文档库 最新最全的文档下载
当前位置:文档库 › 现设线性时变系统的离散状态方程和观测方程

现设线性时变系统的离散状态方程和观测方程

现设线性时变系统的离散状态方程和观测方程
现设线性时变系统的离散状态方程和观测方程

现设线性时变系统的离散状态方程和观测方程为:

X(k) = F(k,k-1)·X(k-1)+T(k,k-1)·U(k-1)

Y(k) = H(k)·X(k)+N(k)

其中

X(k)和Y(k)分别是k时刻的状态矢量和观测矢量

F(k,k-1)为状态转移矩阵

U(k)为k时刻动态噪声

T(k,k-1)为系统控制矩阵

H(k)为k时刻观测矩阵

N(k)为k时刻观测噪声

则卡尔曼滤波的算法流程为:

预估计X(k)^= F(k,k-1)·X(k-1)

计算预估计协方差矩阵

C(k)^=F(k,k-1)×C(k)×F(k,k-1)'+T(k,k-1)×Q(k)×T(k,k-1)'

Q(k) = U(k)×U(k)'

计算卡尔曼增益矩阵

K(k) = C(k)^×H(k)'×[H(k)×C(k)^×H(k)'+R(k)]^(-1)

R(k) = N(k)×N(k)'

更新估计

X(k)~=X(k)^+K(k)×[Y(k)-H(k)×X(k)^]

计算更新后估计协防差矩阵

C(k)~ = [I-K(k)×H(k)]×C(k)^×[I-K(k)×H(k)]'+K(k)×R(k)×K(k)'

X(k+1) = X(k)~

C(k+1) = C(k)~

重复以上步骤

**********************************************

Matlab实现代码

******************************************************************************* **************************************************

%%%% Constant Velocity Model Kalman Filter Simulation %%%%

%==========================================================================

clear all; close all; clc;

%% Initial condition

ts = 1; % Sampling time

t = [0:ts:100];

T = length(t);

%% Initial state

x = [0 40 0 20]';

x_hat = [0 0 0 0]';

%% Process noise covariance

q = 5

Q = q*eye(2);

%% Measurement noise covariance

r = 5

R = r*eye(2);

%% Process and measurement noise

w = sqrt(Q)*randn(2,T); % Process noise

v = sqrt(R)*randn(2,T); % Measurement noise

%% Estimate error covariance initialization

p = 5;

P(:,:,1) = p*eye(4);

%==========================================================================

%% Continuous-time state space model

%{

x_dot(t) = Ax(t)+Bu(t)

z(t) = Cx(t)+Dn(t)

%}

A = [0 1 0 0;

0 0 0 0;

0 0 0 1;

0 0 0 0];

B = [0 0;

1 0;

0 0;

0 1];

C = [1 0 0 0;

0 0 1 0];

D = [1 0;

0 1];

%% Discrete-time state space model

%{

x(k+1) = Fx(k)+Gw(k)

z(k) = Hx(k)+Iv(k)

Continuous to discrete form by zoh

%}

sysc = ss(A,B,C,D);

sysd = c2d(sysc, ts, 'zoh');

[F G H I] = ssdata(sysd);

%% Practice state of target

for i = 1:T-1

x(:,i+1) = F*x(:,i);

%% Prediction phase

x_hat(:,i+1) = F*x_hat(:,i);

% State estimate predict

P(:,:,i+1) = F*P(:,:,i)*F'+G*Q*G';

% Tracking error covariance predict

P_predicted(:,:,i+1) = P(:,:,i+1);

%% Kalman gain

K = P(:,:,i+1)*H'*inv(H*P(:,:,i+1)*H'+R);

%% Updata step

x_hat(:,i+1) = x_hat(:,i+1)+K*(z(:,i+1)-H*x_hat(:,i+1));

% State estimate update

P(:,:,i+1) = P(:,:,i+1)-K*H*P(:,:,i+1);

