文档库 最新最全的文档下载
当前位置:文档库 › Simulation An Emergency Department Simulation and a Neural Network Metamodel

Simulation An Emergency Department Simulation and a Neural Network Metamodel

An Emergency Department Simulation and a Neural Network Metamodel

Lt. Col. Robert A. Kilmer

Department of Systems Engineering

United States Military Academy

ATTN: MADN-F

West Point, NY 10996

914-938-2700

914-938-5665 (fax)

fr3615@https://www.wendangku.net/doc/5211909287.html,

Alice E. Smith

Larry J. Shuman

Department of Industrial Engineering

University of Pittsburgh

1031 Benedum Hall

Pittsburgh, PA 15261

412-624-5045

412-624-9831 (fax)

aesmith@https://www.wendangku.net/doc/5211909287.html,

Accepted April 1995 to the Journal of the Society for Health Systems, Special Issue on

Simulation

An Emergency Department Simulation and a Neural Network Metamodel

Lt. Col. Robert A. Kilmer

Department of Systems Engineering

United States Military Academy

ATTN: MADN-F

West Point, NY 10996

914-938-2700

914-938-5665 (fax)

fr3615@https://www.wendangku.net/doc/5211909287.html,

Alice E. Smith

Larry J. Shuman

Department of Industrial Engineering

University of Pittsburgh

1031 Benedum Hall

Pittsburgh, PA 15261

412-624-5045

412-624-9831 (fax)

aesmith@https://www.wendangku.net/doc/5211909287.html,

Abstract

This paper describes a discrete event stochastic simulation of a hospital emergency

department, and the development of a metamodel of that simulation. The

metamodeling technique used is artificial neural networks, which are trained using

the output of the simulation. The performance of the neural network metamodel is

compared to the simulation performance for estimating the mean and variance of

patient time in the emergency department.

1. Introduction

Due to the stochastic nature, complex dynamics and interactions of inputs, activities and outputs of the hospital emergency department (ED), researchers and practitioners have turned to discrete event stochastic simulation as the methodology for examining the emergency department system. A simulation allows patient flow, layout, staffing, procedure and equipment alterations to be tested so that optimal control strategies for the ED can be developed. Motivation and generic structure for simulation of health care environments have been discussed by Bressan, Faccin and Romanin Jacur (1988) and Mahachek (1992). Published research on simulation in health care has

addressed facilities planning (Dumas (1984)) and personnel scheduling (Ishimoto et al. (1990)). The critical care aspects of surgery have been the subject of simulations (Hunter, Asian and Wiget (1987), Lowery (1993)). Previous work in simulating the emergency department include Saunders, Makens and Leblanc (1989) and Weissberg (1977). These latter two simulations are constructed in a similar manner to the one described in this paper, but with less detail and flexibility.

There are drawbacks to the use of simulation, especially in environments where decisions are made frequently and under tight time constraints. To circumvent the long running times and multiple replications required for simulation analysis, metamodels can be developed and used. The objective of the metamodel is to accurately reproduce the simulation over wide ranges of interest, and to be computationally much more efficient than the simulation itself. A recent overview of simulation metamodeling can be found in Yu and Popplewell (1994).

Artificial neural networks, since they function as parallel universal approximators, have capabilities which make them good candidates for simulation metamodeling. This idea was pursued on very limited problems by Badiru and Sieger (1993), Hurrion (1992), Padgett and Roppel (1992), Pierreval (1992), and Pierreval and Huntsinger (1992), and was the subject of the authors' earlier work (Kilmer and Smith (1993), Kilmer, Smith and Shuman (1994)). In the last paper cited, it was shown that artificial neural networks trained with simulation output could effectively develop prediction intervals that were competitive in quality with those developed directly from the simulation model. The empirical basis of that work was a small inventory system from Law and Kelton (1991). This paper describes the neural network metamodeling technique applied to a large hospital ED simulation, discusses results, and makes comparison between the outputs of the neural metamodel and the simulation itself. The primary distinction between this work and earlier published work on metamodeling is the problem domain, health systems, and the size and complexity of the simulation which is to be metamodeled.

2. Overview of the ED Simulation

2.1. The Emergency Department Environment

The hospital studied is a 750-bed medical center located in Pittsburgh offering comprehensive medical and surgical services, with an ED which services over 4,200 patients per month. To consider possible changes to operating policies and procedures without disrupting vital care-providing services, a simulation model of the ED was commissioned by the hospital, and built by the Department of Industrial Engineering of the University of Pittsburgh in conjunction with Data Communications, Inc., a Pittsburgh firm developing decision support systems for health care providers. An important output variable of interest was mean patient time in the ED.

2.2. The Simulation Structure

In this project, the ED was modeled with the SIMAN simulation language running on a PC. The simulation is contained in two files, or frames. The model frame contains all the basic constructs that are used to describe or represent the actual ED system. Patient related services and locations in the ED are represented in the model frame in separate sections called stations. These stations include such areas as registration, triage, treatment rooms, X-ray, etc. Building the simulation model frame in this modular manner allows the simulation to be more easily verified and validated and, if necessary, to be modified or expanded. The experiment frame contains data distributions such as arrival times, service times, and patient flow patterns as well as the constructs for obtaining output data from the simulation. Since data related changes are made only to the experiment frame, the user can perform different simulation experiments without actually changing the structure of the system as represented in the model frame.

2.3. Simulation Constructs

The simulation consists of the following: the ED physical facilities and layout, servers (e.g. physicians, nurses and other support personnel), patients, and a procedure for representing patient arrivals, patient activities and treatments, server shift changes and server breaks. The simulation is considered to be terminating, with termination considered to take place at 7:30 AM each morning. In order to make development of simulation of the ED tractable, certain simplifying, but

realistic, assumptions were necessary. These assumptions along with the simulation constructs are listed below.

Physical Layout of the ED

The physical facilities of the ED consist of 18 treatment rooms (two of which have two beds, while the rest have one bed), a waiting room, a registration desk, a triage room, an X-ray area, and separate stations for the unit secretary, nurses, nurses aides and physicians.

There are four possible entrances/exits to the ED. Two of these are represented as entrances only. Those patients whose mode of arrival is either helicopter or ambulance enter through the entrance which is closest to the helicopter dispatch office. All other ED patients i.e., walk-in patients, enter through the entrance which is next to the patient waiting room and leads into the registration desk area. All of the passageways to the ED are used as exits. Which exit that is used depends on the destination of the patient on departure from the ED.

Patients

Patients are represented as entities that flow through the simulation model. Although there are endless types of patients that visit the ED, it is possible to categorize the patients into three modes of arrival - life flight, ambulance/medic, and walk-in (includes auto, bus, etc.). Patient arrival distribution and parameters change every two hours over a 24 hour period, and consist of gamma and exponential distributions. The proportion of patient arrivals by each mode of arrival is distributed with a discrete probability mass function which is fixed for the 24 hour period.

A few patients are directly admitted to the hospital without treatment in the ED, and will be assigned to a treatment room in the ED only if the wait for a hospital bed is longer than 60 minutes. The time for a direct admit patient to receive a hospital bed is assumed to be distributed uniformly from 30 to 180 minutes.

