控制系统应考虑的问题及控制方案。随着锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和完善的。针对目前发电厂给水系统的现状及其存在的问题,结合发电厂300MW 机组配置,发电厂300MW 机组给水全程调节系统的构成原理和控制功能,分析了系统的总体结构、工作原理、控制过程、系统切换方式、控制逻辑、调试及参数整定原则。 关键词:给水全程,给水控制,控制系统,汽包水位,自动调节

沈阳工程学院课程设计论文 Abstract Based on the discussion of the feed water regulating system controlled object dynamic characteristic, thermal measurement signals, adjusting mechanism on the basis of analysis of the characteristics, structure and working principle of the three element feed-water control system, is proposed to realize the unit water supply problems should be considered in system and control scheme of the whole control. With the large capacity, high parameter boiler towards development, water supply systems using automatic control system is essential way, it can reduce the labor intensity of the operation personnel, to ensure the safe operation of the boiler. For the large capacity and high parameters of the boiler, the water supply system is very complex and perfect. In view of the present situation of water supply system of power plant and its existing problems, combined with the configuration of 300MW power plant, the whole feed water regulating system for 300MW unit of power plant construction principle and control function, analysis of the overall structure, working principle, control process, the system switching mode, control logic, debugging and tuning principle. Key Words feed water, feed water control, control system, drum water level, automatic regulation

单元机组给水控制系统设计

摘要 随着我国电力市场的实际情况和国民经济发展的需要,电站项目向着高参数、大容量的方向发展已成为大势所趋,近年来超临界发电机组在国内得到迅速发展和应用。 超临界锅炉将是国家未来的发展方向,给水系统是其中的重要环节。超临界直流炉的给水控制技术是目前国内热控领域一个重要的研究课题。本论文介绍了超临界机组的概况,分析了超临界锅炉的静、动态特性及控制特点与超临界锅炉给水系统的工艺过程,比较分析了亚临界汽包锅炉与超临界直流锅炉给水系统控制的异同,研究了超临界锅炉给水控制策略。同时针对目前国内普遍使用的600MW超临界直流锅炉的给水控制系统,进行了设计。设计内容主要包括锅炉干/湿态下给水流量控制的切换、PID模块的手/自动的无扰切换、储水箱水位控制等部分,并对设计SAMA图逐一进行说明。 关键词:超临界直流炉;给水控制系统;燃水比;中间点温度;中间点焓

THE DESIGNING ON PLANT UNIT FEEDWATER CONTROL SYSTEM Abstract It becomes a trend that the power station projects go forward to high parameter and large capacity in consideration of china’s actual situation and the demand of the national economic development. In the past years the super-critical unit were applied and developed quickly. The supercritical boiler will be the future nationai tendency, and the water supply system is an important link. The feedwater control of super critical once through boiler is an important study subject in thermal field at present. This paper introduces the general situation of supercritical unit, analyses the static or dynamic characteristics and the control feature of the supercritical boiler . The technological process of supercritical boiler feed water system is analyzed too, Comparative analysis the similarities and differences between the subcritical and supercritical once-through boiler steam drum boiler feed water system control, studies the strategy of the supercritical boiler feed water control. At the same time, designs the 600MW supercritical once-through boiler feed water control system in view of the present domestic universal. Design content mainly includes Boiler feed water flow control under the wet/dry state switch, running state of the switch of hand/auto undisturbed switching of PID module, storage tank water level control, illustrates the design SAMA graph one by one. Key Words:Supercritical once-through boiler; Feedwater control system; Coal to water ratio; Intermediate point’s enthalpy; Intermediate point’s temperature