% Tracking error covariance update

P_updated(:,:,i+1) = P(:,:,i+1);

end

%==========================================================================

%% Estimate error

x_error = x-x_hat;

%% Graph 1 practical and tracking position

figure(1)

plot(x(1,:),x(3,:),'r');

hold on;

plot(x_hat(1,:),x_hat(3,:),'g.');

title('2D Target Position')

legend('Practical Position','Tracking Position')

xlabel('X axis [m]')

ylabel('Y axis [m]')

hold off;

%% Graph 2

figure(2)

plot(t,x(1,:)),grid on;

hold on;

plot(t,x_hat(1,:),'r'),grid on;

title('Practical and Tracking Position on X axis')

legend('Practical Position','Tracking Position')

xlabel('Time [sec]')

ylabel('Position [m]')

hold off;

%% Graph 3

figure(3)

plot(t,x_error(1,:)),grid on;

title('Position Error on X axis')

xlabel('Time [sec]')

ylabel('Position RMSE [m]')

hold off;

%% Graph 4

figure(4)

plot(t,x(2,:)),grid on;

hold on;

plot(t,x_hat(2,:),'r'),grid on;

title('Practical and Tracking Velocity on X axis')

legend('Practical Velocity','Tracking Velocity')

xlabel('Time [sec]')

ylabel('Velocity [m/sec]')

hold off;

%% Graph 5

figure(5)

plot(t,x_error(2,:)),grid on;

title('Velocity Error on X axis')

xlabel('Time [sec]')

ylabel('Velocity RMSE [m/sec]')

hold off;

%==========================================================================

******************************************************************************* **************************************************

***********************************************

自动控制原理例题详解线性离散控制系统的分析与设计考习题及答案

精心整理 ----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3 4.(x()∞5.(5解:(G 6.(5试用Z 解:二、( (i X s ) z 图1 1.(5分)试求系统的闭环脉冲传递函数 () () o i X z X z ; 2.(5分)试判断系统稳定的K 值范围。

解:1.101 1 1 1 11 1()(1)(1)11(1)1(1)()1e 11e 1e G G z z Z s s z Z s s z z z z z z z e z -------??=-??+????=--??+?? =-----=---= -1 1 010******* 1e ()()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------== -++--=-+--=-+- 2.(5 三、(8 已知(z)1Φ=1.(3分)简述离散系统与连续系统的主要区别。 解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。 2.(3分)简述线性定常离散系统的脉冲传递函数的定义。 解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。 3.(3分)简述判断线性定常离散系统稳定性的充要条件。 解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(5分)设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。

控制系统状态方程求解

第2章 控制系统的状态方程求解 要点: ① 线性定常状态方程的解 ② 状态转移矩阵的求法 ③ 离散系统状态方程的解 难点: ① 状态转移矩阵的求法 ② 非齐次状态方程的解 一 线性定常系统状态方程的解 1 齐次状态方程的解 考虑n 阶线性定常齐次方程 ? ? ?==0)0()()(x x t Ax t x & (2-1) 的解。 先复习标量微分方程的解。设标量微分方程为 ? ??==0)0(x x ax x & (2-2) 对式(2-2)取拉氏变换得 )()(0s aX X s sX =- 移项 0)()(x s X a s =- 则 a s x s X -= )(