For non-direct admit patients, an acuity level is assigned: emergent, urgent, or non-urgent. The probability of a patient having a particular acuity level is modeled as a fixed discrete probability mass function which depends on the patient's mode of arrival. An additional

categorization of patients is on the type of care that will be provided to the patient - simultaneous care (service is provided only once by each server), sequential care (service is provided several times by each server), or observational care (nurses only check the patient occasionally). A final categorization is on the basis of patient disposition: left without treatment; treated and released; admitted - general medical/surgical unit; admitted - intensive care unit; patient died - morgue. Servers

The facilities and staff are divided into two categories, those that provide service from a fixed station (e.g. secretaries) and those that travel throughout the ED (e.g. physicians and nurses). Based on these distinctions the stationary servers are modeled as resources and the mobile servers are modeled as transporters under the SIMAN conventions. This allows these servers to move freely throughout the ED as well as to transport patients from one location to another. There are three types of physicians - attending, third year residents, and first or second year residents. There are six types of nurses - nurses aide, charge nurse, triage nurse, emergent patient area nurse, urgent patient area nurse, and non-urgent patient area nurse. Service times of physicians and nurses are treated as exponential distributions with means dependent on the acuity level and care type (see below) of the patient. Service times of registration and admitting personnel are modeled as uniform distributions with ranges dependent on the arrival mode of the patient.

Server breaks are combined with lunches to give each worker the unofficial standard 45 minute lunch/dinner break rather than the officially prescribed 30 minute lunch break and two ten minute breaks.

Patient Flow

Direct admit patients (i.e. destination is an in-patient unit) of any mode of arrival or level of acuity have their own distinct flow through the ED: they go to registration and either depart the ED immediately and go to the admitting section of the hospital or are put in an ED treatment room, under observation by the staff, and then depart the ED and go to the admitting section where a bed is located.

All patients with destinations other than admitting use the following paths:

The flow of helicopter and ambulance patients, from entry to the ED until arrival at a treatment room, is: assigned a treatment room and a nurse; transported to a treatment room; registration clerk obtains registration information in the treatment room.

For walk-in patients, the flow from entry to the ED until arrival at the treatment room depends on the acuity of the patient. If the walk-in patient's acuity level is emergent, then after a short time in a triage station, the patient follows the path described above for helicopter and ambulance patients. If the walk-in patient's acuity level is not emergent then the patient goes to registration and then triage, waits (if necessary) for a treatment room, is assigned a treatment room and a nurse, and finally is transported to the treatment room. Once the patient arrives in a treatment room, the patient flow no longer depends on mode of arrival, but depends on acuity level, X-ray requirements and laboratory requirements.

Lab and X-ray requirements consist of three categories each - none, routine and extensive.

A category of lab requirements and a category of X-ray requirements are assigned to each patient via discrete probability mass functions dependent on acuity level. Lab and X-ray service times are exponential distributions with means that depend on the patient's acuity level. The number and type of laboratory tests and X-rays influence whether the patient should be served simultaneously (care type = 1), sequentially (care type = 2), or just observed (care type = 3) by the ED staff.

Once a patient has been treated in the ED and the decision to admit is made, the patient will be admitted to either a general medical/surgical unit or to an intensive care unit. Waiting times for beds at these two types of units are distributed exponentially. A simplified depiction of the patient flow through the emergency department simulation is presented in Figure 1.

INSERT FIGURE 1 HERE.

2.4. Validation of the Simulation

Output data from the simulation was compared with observed data from the ED system. The quantity of patients and time in the system for different patient categories were extracted from the hospital databases for a two month period, and estimates were made of mean values.

These were compared to the estimates from the simulation model, where the simulation results were the averages of 10 replications of 61 days (two months) each. The comparisons are summarized in Table 1. These results show that the computer simulation is producing results which are consistent with what has actually occurred in the ED.

Table 1. Simulation Comparison with ED Records (in Replications of 61 Days Each).

3.0. Development of the Simulation Metamodel

3.1. Motivation for a Neural Network Based Metamodel

To alleviate the long running times necessary to explore and optimize a simulated scenario, a metamodel was developed. This is an especially important step for an environment such as the emergency department, where the stochastic nature causes queues to build up frequently and with little warning, and decisions need to be made quickly to relieve the resultant congestion. If a metamodel were available, it could then be used as a "real-time" decision aid to determine the best alternative to resolve the problem.

There are various approaches to metamodeling of simulations (see Barton (1992) for an excellent overview), but most are based on simplifying algorithmic or functional assumptions, such as polynomial regressions. Another disadvantage of traditional metamodeling techniques is that they are often limited to a subset of the simulation domain, and must be redeveloped or discarded when exploring other ranges. This would clearly be unworkable in a hospital emergency department where quick decisions of high quality must be made over the entire simulation domain (and possibly slightly beyond the simulation domain).

Neural networks offer universal function approximation capability based wholly on the data itself, i.e. they are purely empirical models which can theoretically mimic any relation to any

degree of precision (Funahashi (1989), Hornik, Stinchcombe and White (1989)). In practicality, neural networks are limited in their approximation capability by finite and noisy data sets, and stochastic relationships. Limited research has been done on using neural networks as simulation metamodels; e.g. see the papers cited in Section 1. This research has been more of a conceptual nature, than a workable methodology. Earlier papers by the authors (Kilmer and Smith (1993) and Kilmer, Smith and Shuman (1994)) have addressed using neural network metamodels to perform the primary functions needed by discrete event stochastic simulation - estimation of mean output values, estimation of variance of output values, and development of prediction and confidence intervals for all ranges of the simulation domain. That work on a textbook simulation problem was encouraging, and prompted the work reported herein.

It must be noted that neural networks and the other metamodeling techniques commonly used are deterministic. The stochastic aspect of the simulation is explicitly lost, however since only one replication using the metamodel is needed. Therefore, while possibly losing precision when moving from the simulation to a metamodel, the user also loses the rich stochastic framework of the simulation. Surrogates for the stochastic elements, such as expected value, moments and percentiles, must be used in deterministic metamodels. Thus the tradeoffs involve imprecision and simplification for increased speed.

3.2. Selection of Training Sets and Neural Network Architectures

The neural network metamodel was developed by creating two neural networks which work in parallel (see Figure 2). The first network predicts mean time in the ED for a given patient, and the second network predicts the variance of the mean time in the ED for that same patient. These parallel models work together to create prediction intervals over the simulation domain. The parallel neural networks can also work individually if the user desires. A subset of the controllable variables described in Section 2 was selected for inclusion in the neural network metamodel. The input variables were the means of the exponential random variables describing (a) intensive care unit bed waiting time, (b) general/surgical unit bed waiting time, (c) lab service time and (d) X-ray service time. Four continuous input neurons were used, one for each input

variable. A designed training set of 81 observations was developed, while a designed testing set of 80 observations spanned the same variable ranges, but included different values (see Figure 3). Figure 3 shows each of the four variables relative to the other three variables. For example, row one, column two shows combinations of intensive care waiting time and general care waiting time for the training set (Figure 3a) and for the testing set (Figure 3b).

This test set was designed to validate the trained neural network on interpolation rather than extrapolation. While the simulation metamodel may be called upon to operate in an extrapolation mode, this might cause extremely misleading results (for more detail, see Kilmer, Smith and Shuman (1994)). Ten replications at each observation were used for all training points. One hundred replications at each observation were used for all testing points, so that the "correct" answer is known for each testing point.