300MW火电机组给水控制系统设计

300MW火电机组给水控制系统设计 1选题背景 锅炉朝大容量、高参数发展,给水系统采用自动控制系统是必不可少的,它可以减轻运行人员的劳动强度,保证锅炉的安全运行。对于大容量高参数锅炉,其给水系统是非常复杂和比较完善的。大型电站锅炉将是国家未来的发展方向,给水系统是其中的重要环节。随着火电机组容量的提高及参数的增加,机组在启停过程中需要监视的参数及控制的项目越来越多,大型电站锅炉给水控制系统是机组控制系统中的重点和难点。近些年来,研究大型电站锅炉给水的文献相应增多,火电机组越大,其设备结构就越复杂,自动化程度也要求越高。在现代科学技术的众多领域中,自动控制技术起着越来越重要的作用。所谓自动控制,是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律运行。目前已广泛应用于工农业生产、交通运输和国防建设。生产过程自动化是保证生产稳定、降低成本、改善劳动条件、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是21世纪科学与技术进步的特征,是工业现代化的标志之一。可以说,自动化水平是衡量一个国家的生产技术和科学水平先进与否的一项重要标志。 2本文研究的主要内容 大型电站汽包锅炉给水控制系统的任务是通过调节进入汽包的给水流量,在保证汽包水位在一定范围内相对稳定的同时,产生汽轮发电机组所需的蒸汽流量,使机组输出的电功率与电网负荷变化相适应。给水控制系统对保证汽包锅炉运行过程的安全性和稳定性具有重要意义。 2.1给水系统的概况 汽包锅炉给水控制系统的作用是产生用户所要求的蒸汽流量,同时保证汽包水位在一定范围内变化。由于设计有汽包,使锅炉的蒸发段与过热段明确分开,锅炉的蒸发量主要取决于燃烧率(燃料量与相应的空气量)。所以汽包锅炉由燃烧率调节负荷,实现燃料热量与蒸汽热量之间的能量平衡。汽包锅炉的给水控制

【精品】给水控制系统

1引言 随着发电机组容量的增大和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适用范围更宽,功能更为完备的自动控制系统,这就产生了全程控制系统。而给水控制系统在电厂运行中有着非常重要的作用。在全程给谁控制系统中,汽包水位是汽包锅炉运行中一个重要的监控参数,它反应锅炉蒸汽负荷与给水量之间的平衡关系。维持其包水位在一定范围内是保证锅炉和汽轮机安全运行的必要条件。给谁全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持其包水位在规定的范围内。 2设计内容 2。1设计方案 2.1。1方案一

给系统设计如图一。在这个方案中,低负荷时采用但冲量系统(PI1)高负荷时采用三冲量系统(PI2),而且都是通过改变调速泵转速来实现给水的调节。为了保证给水泵工作在安全工作区内,设计了一个给水泵出口压力调节系统(PI3),通过改变阀门开度来改变泵的出口压力。高压加热器出口分别取给水压力信号送入小值选择器。当机组正常运行时,高压加热器出口的给水压力总是低于泵的出口压力。这时,应选高压加热器出口给水压力作为压力测量值,使泵的实际工作点在泵下限特性曲线偏左一些,确保泵工作在安全工作区内。当机组热态启动时,高压加热器出口的给水压力高于泵的出口压力,小组选件输出为泵出口压力,保证泵出口给水压力升压过程中,两个调节阀门均处于关闭状态,直到泵出口压力大于高压加热器出口给水压力时才按高压加热器出口的给水压力进行调节,控制两个阀门开度。