取拉氏反变换,得 00 0!)()(x k at x e t x k k at ∑∞ === 标量微分方程可以认为是矩阵微分方程当n=1时的特征,因此矩阵微分方程的解与标量微分方程应具有形式的不变性,由此得如下定理: 定理2-1 n 阶线性定常齐次状态方程(2-1)的解为 00 0!)()(x k At x e t x k k At ∑∞ === (2-3) 式中,∑∞ ==0 !)(k k At k At e 推论2-1 n 阶线性定常齐次状态方程 ???==00 )()()(x t x t Ax t x & (2-4) 的解为 0)(0 )(x e t x t t A -= (2-5) 齐次状态方程解的物理意义是)(0 t t A e -将系统从初始时刻0t 的初始 状态0x 转移到t 时刻的状态)(t x 。故)(0 t t A e -又称为定常系统的状态转移 矩阵。 (状态转移矩阵有四种求法:即定义(矩阵指数定义)法、拉氏反变换法、特征向量法和凯来-哈密顿(Cayly-Hamilton )法) 从上面得到两个等式 ∑∞ ==0 !)(k k At k At e ])[(11---=A sI L e At 其中,第一式为矩阵指数定义式,第二式可为At e 的频域求法或拉氏反变换法

自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案

----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(* t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3分)简述线性定常离散系统稳定性的定义及充要条件。 解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2+--= z z z z z X 解: 经过验证(1)X()z z -满足终值定理使用的条件,因此, 211x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-==-s s s s G s G s G Ts h 解:11 1 1211 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解: 22 ()6()8()() ()(1)(68)3(1)2(2)6(4)1 (){2324},0 6 k k z C z C z C z R z z z z z C z z z z z z z c k k -+===-+--+---=-?+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制() D z K =, 其中K >0。设采样周期T =1s ,368.0e 1=-。

第三章线性系统状态方程的解

第三章 系统的分析——状态方程的解 §3-1线性连续定常齐次方程求解 一、齐次方程和状态转移矩阵的定义 1、齐次方程 状态方程的齐次方程部分反映系统自由运动的状况(即没有输入作用的状况),设系统的状态方程的齐次部分为: )()(t Ax t x =& 线性定常连续系统: Ax x =& 初始条件:00x x t == 2、状态转移矩阵的定义 齐次状态方程Ax x =&有两种常见解法:(1)幂级数法;(2)拉氏变换法。其解为 )0()(x e t x At ?=。其中At e 称为状态转移矩阵(或矩阵指数函数、矩阵指数),记为: At e t =)(φ。 若初始条件为)(0t x ,则状态转移矩阵记为:) (0 0)(t t A e t t -=-Φ 对于线性时变系统,状态转移矩阵写为),(0t t φ,它是时刻t ,t 0的函数。但它一般不能写成指数形式。 (1)幂级数法——直接求解 设Ax x =&的解是t 的向量幂级数 Λ ΛΛΛ+++++=k k t b t b t b b t x 2210)( 式中ΛΛ,,, ,,k b b b b 210都是n 维向量,是待定系数。则当0=t 时, 000b x x t === 为了求其余各系数,将)(t x 求导,并代入)()(t Ax t x =&,得: Λ ΛΛΛ&+++++=-1232132)(k k t kb t b t b b t x )(2210ΛΛΛΛ+++++=k k t b t b t b b A

上式对于所有的t 都成立,故而有: ????? ??????======00 3 230 21201!1!31312121b A k b b A Ab b b A Ab b Ab b K K M 且有:00x b = 故以上系数完全确定,所以有: Λ ΛΛΛ+++++=k k t b t b t b b t x 2210)( ΛΛ++++ +=k k t b A k t b A t Ab b 020200! 1 !21 )0()! 1!21(22x t A k t A At I k k ΛΛ+++++= 定义(矩阵指数或矩阵函数): ∑∞==+++++=022! 1!1!21K k k k k At t A k t A k t A At I e ΛΛ 则 )0()(x e t x At ?=。 (2)拉氏变换解法 将Ax x =&两端取拉氏变换,有 )()0()(s AX X s sX =- )0()()(X s X A sI =- )0()()(1X A sI s X ?-=- 拉氏反变换,有 )0(])[()(1 1x A sI L t x ?-=--