INSERT FIGURES 2 AND 3 HERE

For the expected value neural network, there was one output variable of interest -expected time in the ED per patient. This was described by one continuous output neuron. In between there were two hidden layers with four neurons in each layer. For the variance neural network, the single output was also continuous and described the variance of the mean time estimate; i.e. the standard error of the mean. This was a more complex problem and necessitated an increased neural network size to two hidden layers with seven neurons in each. Both networks' values of the number of hidden neurons were identified by brief experimentation.

Two methods of training the neural network for the expected time in the ED were used. The first condensed the simulation replications into one expected value of time in the ED, and used that as the target output. For this method, there is one training pair for each combination of input values. This simplifies training and minimizes the training set, but removes some of the information that the replications contain. The second method used all replications individually, so that each combination of input values had training pairs equal to the number of replications. These methods are compared in detail in the authors' earlier papers (Kilmer and Smith 1993,

Kilmer, Smith and Shuman 1994)). The neural network which predicts variance was trained with one training pair per combination of input values.

Networks were trained with a modified backpropagation algorithm using a smoothing factor, and the network which achieved the minimum mean absolute error over the entire training set was kept as the final trained network.

4.0. Results Comparing Direct Simulation and the Metamodel

The performance of the neural network metamodel was compared against direct simulation in three ways. The neural network's accuracy relative to the simulation for a given set of 10 replications was compared. The same comparison was made against 10 sets of 10 replications each of the simulation, representing the "true value" of the simulation output. Finally, prediction intervals were constructed from the neural network metamodel and from a given set of 10 simulation replications. These were compared by generating 100 replications of the simulation and placing them within each prediction interval.

4.1. Accuracy of the Metamodel Compared to Simulation

A first comparison of performance is to examine the accuracy of the neural network predictions over the test set for mean time in the ED and variance of that time. Examination of the training set is not meaningful since a neural network has so many free parameters, it can approximate any particular data set very accurately. The more important aspect of neural network performance is how well the model can generalize. That is, its accuracy on inputs different from the training set but still within the model domain. Figures 4 and 5 compare the test set predictions for expected value and variance of the neural network and direct simulation. In these figures, the open markered lines are the simulation output and the dark markered lines are the neural network output. Note that for the neural network, the test set predictions are an interpolation task, while for the direct simulation, the test set is input and replicated as any set of inputs would be. This means the simulation is essentially "perfect" on any set of inputs.

INSERT FIGURES 4 AND 5 HERE

As Figures 4 and 5 indicate, the neural network did extremely well on generalizing its training to the test set. The expected value of time in the system was an easier problem to learn, and therefore predictions are more accurate than for the variance. Variance predictions could probably be improved by training the variance neural network metamodel on sets of replications, i.e. use 10 sets of 10 replications each to develop 10 different variance values for each input vector. This of course would also increase the amount of work to develop the neural network metamodel since 100 instead of 10 replications would be required at each training and testing point.

A second comparison of the metamodel performance with direct simulation was done. Neural network predictions and two sets of 10 simulation replications (A and B) were compared to the 100 replications of the simulation at each of the test set points. The 100 replications were regarded as the "true value" of mean time and variance. Table 2 compares the mean absolute error (MAE) of the neural network and the two 10 replication simulation sets to the "true value" (the one generated by 100 replications) of the test set. From Table 2 it can be seen that even though the neural network metamodel is called upon to interpolate, performance is better than the two sets of direct simulation for both expected value and variance of time in the ED. Both the MAE over the test set and the single maximum error for the neural network metamodels are less than both simulation sets. The neural network trained on replications performed slightly better than the network trained on averages. This is consistent with the earlier observations of Kilmer, Smith and Shuman (1994).

Table 2. Error Comparisons of the Metamodel and Two Simulation Sets to the "True Value" of

the Simulation.

* The neural network for variance estimation was the same for both the individual replications and averages neural networks for prediction of the mean.

4.2. Comparison of Prediction Intervals

One of the primary uses of simulation is comparing various alternatives with respect to particular measures of interest. One way the comparison can be made is with confidence and prediction intervals, where confidence intervals are associated with average values and prediction intervals are associated with individual observations. A comparison of the intervals generated through the neural network metamodel and by direct simulation is a fundamental test of the functionality of the metamodel approach. Prediction intervals for confidence factors of 80%, 90%, 95% and 99% were generated for the test set using the first set of 10 replications of the simulation (Set A in Table 2) and the two parallel neural metamodels (one for expected time and the other for variance). Table 3 shows the comparison of these intervals by the number of 100 separate simulation replications which fell within the interval, and on the low and high sides of the interval.

Table 3. Prediction Interval Results for Test Set.

Table 3 shows that the neural network was very accurate in terms of the appropriate number of replications falling within the intervals, and the neural network trained on individual replications was slightly more precise than that trained on means. All the intervals in Table 3 do not reflect the symmetry expected in prediction intervals. That is, all intervals showed a marked differential in those observations on the high side of the interval versus those on the low side of the interval. An examination of the simulation output from those 100 replications show a positive skewness. This is not unexpected since time in the ED has a definite lower bound, but could

extend out in time relatively unbounded in isolated instances. Although prediction intervals built using the predicted mean and variance cannot reflect asymmetries, predicting other statistics could. For example, percentiles could be predicted by a metamodel similarly trained to the variance network.

5.0. Discussion of Results

This paper has shown the real world application of an ED simulation and its neural network based metamodel. There are limitations of the metamodel. It is valid only for the specified parameter domains included in the training set. The number of replications for which the estimate of variance is valid is fixed at ten. The metamodel, as developed, cannot reflect the skewness of the distribution output. Similarly, the metamodel is completely deterministic so the stochastic variability of output of the simulation is lost, unless parallel models are used to also estimate the variance.

However, for most day to day decisions in the ED, the functionality required of the simulation is to estimate the mean value of the output variable(s), and to develop confidence intervals about that estimate. This information can also be used to perform response surface analysis and optimization. For these functions, the neural metamodel is an adequate surrogate for the simulation. The use of the metamodel does not require replications, and the software network runs in real time. For applications with space, weight or extreme time constraints, the neural metamodel could be translated into hardware form (VLSI).

The neural metamodel does not need to remain static. It can be updated through additional training as more simulation replications become available. The neural metamodel could also be updated through direct observation of the system, if that were possible. Both of these additional training methods could be applicable to the ED. More simulations may be run as computational resources and time allows, and the system may be observed directly through special studies or daily records. However, changes to the simulation (e.g., distribution parameters, addition or subtraction of variables) would invalidate the neural network metamodel, and a new metamodel reflecting the altered simulation would need to be developed.

Future research efforts in this area should include training with multiple sets of replications for variance estimates, and work on establishing the trade offs of using simulation computation time for replications versus new training points. Updating the neural metamodel with new simulation runs could also be investigated to develop a workable methodology. Another area mentioned in the previous section is using statistics besides mean and variance to account for asymmetries in the system. This is especially applicable in ED simulations of patient time in the system where one would expect a skewed distribution. The authors are pursuing efforts in all these areas.