给水控制系统

1 引言 随着发电机组容量的增大和参数的不断提高,机组的控制与运行管理变得越来越复杂和困难。为了减轻运行人员的劳动强度,保证机组的安全运行,要求实现更为先进,适用范围更宽,功能更为完备的自动控制系统,这就产生了全程控制系统。而给水控制系统在电厂运行中有着非常重要的作用。在全程给谁控制系统中,汽包水位是汽包锅炉运行中一个重要的监控参数,它反应锅炉蒸汽负荷与给水量之间的平衡关系。维持其包水位在一定范围内是保证锅炉和汽轮机安全运行的必要条件。给谁全程控制系统是一个能在锅炉启动、停炉、低负荷以及在机组发生某些重大事故等各种不同的工况下,都能实现给水自动控制的系统而且从一种控制状态到另一种控制状态的判断、转换、故障检测也常常靠系统本身自动完成。 本次课程设计的要求是根据大型火电机组的生产实际设计出功能较为全面的300 MW火电机组全程给水控制系统,该控制系统的设计任务是使给水量与锅炉的蒸发量相适应,维持其包水位在规定的范围内。 2设计内容 2.1设计方案 2.1.1 方案一 给系统设计如图一。在这个方案中,低负荷时采用但冲量系统(PI1)高负荷时采用三冲量系统(PI2),而且都是通过改变调速泵转速来实现给水的调节。为了保证给水泵工作在安全工作区内,设计了一个给水泵出口压力调节系统(PI3),通过改变阀门开度来改变泵的出口压力。高压加热器出口分别取给水压力信号送入小值选择器。当机组正常运行时,高压加热器出口的给水压力总是低于泵的出口压力。这时,应选高压加热器出口给水压力作为压力测量值,使泵的实际工作点在泵下限特性曲线偏左一些,确保泵工作在安全工作区内。当机组热态启动时,高压加热器出口的给水压力高于泵的出口压力,小组选件输出为泵出口压力,保证泵出口给水压力升压过程中,两个调节阀门均处于关闭状态,直到泵出口压力大于高压加热器出口给水压力时才按高压加热器出口的给水压力进行调节,控制两个阀门开度。

火力发电厂给水自动控制系统

火力发电厂给水自动控制系统 季明彬 (烟台发电厂,山东烟台 264002) [摘要] 本设计结合中小型火电机组母管制给水系统设备的实际情况,及动态特性,以自动控制理论与计算机技术为基础,利用新华控制公司XDPS软件组态设计而成的,具有稳定性,准确性和快速性的特点,能够在线,实时采集过程参数,实时对系统信息进行加工处理,结果能迅速反馈给系统,完成自动调节和控制,以及在不同工况下的无扰切换,使机组在安全经济运行,减少事故,提高设备可靠性及运行效率方面进一步得到保证。 [关键词] 母管制给水自动组态 1、给水控制系统总体方案的确定 为保证机组的安全运行,我们对给水控制系统提出了很高的要求:在控制设备正常的条件下,不需要操作人员干涉,就能保证汽包水位在允许范围内,这是一个比较复杂的过程,因此对给水控制系统提出以下要求: l 在给水控制系统中,不仅要满足给水调节的要求,同时还要保证给水泵工作在安全区内,这往往需要有两套控制系统来完成,及所谓的两段调节。 l 由于机组在不同的负荷下呈现不同的对象特性,要求控制系统能适应这样的特性。随着负荷的增长或降低,系统要能从单冲量过度到三冲量,或从三冲量过度到单冲量系统,由 此产生了系统的切换问题,并且必须保证两套系统相互切换的控制线路。 l 由于给水自动控制范围较宽,对各个信号的准确测量提出了更高的,更严格的要求。 l 在多种调节机构的复杂切换过程中,给水控制系统都必须保证无扰。另外,点火后升温升压过程中,由于锅炉没有输出蒸汽流量,给水量及其变化量都很小,此时单冲量调节系 统也不十分理想,就需要开启阀门的方法(双位调节方式)进行水位调节。 l 给水自动控制还必须适应机组的定压运行和滑压运行工况,必须适应冷态启动和热态启动的情况。 在给水自动控制系统中,有一段控制和两段控制之分,所谓“段”,是指完成给水自动控制的系统的套数,因此所谓两段控制方式就是指给水控制系统用两套独立的系统,分别指挥自己的执行机构来完成给水全程控制的方式。 给水控制系统的控制方式很多,考虑到应用系统的实际设备情况和各方面因素,设计决定采用如图1所示的控制方案。

基于PLC的供水控制系统设计说明

工业职业技术学院Hunan Industry Polytechnic 题目基于PLC的供水控制系统设计 系名称电气工程系 专业及班级机电S2012-1 学生长虹 学号43 指导教师力颜志红