线性离散系统基础

第七章 线性离散系统基础 一.基本内容 1.了解离散控制系统基本概念、采样过程及采样定理;零阶保持器的传递函数、频率特性及应用特点。 2.掌握z 变换及z 反变换的求取方法;熟练掌握脉冲传递函的定义,开环脉冲传递函数和闭环脉冲传递函数求解方法; 3.熟练掌握离散控制系统的稳定性分析; 4.熟练掌握离散控制系统的稳态误差计算 二.重点和难点 离散控制系统与连续控制系统的根本区别,在于连续控制系统中的信号都是时间的连续函数,而离散控制系统中有一处或多处的信号是脉冲序列或数码形式的。 把连续信号变为离散信号的过程叫做采样,实现采样的装置称为采样器(采样开关)。反之,把采样后的离散信号恢复为连续信号的过程称为信号的复现。 离散控制系统的采样定理给出了从采样的离散信号恢复到原来连续信号所必须的最低采样频率(max 2ωω≥s )。 离散信号的恢复,是在系统中加入代替理想滤波器的实际保持器来实现的。按恒值外推规律实现的零阶保持器,由于其实现简单,且具有最小的相移,被广泛的应用于离散控制系统中,其传递函数为 s e s G Ts h --=1)( 1.脉冲传递函数 脉冲传递函数的定义:零初始条件下,线性定常离散系统输出离散信号的z 变换与输入离散信号的z 变换之比,称为脉冲传递函数。 比较常见的一种离散控制系统的结构形式如图7-1所示,其闭环脉冲传递函数为

) (1)()() (2121z H G G z G G z R z C += 式中 , )]()()([)(2121s H s G s G Z z H G G = )]()([)(2121s G s G Z z G G = 图7-1典型离散控制系统的结构图 其中:)(21z H G G 为系统的开环脉冲传递函数。 2.离散系统分析 (1)离散系统的稳定性 离散系统稳定的充分必要条件是:系统的闭环极点均在z 平面上以原点为中心的单位圆内。即 ),2,1(1n i z i =<。 因此,可以通过求解闭环特征方程式的根来判断离散系统的稳定性。但当系统的阶次较高或有待定常数时,采用此法不太合适,可以通过双线性变换 1 1 -+= w w z 将z 平面上的单位圆内部分映射到w 平面的左半平面,即可使用劳斯稳定判据判断离散系统的稳定性。 (2)稳态误差 单位反馈的离散系统(即图7-1中1)(=s H )的的稳态误差为: ) (1) () 1(lim )(1 z G z R z e z +-=∞→ 其中)()(21z G G z G =为开环脉冲传递函数。 通常选用三种典型输入信号,即单位阶跃信号、单位斜坡信号和单位抛物线信号,对应z 变换分别为 3 22)1(2) 1(,)1(,1 -+--z z z T z Tz z z 三.典型例题分析 )(1s G ) (s H )(s R T ) (s E ) (s C ) (2s G

系统的状态方程

第2章 系统的状态空间描述 输入输出:可测量,欠全面 §2.1 基本概念 例2.1 密封水箱 1 ()(),y t x t μ = 1 d [()()]d [()()]d c x u t y t t u t x t t μ ?=-?=-? 即 μ 2 (m ) c 3 ()(m /s)u t 3 ()(m /s)y t ()(m) x t

11 ()()()x t x t u t c c μ'=-+. 解 t t c c x t x u c 001()e ()e d τμμττ- ??=+ ? ??? ?. 若()u t r ≡, 则 0()e 1e ,()t t c c x t x r r t μμμμ--??=+-?→∞ ? ? ??, 若想()x h ∞=, 只要()h u t μ =.