References

Barton, R. R., 1992, "Metamodels for simulation input-output relations," Proceedings of the 1992 Winter Simulation Conference.

Badiru, A. B. and D. B. Sieger, 1993, "Neural network as a simulation metamodel in economic analysis of risky projects," Technical Report, Department of Industrial Engineering, University of Oklahoma.

Bressan, C., P. Facchin and G. Romanin Jacur, 1988, "A generalized model to simulate urgent hospital departments," Proceedings of the IMACS Symposium on System Modelling and Simulation, 421-425.

Dumas, M. B., 1984, "Simulation modeling for hospital bed planning," Simulation, vol. 43, no. 2, 69-78.

Fishwick, P. A., 1989, "Neural network models in simulation: a comparison with traditional modeling approaches," Proceedings of the 1989 Winter Simulation Conference, 702-710. Funahashi, K., 1989, "On the approximate realization of continuous mappings by neural networks," Neural Networks, vol. 2, 183-192.

Hornik, K., M. Stinchcombe and H. White, 1989, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, 359-366.

Hunter, B., S. Asian and K. Wiget, 1987, "Computer simulation of surgical patient movement in a medical care facility," Proceedings of the 11th Annual Symposium on Computer Applications in Medical Care, 692-697.

Hurrion, R. D., 1992, "Using a neural network to enhance the decision making quality of a visual interactive simulation model," Journal of the Operations Research Society, vol. 43, 333-341. Ishimoto, K, T. Ishimitsu, A. Koshiro and S. Hirose, 1990, "Computer simulation of optimum personnel assignment in hospital pharmacy using a work-sampling method," Medical Informics, vol. 15, 343-354.

Kilmer, R. A. and A. E. Smith, 1993, "Using artificial neural networks to approximate a discrete event stochastic simulation model," Intelligent Engineering Systems Through Artificial

Neural Networks, Volume 3, (C. H. Dagli, L. I. Burke, B. R. Fernandez, J. Ghosh, Editors), ASME Press, 631-636.

Kilmer, R. A., A. E. Smith and L. J. Shuman, 1994, "Using neural network metamodels to develop prediction intervals for discrete event simulation," Intelligent Engineering Systems Through Artificial Neural Networks, Volume 4, ASME Press, 1141-1146.

Law, A. and D. Kelton, 1991, Simulation Modeling and Analysis. McGraw-Hill, New York. Lowery, J. C., 1993, "Multi-hospital validation of critical care simulation model," Proceedings of the 1993 Winter Simulation Conference, 1207-1215.

Mahachek, A. R., 1992, "An introduction to patient flow simulation for health-care managers,"

Journal of the Society for Health Systems, vol. 3, 73-81.

Padgett, M. L. and T. A. Roppel, 1992, "Neural networks and simulation: modeling for applications," Simulation, 295-305.

Pierreval, H., 1992, "Training a neural network by simulation for dispatching problems,"

Proceedings of the Third Rensselaer International Conference on Computer Integrated Engineering, 332-336.

Pierreval, H. and R. C. Huntsinger, 1992, "An investigation on neural network capabilities as simulation metamodels," Proceedings of the 1992 Summer Computer Simulation Conference, 413-417.

Saunders, C. E., P. K. Makens and L. J. Leblanc, 1989, "Modeling emergency department operations using advanced computer simulation systems," Annals of Emergency Medicine, vol. 18, 134-140.

Weissberg, R. W., 1977, "Using interactive graphics in simulating the hospital emergency department," in Emergency Medical Systems Analysis (T. R. Willemain and R. C. Larsen, Editors), Lexington Books, Lexington MA, 119-140.

Yu, B. and K. Popplewell, 1994, "Metamodels in manufacturing: a review," International Journal of Production Research, vol. 32, 787-796.

Figure 1. Patient Flow Through the Emergency Department Simulation.

Figure 3b. Testing Set Values for Emergency Department Simulation.

Sim Trade 国际贸易实务实验快速入门

快速入门 说明:本篇快速入门为一套完整的SimTrade实际业务操作,交易方式为L/C + CIF,由于不同交易方式下贸易流程不尽相同,本例中的数据资料(加横线部份)仅供参考,请依具体情况来完成实际操作。 (一) 交易准备阶段 1 学生以出口商角色登录,输入用户名(如xyz),在"选择用户类型"下拉框中选择"出口商",点"登录系统",进入出口商业务主页面; 2 创建公司。点"资料",可查看公司注册资金、帐号、单位代码、邮件地址等信息,还可以修改登陆密码,其它资料逐项填写如下: 公司全称(中文):宏昌国际股份有限公司 公司全称(英文):GRAND WESTERN FOODS CORP. 公司简称(中文):宏昌

公司简称(英文):GRAND 企业法人(中文):刘铭华 企业法人(英文):Minghua Liu 电话:86-25-23501213 传真:86-25-23500638 邮政编码:210005 网址:https://www.wendangku.net/doc/5211909287.html, 公司地址(中文):南京市北京西路嘉发大厦2501室 公司地址(英文):Room2501,Jiafa Mansion, Beijing West road, Nanjing 210005, P.R.China 公司介绍:我们是一家专营食品的公司,长期以来致力于提高产品质量,信誉卓著,欢迎来函与我公司洽谈业务! 可自由添加图片 注意事项:最好使用GIF或JPG格式的图片,尺寸建议在120*120(像素)左右。 填写完毕后,点"确定"; 3 以同样方法登陆其他四个角色(进口商、工厂、出口地及进口地银行),分别创建基本资料。 (1)进口商资料如: 公司全称:Carters Trading Company, LLC 公司简称:Carters 企业法人:Carter 电话:0016137893503 传真:0016137895107 网址:https://www.wendangku.net/doc/5211909287.html, 公司地址(注意应根据所属国家来填写):P.O.Box8935,New Terminal, Lata. Vista, Ottawa, Canada 公司介绍:We are importers in all items enjoying good reputation! (2)工厂资料如: 公司全称:冠驰股份有限公司 公司简称:冠驰 企业法人:张弛 电话:86-25-29072727 传真:86-25-29072626 邮政编码:210016 网址:https://www.wendangku.net/doc/5211909287.html, 公司地址:南京市中正路651号3楼 公司介绍:我公司为信誉卓著的厂商,产品深受客户喜爱,欢迎与我公司洽谈业务,我们