摘要 本课题以某小区供水系统的改造为背景,根据供水系统的特性和实际情况的要求,采用PLC实现供水过程的全自动控制,满足居民用水的需要。研究的主要容包括:基于PLC自来水控制系统整体方案的设计、PLC控制系统原理、重点探讨PLC控制系统硬件、软件的设计,对PLC在实际现场控制过程中经常遇到的一些实际问题的解决,基于该工程项目的电气控制系统设计与实现展开的,采用可编程控制器PLC,完成了整个电气控制系统的软硬件的设计,基本达到了预期的目标,实现了小区供水的自动化。 关键词PLC;供水系统;自动控制

目录 第1章绪论 (4) 1.1课题背景和意义 (4) 1.2 国外物业供水系统发展与现状 (4) 1.3 可编程控制器(PLC)的特点及应用 (5) 1.4 基于PLC的物业供水系统实现功能及特点 (6) 第2章供水系统的理论分析及方案的确定 (7) 2.1 恒压供水系统原理 (7) 2.2 系统方案确定 (7) 第3章供水系统的硬件设计 (9) 3.1 系统主要配置的选型 (9) 3.1.1 水泵机组的选型 (9) 3.1.2 PLC的选型 (10) 3.1.3 压力传感器的选型 (11) 3.2 可编程控制器I/O分配 (13) 3.3 系统电路分析及设计 (14) 3.3.1 系统电源 (14) 3.3.2 供水系统主电路分析与设计 (14) 3.3.3 PLC I/O接线图 (16) 3.3.4 压力传感器信号处理 (17) 3.3.5 报警电路设计 (18)

火电厂给水控制系统仿真

第一章绪论 1.1课题的研究背景及意义 火力发电厂在我国电力工业中占有主要的地位,是我国的重点能源工业之一。大型火力发电具有效率高、投资省、自动化水平高等优点,在国内外发展快。随着电力需求的日益增长,以及能源和环保的要求,我国的火电建设开始向大容量、高参数的大型机组靠拢。但是,火电机组越大,其设备结构就越复杂,自动化程度也要求越高。 给水控制系统是火电厂非常重要的控制子系统。汽包水位是锅炉安全运行的重要参数,同时他还是衡量锅炉汽水系统物质是否平衡的标志。 随着机组容量的增大,运行参数的不断提高,对汽包水位的的控制品质要求也会越高,为了机组的安全、经济运行,需要采用设计更合理、功能更完善的控制系统,给水自动控制系统可以大大减轻人员的劳动强度,汽包水位的稳定性也得到极大的提高,保障了几组的安全、稳定运行。 为了实现电能生产的“高效‘洁净、经济、可靠、安全”的要求,火电厂汽轮机的参数经历了低压、中压、高压、超高压、亚临界和超临界参数的发张阶段,目前正向超临界参数的方向发展。 1.2国内外的发展状况 我国自上世纪80年代引进亚临界火电机组技术以来,虽在改进、优化和发展取得一定的经验,并使300MW、600MW的亚临界火电机组成为我国火力发电的主力机组,但这种亚临界机组依然存在重大问题,这已成为制约我国电力工业发展的瓶颈。因此,借鉴国际上最先进的技术,研究并发展600MW~1000MW超临界火电机组,是提高电机机组的热效率,实现节能降耗和改善环保状况的有效途径。 随着火电机组的参数的提高,水的饱和温度相应提高,气化潜热减少;当压力提高倒22.115MPa时,气化潜热为零,气和水的密度差也等于零,该压力成为临界压力。在临界点时,饱和水与饱和蒸汽之间不再有汽、水共存的两相区存在。当机组工作参数高于这一临界状态参数时,称之为超临界机组。对蒸汽动力装置