例2.2 LRC 123()()();i t i t i t =+ ()()()()()L R L C u t v t v t v t v t =+=+ 选1()()C i t v t 和; 则: 1 1()()()1()()()C C C Li t v t u t Cv t i t v t R '=-+???'?=-? 其余 2()()/, C i t v t R = ()()(),()(). L C R C v t u t v t v t v t =-=)(t v C ) (t v L L R C )(1t i )(t u )(2t i )(3t i 2.2 图

1. 系统的状态变量 状态变量: 完全表征系统,个数最少的一组变量 未来()x t :由0()x t 和0t t ≥的()u t 完全确定. 对定常, 常取00t =. 2. 状态向量和状态空间 状态向量:12()(),(),()T n x t x t x t x t =???? 状态空间:()x t 取值范围 状态轨线:()x t 的轨迹(无时间轴) 3.几点说明

第九章线性离散控制系统

第九章 线性离散控制系统 A9-1 试求下列函数的Z 变换: (1)f(t)=1-e -at (2)f(t)=cos ωt (3)f(t)=αt/T (4)f(t)=te -at (5)f(t)=t 2 A9-2 求下列拉氏变换式的Z 变换(式中T 为采样周期): (1)21)(s s F = (2)) 2)(1()3()(+++=s s s s F (3)2 )2(1)(+=s s F (4)) ()(a s s K s F += (5))(1)(2a s s s F += (6)22)(ωω ?=s s F (7)) ()(a s e s F nTs +=? A9-3 求下列函数的Z 反变换(式中T 为采样周期): (1)) )(1()1()(T T e z z e z z F ?????= (2)) 2()1()(2??=z z z z F (3)22)1()1()(?+= z z z z F (4)222) 1()1(2)(+?=z z z z F

(5)55 432546.035.0)(z z z z z z z F +++++= A9-4 用留数法求下列函数的Z 反变换: (1)) 2)(1(10)(??=z z z z F (2)3 )1()(2 ?=ze z z F A9-5 确定下列函数的初值与终值: (1)) 2.0)(18.0()1()(2222+++?++=z z z z z z z z F (2)) 1.0)(8.0()(2 ??=z z z z F (3)3212 14.26.52.411.03.01)(??????+?++=z z z z z z F A9-6 用Z 变换方法求解下列差分方程,结果以f(k)表示: (1)f(k+2)+2f(k+1)+f(k)=u(k) f(0)=0, f(1)=0, u(k)=k (k=0,1,2,…) (2)f(k+2)-4f(k)=coskn (k=0,1,2,…) f(0)=1, f(1)=0 (3)f(k+2)+5f(k+1)+6g(k)=cos 2 k n (k=0,1,2,…) f(0)=0, f(1)=1 A9-7 求图题A8-7所示各系统的脉冲传递函数和输出信号的Z 变换。

求解系统的状态方程

求解系统的状态方程 一、实验设备 PC计算机,MATLAB软件,控制理论实验台 二、实验目的 (1)掌握状态转移矩阵的概念。学会用MATLAB求解状态转移矩阵 (2)学习系统齐次、非齐次状态方程求解的方法,计算矩阵指数,求状态响应; (3)通过编程、上机调试,掌握求解系统状态方程的方法,学会绘制输出响应和状态响应曲线; (4)掌握利用MATLAB导出连续状态空间模型的离散化模型的方法。 三、实验原理及相关基础 (1)参考教材P99~101“3.8利用MATLAB求解系统的状态方程” (2)MATLAB现代控制理论仿真实验基础 (3)控制理论实验台使用指导 四、实验内容 (1)求下列系统矩阵A对应的状态转移矩阵 (a)

(b) 代码: syms lambda A=[lambda 0 0;0 lambda 0;0 0 lambda];syms t;f=expm(A*t) (c) 代码: syms t;syms lambda;A=[lambda 0 0 0;0 lambda 1 0;0 0 lambda 1;0 0 0 lambda];f=expm(A*t) (2) 已知系统

a) 用MATLAB求状态方程的解析解。选择时间向量t,绘制系统的状态响应曲线。观察并记录这些曲线。 (1) 代码: A=[0 1; -2 -3]; B=[3;0]; C=[1 1]; D=[0]; u=1; syms t; f=expm(A*t);%状态转移矩阵 x0=0; s1=f*B*u; s2=int(s1,t,0,t)%状态方程解析解 状态曲线: (2)A=[0 1;-2 -3]; syms t; f=expm(A*t); X0=[1;0]; t=[0:0.5:10]; for i=1:length(t); g(i)=double(subs(f(1),t(i))); end plot(t,g)