TMT国际贸易实务模拟实习心得

TMT国际贸易实务模拟实习心得 英语112班顾清芬26号 最初接触到TMT(Teach Me Trade)的时候,我心里是没有任何压力的,我以为外贸对于一个英语专业的学生来说,无非是用简单的英语写一些充满客套语言的信,当然这些“信”用专业的语言来讲是叫做“函电”的。在这次贸易模拟实习之前,我甚至以为,自己作为一个英语专业的学生,只要把英语学好了,毕业后如果从事工作的话,肯定可以理所应当的考虑进外企,从事外贸类工作,而且可以得心应手的胜任这份工作。 然而,这次实习之后,我便总结出来,自己以前的想法是大错特错的。这次的国际贸易模拟实习总共分为十六个操作,要求学生一个一个完成这些操作。我记得做第二个任务时(要求给出商品报价),我遇到了极大的困难,觉得简直无从着手,根本不知道自己如何才能根据短短几行字的操作要求就把这些商品的报价算出来。这让我印象非常深刻,因为这比我预期的实践难多了,而且自己要学会查资料,自己寻找有用讯息,那天晚上,寝室内有同学早就完成了任务,我在同学的好心帮助与细心讲解下,才艰难地把这个操作成功做完。成功了解并习惯了这样的计算方式后,我终于可以独立完成后面的作业了。在实习过程中我还发现有很多涉及法律知识,在什么情况下怎么做做什么是合法的如果我们之前没有一个系统的理解的话就很难做出正确的决定。国际货物买卖合同的成立,必须经过一定的法律步骤,国际货物买卖合同是对合同当事人双方有约束力的法律文件。履行合同是一种法律行为,处理履约当中的争议实际上是解决法律纠纷问题。而且,不同法系的国家,具体裁决的结果还不一样。这就要求从实践和法律两个侧面来研究本课程的内容。 每完成一个操作,我的心里都有小小的成就感,我也同时认识到关于贸易方面的学问其实是博大精深而又至关重要的,每一个数都要算的清清楚楚,每一份文件都要一丝不苟的填,还要注意格式,没写一封信都要注意语言措辞是否礼貌得当。而这种与人交流沟通,求得双方互利共赢,皆大欢喜的过程又让我觉得非常有趣与人性化。 我对这次的实习感悟颇深,因为它不仅让我改正了之前对贸易的错误认识,更深刻地提醒了我多方面知识的重要性。在今天这个科技发达,自动化技术充斥市场,全球沟通电子化的时代,电脑操作是多么的重要,这已经算是一种人人该懂的基本技能。同时,无论自己的专业是什么,在学精一门专业的同时,也应当对各方面的知识有所涉猎,例如,英语与贸易其实是相通的,语言应被当成一种工具,辅助我们更好的学习。其实,知识的海洋甚为广阔,无论我们怎么学,都只是冰山一角而已。然而,正是知识的无穷无尽,激励着我们不断去探索,去发现,我们的目标并非掌握所有的知识,而是基于兴趣与造福人类的基础上,利用有限的知识,让我们的生活变得更加美好。

国际贸易实务模拟试题及答案

单项选择题(5X2=10分) 1. 海运提单和航空提单( C ) A.均为物权凭证 B.均为可转让的物权凭证 C.前者作物权凭证,后者不可转让,不作物权凭证 D.前者不作物权凭证,后者作物权凭证 2. CIF合同的货物在刚装船后因火灾被焚,应由(D) A. 卖方负担损失 B. 卖方请求保险公司赔偿 C. 买方委托卖方向保险公司索赔 D.买方负担损失并请求保险公司赔偿 3.关于接受的生效,英美法系实行的原则是(A) A.投邮生效B.签署日生效 C.到达生效D.双方协商 4.海运提单之所以能够向银行办理抵押贷款,是因为(D ) A.海运提单是承运人签发的货物收据 B.海运提单可以转让 C.海运提单是运输契约的证明 D.海运提单具有物权凭证的性质 5.为防止运输途中货物被窃,应该投保(C )。 A. 一切险、偷窃险 B. 水渍险 C. 平安险、偷窃险 D. 一切险、平安险、偷窃险 6.汇票根据(B )不同,分为银行汇票和商业汇票。 A.出票人 B.付款人 C.受款人 D.承兑 7.银行审单议付的依据是( C )。 A. 合同和信用证 B. 合同和单据 C. 单据和信用证 D. 信用证和委托书 计算题(10分) 1.某商品出口我对外报FOB净价180美元,若国外客户要求改报含佣4%的价格时,我应对外报价多少? 解:FOBC4%价=净价/(1-佣金率)=180/(1-4%)=187.5(美元)。 2.某批商品的卖方报价为每打60美元CIF香港,若该批商品的运费是CIF价的2%,保险费是CIF价的1%,现外商要求将价格改报为FOBC3%.问FOBC3%应报多少? 解:FOB价=CIF价—运费—保险费=60—60×2%—60×1%=58.2美元 FOBc3%=FOB价/(1—佣金率)=58.2/(1-3%)=60美元 3.一批出口货物做CFR价为250000美元,现客户要求改报CIF价加20%投保海运一切险,我方同意照办,如保险费率为0.6%时,我方应向客户报价多少? 解:CIF=CFR/(1-投保加成*保险费率)=CFR÷(1-120%×0.6%) =250000÷0.9928 =251813.05美元 案例分析(30分) 1.某口岸出口公司按CIF London向英商出售一批核桃仁,由于该商品季节性较强,双方在 合同中规定:买方须于9月底前将信用证开到,卖方保证运货船只不得迟于12月2日驶抵目的港。如货轮迟于12月2日抵达目的港,买方有权取消合同。如货款已收,卖方须将货款退还买方。问这一合同的性质是否属于CIF合同? 按CIF条件签订的合同属于装运合同,其特点是“凭单据履行交货义务,并凭单据付款”。只要卖方按合同的规定将货物装船并提供齐全的、正确的单据,即使货物在运输途中已遭灭失,买方也不能拒收单据和拒付货款。所以,本案例的合同不属于CIF合同。

国际贸易实务实训大纲

《国际贸易实务》实训大纲 适用对象:经济学专业 一、课程性质、目的与任务: 国际贸易实务实训是市场营销本科专业重要的综合性实践教学内容之一。主要是对国际贸易的整个流程进行模拟训练,包括、交易磋商、合同的签订、合同的履行等,涉及到银行、保险、海关、运输等各个部门,需要填制各种单据,包括信用证申请书、报验单、报关单、出口结汇单据等。 二、教学基本要求: 国际贸易实务实训覆盖了国际贸易市场营销、国际贸易商法、国际贸易实务、电子商务等课程教学的主要内容,其操作性很强。通过实验可以使学生全面掌握进出口业务的整个流程及具体内容,主要包括: 1.进出口贸易合同的磋商与签订。 2.进出口贸易合同履行的整个流程。 3.进出口业务中各种单据的制作。 实验方式:本课程实验内容进行上机操作。 基本要求: 1.认真阅读实验指导书,以便顺利完成实验要求。 2.每人至少完成一笔进口业务和一笔出口业务。进口业务与出口业务可以同时进行。 3.写出实验日记。 4.实验完毕后应编写实验报告,实验报告为按实验指导书要求编写的实验结果,包括进口业务和出口业务所涉及的各项内容,交打印版和电子版各一份。 三、课程内容与学时分配:

四、考核方法与规定 本课程实验教学的成绩评定采用考查方法进行,根据实验态度、出勤率、实验质量、实验日记、实验总结、实验报告等综合评定。成绩分为优、良、中、及格、不及格五等。 五、综合训练其它有关问题的说明与建议: 1.本课程与其相关课程的联系与分工: 本课程的先修课程是《国际贸易》、《国际贸易实务》等。 2.课外练习方面的要求: 要求学生课外多阅读贸易谈判方面的参考书籍;查找外贸业务的相关案例。 \大纲制定人:田小伟大纲审定人 制定时间:2014.08.27