MW火电机组给水控制系统的设计精编

课 程设计说明书指导教师:张利辉、王秋平职称:教授 2011年 12月22日 目录 1设计背景 ................................................................. 错误!未指定书签。 2主要参数及设计思想 ............................................. 错误!未指定书签。 2.1主要参数 ........................................................... 错误!未指定书签。 2.2设计思想 ........................................................... 错误!未指定书签。 2.3三冲量控制系统 ............................................... 错误!未指定书签。 2.4给水流量的调节的实现方法 ........................... 错误!未指定书签。 2.5运行方式 ........................................................... 错误!未指定书签。 3过程论证 ................................................................. 错误!未指定书签。 3.1三冲量与单冲量之间的无扰切换 ................... 错误!未指定书签。 3.2阀门与泵的运行及切换 ................................... 错误!未指定书签。 3.3电动泵与汽动泵间的切换 ............................... 错误!未指定书签。 3.4执行机构的手、自动切换 ............................... 错误!未指定书签。 学生姓名: 学号: 0 学院: 自动化工程学院 班级: 题目: 300MW 火电机组给水控制系统的设计

给排水控制系统

摘要 随着人类社会的不断发展,建筑物在人类的生活中的地位越来越重要。计算机技术、信息技术和控制技术的高速发展和广泛应用,智能控制技术取得了巨大的进展,智能楼宇综合管理系统逐渐成为智能大厦的技术核心。它将建筑物内各弱电子系统集成在一个计算机网络平台上,从而实现子系统间信息、资源和任务共享。它将为业主提供一个高效、便利、可靠的管理手段,给使用者提供全面、高质、安全、舒适的综合服务。 关键字:楼宇自动化给排水控制系统 Abstract With the continuous development of human society, the building has become more and more important in human life. The rapid development and wide application of computer technology, information technology and control technology, intelligent control technology has made tremendous progress, intelligent building integrated management system has gradually become the core technology of the Intelligent Building. It will be building each weak electronic system integrated in a computer network platform, so as to realize the system information, resources and task sharing. It will provide an efficient, convenient, reliable method for the owners to provide comprehensive, integrated service, high quality, safe, comfortable to the user. Keywords:Buiding automation Water supply and drainage control system

恒压供水控制系统器说明书

一、系统概述 VC-3200系列微电脑变频供水/补水控制器是专为变频恒压供水系统和锅炉及换热系统补水而设计的微电脑控制器,可与各种品牌的变频器配套使用。具有压力控制精度高、压力稳定、第二消防压力(动压)设定、系统超压泄水自动控制、设定参数密码锁定等多项功能。 二、主要性能指标 1.可编程设定多种泵工作方式,最多可拖五台泵(1变频+4工频); 2.具有压力测量值防抖动补偿控制功能; 3.参数调整和设定具有密码锁定及保护功能; 4.采用人工智能模糊控制算法,设定参数少,控制精度高,带看门狗电路,采用数字滤波及多项抗干扰措施。 5.可接无源远传压力表、有源电压及电流型压力变送器; 6. D/A输出控制频率电压为DC 0-10V, 也可设定为DC 0-5V; 7.具有压力传感器零点和满度补偿功能; 8.具有定时自动倒泵功能; 9.具有第二压力(消防压力)设定和控制功能; 10.具有缺水自动检测保护功能和外部输入停机保护功 能; 11.系统补水控制时,具有超压自动泄水控制功能; 12.具有供水附属小泵控制功能,可设定小泵变频或工频 模式; 13.具有可选的定时自动开、关机控制功能; 14.具有小流量水泵睡眠控制功能; 15.具有手操器功能,可手动调节输出电压来控制变频器的频率; 16.可代替电接点压力表进行上、下限压力控制; 17.具有可选分时分压供水控制功能,最多有六段时间控制; 三、安装和配线端子说明 1.控制器外形尺寸: 160mm×80mm×80mm(AC-3200) 160mm×80mm×90mm (AC-3200) 2.控制柜面板开口尺寸152mm×76mm,面板卡入式安装。 3.使用环境为:无水滴、蒸汽、腐蚀、易燃、灰尘及金属微粒的场所; 4.使用环境温度:-20℃~50℃ 5.相对湿度:<95%; 6.额定工作电压:AC220V±10%; 7.控制器额定功耗:<=AC 5W; 8.控制器接线端子输出容量:3A/ AC220V 9.面板及配线端子说明:

相关文档
相关文档 最新文档