自动控制原理例题详解-线性离散控制系统的分析与设计考试题及答案

一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(* t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻上无稳态误差的随动系统。 3.(3分)简述线性定常离散系统稳定性的定义及充要条件。 解:若系统在初始扰动的影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2 +--= z z z z z X 解: 经过验证(1)X()z z -满足终值定理使用的条件,因此, 2 1 1 x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-==-s s s s G s G s G Ts h 解:11 1 1211 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解: 22()6()8()() ()(1)(68)3(1)2(2)6(4)1 (){2324},0 6 k k z C z C z C z R z z z z z C z z z z z z z c k k -+===-+ --+---=-?+≥ 二、(10分)已知计算机控制系统如图1所示,采用数字比例控制()D z K =, 其中K >0。设采样周期T =1s ,368.0e 1=-。

第7章 线性离散控制系统的分析 参考答案

第七章 习题与答案 7-1 离散控制系统由哪些基本环节组成? 答:离散控制系统由连续的控制对象,离散的控制器,采样器和保持器等几个环节组成。 7-2 香农采样定理的意义是什么? 答:香农采样定理给出了采样周期的一个上限。 7-3 什么是采样或采样过程? 答:采样或采样过程,就是抽取连续信号在离散时间瞬时值序列的过程,有时也称为离散化过程。 7-4 写出零阶保持器的传递函数,引入零阶保持器对系统开环传递函数的极点有何影响? 答:零阶保持器的传递函数为s e s H Ts --=1)(0。零阶保持器的引入并不影响开环系统 脉冲传递函数的极点。 7-5 线性离散控制系统稳定的充要条件是什么? 答:线性离散控制系统稳定的充要条件是: 闭环系统特征方程的所有根的模1

自动控制原理例题详解线性离散控制系统的分析与设计考试题及答案样本

------------------------------ 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω不不大于信号最高有效频率h ω2倍时,可以从采样信号)(* t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是至少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数至少,且在采样时刻上无稳态误差随动系统。 3.(3分)简述线性定常离散系统稳定性定义及充要条件。 解:若系统在初始扰动影响下,其输出动态分量随时间推移逐渐衰减并趋于零,则称系统稳定。稳定充要条件是:所有特性值均分布在Z 平面单位圆内。 4.(3分)已知X(z)如下,试用终值定理计算x (∞)。 ) 5.0)(1()(2 +--= z z z z z X 解: 通过验证(1)X()z z -满足终值定理使用条件,因而, 2 1 1 x()lim(1)X()lim 20.5 z z z z z z z →→∞=-==-+。 5.(5分)已知采样周期T =1秒,计算G (z ) = Z [G h (s )G 0(s ) ]。 ) 2)(1(1 e 1)()()(0++-==-s s s s G s G s G Ts h 解:11 1 1211 11(1)(1e )()(1)Z[](1)()s s 11e (1e )e z z z G z z z z z z z --------=--=--=+---++ 6.(5分) 已知系统差分方程、初始状态如下: )k (1)(8)1(6)2(=++-+k c k c k c ,c(0)=c(1)=0。 试用Z 变换法计算输出序列c (k ),k ≥ 0。 解:

第三章线性系统状态方程的解

第三章 线性系统的运动分析 §3-1线性连续定常齐次方程求解 一、齐次方程和状态转移矩阵的定义 1、齐次方程 状态方程的齐次方程部分反映系统自由运动的状况(即没有输入作用的状况),设系统的状态方程的齐次部分为:)()(t Ax t x = 线性定常连续系统:Ax x = 2、状态转移矩阵的定义 齐次状态方程Ax x = 有两种常见解法:(1)幂级数法;(2)拉氏变换法。其解为)0()(x e t x At ?=。 其中At e 称为状态转移矩阵(或矩阵指数函数、矩阵指数),记为:At e t =)(φ。 若初始条件为)(0t x ,则状态转移矩阵记为:)(00 )(t t A e t t -=-Φ 对于线性时变系统,状态转移矩阵写为),(0t t φ,它是时刻t ,t 0的函数。但它一般不能写成指数形式。 (1)幂级数法 设Ax x = 的解是t 的向量幂级数 +++++=k k t b t b t b b t x 2210)( 式中 ,,, ,,k b b b b 210都是n 维向量,则 +++++=-1232132)(k k t kb t b t b b t x )(2210 +++++=k k t b t b t b b A 故而有: ????? ?? ????== ====003 230 2 12 01!1! 3131 2 121b A k b b A Ab b b A Ab b Ab b K K

且有0)0(b x =。 故 +++++=k k t b t b t b b t x 2210)( ++ +++=k k t b A k t b A t Ab b 02 02 00! 1! 21 )0()! 1!21(22 x t A k t A At I k k ++ ++ += 定义:∑ ∞ == ++ +++=0 2 2! 1! 1!21K k k k k At t A k t A k t A At I e 则)0()(x e t x At ?=。 (2)拉氏变换解法 将Ax x = 两端取拉氏变换,有 )()0()(s Ax x s sx =- )0()()(x s x A sI =- )0()()(1x A sI s x ?-=- 拉氏反变换,有 )0(])[()(11x A sI L t x ?-=-- 则 ])[()(11---==A sI L e t At φ 【例3.1.1】 已知系统的状态方程为x x ?? ? ???=00 10 ,初始条件为)0(x ,试求状态转移矩阵和状态方程的解。 解:(1)求状态转移矩阵 ++ ++ +==k k At t A k t A At I e t ! 1! 21)(2 2φ 此题中: ???? ??=00 10A , ?? ? ???====00 0032n A A A 所以

自动控制原理例题详解-线性离散控制系统的分析与设计考习题及答案

精心整理 ----------2007-------------------- 一、(22分)求解下列问题: 1. (3分)简述采样定理。 解:当采样频率s ω大于信号最高有效频率h ω的2倍时,能够从采样信号)(*t e 中 完满地恢复原信号)(t e 。(要点:h s ωω2>)。 2.(3分)简述什么是最少拍系统。 解:在典型输入作用下,能以有限拍结束瞬态响应过程,拍数最少,且在采样时刻 3.(3 4.(解:x()∞5.(5解:(G 6.(5 解: 二、(c (i X s ) z 图1 1.(5分)试求系统的闭环脉冲传递函数 () () o i X z X z ;

2.(5分)试判断系统稳定的K 值范围。 解:1. 101 1 1 1 1 1 1()(1)(1)11(1)1(1)(1e 11e 1G G z z Z s s z Z s s z z z z z z z e -------?? =-?? +????=--??+?? =-----=---= 1 10101111111 1e () ()e 1e ()1()1e (1e )(e )(1e )(1e )e e o i K X z KG G z z X z KG G z K z K z K K z K K ------------== -++--=-+--=-+- 2.(5 三、(8 已知一、求解下列问题: 1.(3分) 简述离散系统与连续系统的主要区别。 解:连续系统中,所有信号均为时间的连续函数;离散系统含有时间离散信号。 2.(3分) 简述线性定常离散系统的脉冲传递函数的定义。 解:在系统输入端具有采样开关,初始条件为零时,系统输出信号的Z 变换与输入信号的Z 变换之比。 3.(3分) 简述判断线性定常离散系统稳定性的充要条件。 解:稳定的充要条件是:所有特征值均分布在Z 平面的单位圆内。 4.(5分) 设开环离散系统如图所示,试求开环脉冲传递函数)(z G 。

相关文档
相关文档 最新文档