国际贸易实务知识点总结

国际贸易实务是一门专门研究国际间商品交换的具体过程的学科,是一门具有涉外活动特点的实践性很强的综合性应用科学。研究国际货物买卖的有关理论和实际业务。 国际贸易是指世界各国、各地区之间所进行的商品交换,包括服务、技术等特殊商品的交换。 二、国际货物买卖合同适用的法律 1、国内法; 法律冲突 通常在国内法中规定冲突规范的办法,可选择一国的法律、按最密切联系的原则;2、国际贸易惯例(ITC); 由国际组织将在国际贸易业务中反复实践的习惯做法,加以编纂与解释所形成的非强制性文件。 贸易惯例的性质:本身不是法律,没有普遍的强制性,只有当事人在合同中规定加以采用时,才对合同当事人有法律约束力。在合同中作了与国际贸易惯例不同的规定,以合同规定为准。 《国际贸易术语解释通则》、《跟单信用证统一惯例》、《托收统一规则》常用的三大贸易惯例 3、国际条约 (1)国际条约是两个或两个以上主权国家为确定彼此的政治、经济、贸易、文化、军事等方面的权利和义务而缔结的诸如公约、协定、议定书等各种协议的总称。 (2)《联合国国际货物销售合同公约》(United Nations convention on contracts for the international sales of goods 简称CISG) (3)公约分四部分:适用范围和总则;合同的订立;货物销售;最后条款共101条(4)中国关于公约提出的两项保留: 公约适用范围的保留 合同形式的保留 (三)合同的合法性和有效性 一个依法成立的合同,在当事人之间具有相当于法律的效力。因此,只有一个合法的、有效的合同,才具有这种效力,从而对买方和卖方产生约束力。 1、合同的合法性。对于一个合法的合同,一般应注意以下几个问题: ①公共政策; ②违禁品问题; ③敌对国贸易问题; 2、合同的有效性。对于合同的生效要素,一般应注意以下几点: ①订约人的能力:自然人(未成年人、醉酒者、精神病人无订约能力)、法人; ②意思是真实的(欺诈、胁迫、错误等无效); ③约因或对价; ④合同的形式:我国法律规定:合同必须按规定的形式和程序成立才有效。涉外合同必须是书面的。 2、出口贸易磋商和出口合同的订立 根据出口贸易计划,与客户进行接触联系。在与贸易对象建立业务关系之初,为简化今后的贸易磋商的内容,可先与客户就一般交易条件达成协议。

国际贸易实务—模拟试题及答案

一单项选择题 1、我方出口大宗商品,按CIF Singapore 成交,运输方式为Voyage Charter,,我方不愿承担卸货费用,则我方应选择的贸易术语的变形是 ( C )。 A、CIF Liner Terms Singapore B、CIF Landed Singapore C、CIF E x Ship’s Hold Singapore D、CIF Ex Tackle Singapore 2、按照《INCOTERMS2000》的解释,以FOBST成交,则买卖双方风险的划分界限是(B以船舷为界)。 4、在CIF条件下,Bill of Lading对运费的表示应为( A )。 A.Freight Prepaid B.Freight Collect C.Freight Pre-payable D.Freight Unpaid 5、在进出口业务中,能够作为物权凭证的运输单据有( B )。 A.Rail Waybill B.Bill of Lading C.Air Waybill D.Parcel Post Receipt 6、预约保险以( B )代替投保单,说明投保的一方已办理了投保手 续。 A、B/L B、Shipping advise from abroad C、Mate,s receipt D、Sales contract 7、我某公司与外商签订一份CIF出口合同,以L/C为支付方式。国外 银行开来的信用证中规定:“Latest shipment 31st, May, L/C validity till 10th, June.”我方加紧备货出运,于5月21日取得大副收据,并换回正本已装船清洁提单,我方应不迟于( C )向银行提交单据。 A.5月21日 B.5月31日 C.6月10日 D.6月11日 8、某批出口货物投保了CIC 的WPA,在运输过程中由于雨淋致使货物遭受部分损失,这样的损失保险公司将( C )。 A、负责赔偿整批货物 B、负责赔偿被雨淋湿的部分 C、不给于赔偿 D、在被保险人同意的情况下,保险公司负责赔偿被雨淋湿的部分 9.在短卸情况下,通常向( B )提出索赔。 A. the seller B. the carrier

国际贸易实务模拟操作实训报告

湖南女子学院 外贸单证实训报告 (2014年下学期) 院系经济与管理系专业国际经济与贸易班级11级国贸一班姓名王珏 学号2011111129 指导教师袁学军 成绩 2014年12 月

一、引言 国际贸易是跨国的商品买卖,不能用简单的货物和货款交换来形容这种特殊性的跨国交易,跨国的商品买卖以单证作为交换的媒介手段,故外贸单证是国际贸易中最重要的环节,买卖双方处理的只是与货物相符的单据。单证工作是国际贸易业务中最重要的环节,贯穿于进出口合同履行的全过程。 二、实训目的 外贸单证制作实训是在《外贸单证实务》课程的基础上开设的,通过综合业务模拟制单,使学生能够将课程中比较零散的制单练习贯穿起来,从而系统地了解外贸企业单证工作流转程序和具体的制单要求,加强对所学专业知识的理解,明确掌握各种进出口单证的制单技巧,以培养学生的实际操作能力,提高自身的制单水平,同时也培养了学生耐心、细致的工作作风。 三、实训时间:2014年9月-12月 四、实训地点:实训楼504 五、实训内容 本实训要求学生根据信用证、合同、订单等各种材料及相关信息,进行综合制单训练。由于信用证项下制单对单证的要求最为严格,所以本实训内容也主要以信用证制单为主,结合托收和汇付方式的制单,材料涉及到信用证、合同、订单等各种外贸文件,实习素材也基本上来自于外贸公司的真实业务,模拟了不同的贸易术语、分批交货、选择港的确定等各种贸易情形,使学生能够熟练掌握各种外贸单证的制单技巧,逐步学会独立制作各种外贸单证,丰富制单经验。 具体包括: (一) 审核信用证 1、目的与要求 信用证的开立是以合同为基础的,而其下的制单要求是:单证一致,单单一致。信用证受益人只有提交的单据合格,才能获得银行的付款保证。因而认真审核国外开来的信用证,关系到受益人能否收到货款。通过实训操作,使学生进一步掌握审证的基本规律和方法,了解“UCP600”和国际标准银行实务的规定的有关规定,同时会及时联系进口商通过开证行对信用证进行修改。 2、实训内容 (1)审核信用证主要是信用证内容的审核,是否与合同一致,以及一些特别条款的审核。 (2)修改信用证撰写一封完整的改证函 (二) 出口托运 1、目的与要求 出口方在合同的履行过程中,如需要订舱,则出口方必须负责与承运人订立运输合同、预订船只或舱位。通过实训操作,要求了解出口货物托运的程序,会托运单、订舱委托书的填写。 2、实训内容 (1)出口订舱流程会查阅各班轮公司的船舶、船期、挂靠港及船舱箱位数等具体情况,然后选择合适的船只订舱。(2)会缮制有关单据,如订舱委托书、托运单 (三) 出口货物报检 1、目的与要求 商品检验检疫是商品出口过程中的一个重要环节。通过实训操作,使学生掌握报验流程,

国际贸易实务实训总结

( 实习报告 ) 单位:_________________________姓名:_________________________日期:_________________________ 精品文档 / Word文档 / 文字可改 国际贸易实务实训总结Summary of international trade practice training

国际贸易实务实训总结 为期一周半的国际贸易与实务实训已经结束了,不能说完成得很圆满,但是有一点可以肯定的是,通过这次实训,我了解了国际贸易的基本流程,并且巩固了所学的理论知识,切身体会到了商品进出口贸易的全过程。 其实,说真的,还没实训之前心里总是有点忐忑不安,怕自己不能顺利完成这次实训任务。我们实训的第一步就是拟写建交函,由于我们之前并没有写过这种信函,对它的格式不是很清楚。所以,我就先在网上搜索了建交函的范文,知道了基本格式以后,然后就根据操作的要求写好建交函。这一步实际上并不难,所以所花的时间也不多,但这仅仅是第一步工作,接下来还有一连串的工作要做。 整个过程下来,对我来说最难也是我最欠缺的就是那一系列的核算。我们要做的有三个核算,出口报价核算、出口还盘核算和成

交核算。要进行核算首先要知道计算公式以及它们的转化公式。刚开始算的时候,可能是因为自己太过粗心,老是算错,算出来的结果总是对不上。后来还是在老师的帮助下,才找到了问题的症结所在,原来我小数点后面少加了一个零。这次教训让我知道了细心仔细的重要性。在进行核算的过程中,还应该引起注意的就是不同币制的转换,有的要的是美元,如进行对外报价时。而在计算利润率时则需要的是人民币。在做这一步时,最重要的就是要细心,还要有耐心,算错了不能心急,要耐心地找出错误的原因。 完成成交核算之后,接下来就是合同的签订。我们要根据合同基本条款的要求和双方在信函中确定的条件制作售货确认书,另外还要给对方寄出成交签约函。在这一过程中,合同的条款要全面、内容要完整;合同没有会签之前,买方是不可能签署的,这一点尤其值得注意。接下来就是审核信用证和写改证函,根据审核信用证的一般原则和方法对收到的信用证认真的审核,列明信用证存在的问题并陈述改证的理由。这个过程需要根据合同,把信用证和合同相比较,仔细认真地进行审核。收到对方的改证函后,接下来就要

【国际贸易实务就业方向】国际贸易实务实习总结

【国际贸易实务就业方向】国际贸易实务实 习总结 此次实习中,也使我们确实感受到了团队精神的作用。每个人,生活在这个社会中,都必须随时处于一个团队中,不可能孤立存在,我们能够顺利完成此次实习,与我们这一行十人的努力与协作是分不开的。如果缺少了团队精神,我们将是一团散沙,没有凝聚力,完成实习也就无从谈起。我们不仅从个人能力,业务知识上有所提高,也了解到了团队精神、协作精神的重要性。相信,有了这一次实习的经历,无论是今后的学习,还是工作,甚至是生活,我都会更加清楚,自己要什么、该做什么、该如何做,怎样才能做好;相信,此次实习将是我今后人生的一个良好开端。 我在此次实习中,了解到实习的具体做法: (1)贯彻理论联系实际的原则 在学习本课程时,要以国际贸易基本原理和国家对外方针政策为指导,将《国际贸易》、《中国对外贸易概论》等先行课程中所学到的基础理论和基本政策加以具体运用。教师在讲课过程中,对涉及到的内容,可有针对性地带领学生回顾一下,力求做到理论与实践、政策与业务有效地结合起来,不断提高分析与解决实际问题的能力。 (2)注意业务同法律的联系 国际贸易法律课的内容同国际贸易实务课程的内容关系密切,因为,国际货物买卖合同的成立,必须经过一定的法律步骤,国际货物买卖

合同是对合同当事人双方有约束力的法律文件。履行合同是一种法律行为,处理履约当中的争议实际上是解决法律纠纷问题。而且,不同法系的国家,具体裁决的结果还不一样。这就要求从实践和法律两个侧面来研究本课程的内容 (3)加强英语的学习 对于外贸专业人员而言,不仅要掌握一定的专业知识,而且还必须会用英语与外商交流、谈判及写传真、书信。如果专业英语知识掌握不好,就很难胜任工作,甚至会影响业务的顺利进行。因此,在实习中要求我们加强英语的学习,掌握外贸专业术语基础。 (4)注意本课程同其他相关课程的联系 国际贸易实务是一门综合性的学科,与其他课程内容紧密相联。应该将各们知识综合运用。比如讲到商品的品质、数量和包装内容时就应去了解商品学科的知识;讲到商品的价格时,就应去了解价格学、国际金融及货币银行学的内容;讲到国际货物运输、保险内容时,就应去了解运输学、保险学科的内容;讲到争议、违约、索赔、不可抗力等内容时,就应去了解有关法律的知识等等。 (5)坚持学以致用原则 实习是一门实践性很强的应用学科。在学习过程中,要重视案例、实例分析和平时的操作练习,加强基本技能的训练,注重能力培养。在培养规模上突出应用性,加强实践性,注意灵活性。 在为期1个月的实习里,我象一个真正的员工一样拥有自己的工作卡,感觉自己已经不是一个学生了,每天7点起床,然后象个真正的

国际贸易实务-模拟题

《国际贸易实务》模拟题 一单选题 1.A公司5月18日向B公司发盘,限5月25日复到有效,A公司向B公司发盘的第二天,A公司收到B公司5月17日发出的,内容与A公司发盘内容完全相同的交叉发盘,此时(). A.合同即告成立 B.合同无效 C.A公司向B公司或B公司向A公司表示接受,当接受通知送达对方时,合同成立 D.必须是A公司向B公司表示接受,当接受通知送达对方时,合同成立 [答案]:C 2.CFR术语有多种变形,其目的是明确() A.装货费用由谁负担 B.卸货费用由谁负担 C.风险划分的界线 D.运费由谁负担 [答案]:B 3.CPT和CFR相同的是(). A.属装运合同 B.交货地点 C.费用划分界限 D.提交的单据 [答案]:A 4.CPT贸易术语条件下,卖方将合同中规定的货物(),完成交货. A.交到装运港船上 B.置于买方处置之下 C.交给买方自己指定的承运人 D.交给卖方自己指定的承运人或第一承运人 [答案]:D 5.FOB,CFR和CIF贸易术语,最宜采用()检验方法 A.出口国检验,进口国复验 B.在进口国检验 C.在出口国检验 D.装运港()检验重量,目的港()检验品质 [答案]:A 6.FOB条件下,风险划分的界线是() A.装运港船舷 B.装运港船舱 C.装运港船上 D.装运港码头

[答案]:C 7.SWIFT采用0-9的数字区别电文业务性质,7代表跟单信用证和保函.修改信用证的代码是(). A.MT700 B.MT707 C.MT720 D.MT705 [答案]:B 8.按CIF术语成交的贸易合同,货物在运输途中因火灾被焚,应由(). A.卖方承担货物损失 B.卖方负责向保险公司索赔 C.买方负责向保险公司索赔 D.买方负责向承运人索赔 [答案]:C 9.按照《2000通则》的解释,按DEQ成交,买卖双方的风险划分界限在(). A.装运港船上 B.目的地 C.目的港船上 D.目的地码头 [答案]:D 10.按照货物重量,体积或价值三者中较高的一种计收运费,运价表内以()表示. A.M/W B.W/MorAd.Val C.AdVal D.Open [答案]:B 11.包销业务中包销商与出口商之间是一种(). A.买卖关系 B.委托代理关系 C.互购关系 D.代销关系 [答案]:A 12.保险公司承担保险责任的期间通常是() A.钩至钩期间 B.舷至舷期间 C.仓至仓期间 D.水面责任期间 [答案]:C

国际贸易实务模拟实训报告.docx

国际贸易实务模拟实训报告 随着中国在国际贸易的地位的不断上升,我们学习国际贸易专业的学生们要掌握有关于国际贸易方面的知识也要不断增加,这次学校给了我们一个很好的实习锻炼机会,就是让我们模拟国际贸易实务操作,从而从中掌握国际贸易流程。 通过simtrade上机实习,可以使我们熟悉外贸实务的具体操作流程,增强感性认识,并可从中进一步了解、巩固与深化已经学过的理fg的运作方式;切身体会到国际贸易中不同当事人面临的具体工作与他们之间的互动关系;学会外贸公司利用各种方式控制成本以达到利润最大化的思路;认识供求平衡、竞争等宏观经济现象,并且能够合理地加以利用。老师通过在网站发布新闻、调整商品成本与价格、调整汇率及各项费率等方式对国际贸易环境实施宏观调控,使我们在实习中充分发挥主观能动性,真正理解并吸收课堂中所学到的知识,为将来走上工作岗位打下良好基础。 上机模拟操作 simtrade软件 **年5月16日——**年6月13日 经过一个多月的simtrade模拟训练,我们对国际贸易的业务流程及操作有了更进一步的了解和感触,现在我们对贸易的理解已经不在停留在单纯的理论层面。

在头一两个星期里,我们处理起业务是不知从何做起,填写单据那是相当的慢,算一笔进出口预算表都要算上一个多小时。经过两个星期的不间断联系,早后来的操作练习中我们处理的是得心应手,可谓从容自如。 在我国继续扩大开放、深化改革和加入世界贸易组织以来的新形势下,作为未来从事国际贸易方面业务的我们必须熟练掌握国际贸易的sdf这两年学习的一个大总结。从国际贸易理论,到国际贸易实务,再到上学期的外贸函电及本学期外贸合同的制定、国际货物运输风险和保险,在本次模拟训练中都一一体现,通过simtrade模拟训练我们对以前所学过的知识有了一次系统的回顾,又在训练中对国际贸易的流程及操作有了更加深刻的体会,这对我们未来的工作在思想上做了充分的准备。 通过本次的模拟实习,我们可以发现以前学习中薄弱环节,为今后的学习指明了方向,也会实际操作打下一个良好的基础。本次模拟训练给我最大的体会就是操作细节的细腻及流程的缜密,各个流程相互衔接,此流程的疏忽将会导致彼流程无法完成,某一细节的不慎错误或纰漏将会导致整个流程操作前功尽弃,这为未来的实际工作敲响了警钟:做贸易一定要仔细谨慎。 在本次实习中,我们充分利用了simtrade提供的各项资源。我们充分使用邮件系统进行业务磋商,这是我们未来

国际贸易实务实训总结归纳

国际贸易实务实训总结归纳 为期一周半的国际贸易与实务实训已经结束了,不能说完成得很圆满,但是有一点可以肯定的是,通过这次实训,我了解了国际贸易的基本流程规范,并且稳固了所学的理论知识,切身领会到了商品进出口贸易的全过程。 其实,说真的,还没实训之前心里总是有点忐忑不安,怕自己不能顺利完成这次实训任务。我们实训的第一步就是拟写建交函,由于我们之前并没有写过这种信函,对它的格式不是很清楚。所以,我就先在网上搜索了建交函的范文格式,知道了基本格式以后,然后就根据操作的要求写好建交函。这一步实际上其实不难,所以所花的时间也不多,但这仅仅是第一步工作,接下来还有一连串的工作要做。 整个过程下来,对我来说最难也是我最欠缺的就是那一系列的核算。我们要做的有三个核算,出口报价核算、出口还盘核算和成交核算。要进行核算首先要知道计算公式以及它们的转化公式。刚开始算的时候,可能是因为自己太过粗心,老是算错,算出来的结果总是对不上。后来还是在教师的帮助下,才找到了问习题的症结所在,原来我小数点后面少加了一个零。这次教训让我知道了细心认真的重要性。在进行核算的过程中,还应该引起注意的就是不同币制的转换,有的要的是美元,如进行对外报价时。而在计算利润率时则需要的是人民币。

在做这一步时,最重要的就是要细心,还要有耐心,算错了不能心急,要耐心地找出错误的原因。 完成成交核算之后,接下来就是合同的签订。我们要根据合同基本条款的要求和双方在信函中确定的条件制作售货确认书,另外还要给对方寄出成交签约函。在这一过程中,合同的条款要全面、内容要完整;合同没有会签之前,买方是不可能签署的,这一点尤其值得注意。接下来就是审核信用证和写改证函,根据审核信用证的一般原则和方法对收到的信用证认真的审核,列明信用证存在的问习题并陈述改证的理由。这个过程需要根据合同,把信用证和合同相比较,认真认真地进行审核。收到对方的改证函后,接下来就要做托运订舱、出口报关和投保装船等工作。这几个步骤就是根据信用证的要求以及合同的有关手册,认真填写相关的单据。接着就是单据的制作,这学期我们学的就是单证的制作,之前也有做过相关的练习,所以对这一环节还是比较清楚的。但虽然如此,在制单的过程中,我还是碰到了一些问习题,最后在教师的指导下纠正了这些错误。单据制好之后,要做的就是审核单据。这一步骤要做的就是根据“单证一致,单单相符”的原则,对全套单据进行审核。实训的最后一个过程,就是出口业务善后,根据银行的通知书,判断银行是付款还是拒付,根据开证银行的反应信息,给客户发一封善后函。 这就是这次实训的整个过程,回忆这次实训给我的最大的收获,就是

国际贸易实务模拟试题及答案

一、把以下英文术语翻译成中文,是英文简称的需先写出其全称再翻译(本大题共5小题,每小题1分,共5分) 1、Neutral Packing 2、Insurance Policy 3、Order B/L 4、OCP 5、O/A 二、单项选择题(本大题共20小题,每小题1分,共20分) 1、我方出口大宗商品,按CIF Singapore 成交,运输方式为Voyage Charter,,我 方不愿承担卸货费用,则我方应选择的贸易术语的变形是()。 A、CIF Liner Terms Singapore B、CIF Landed Singapore C、CIF E x Ship’s Hold Singapore D、CIF Ex Tackle Singapore 2、按照《INCOTERMS2000》的解释,以FOBST成交,则买卖双方风险的划分界限是()。 A、货交承运人 B、货物越过装运港船舷 C、货物在目的港卸货后 D、装运港码头 3、山东渤海公司与日本东洋株式会社在万国博览会上签订了一份由日方向中方提供BX2-Q船用设备的买卖合同,采用的贸易术语是DES。运输途中由于不可抗力导致船舶起火,虽经及时抢救,仍有部分设备烧坏,则()应来承担烧坏设备的损失。 A.东洋株式会社 B.山东渤海公司 C.船公司 D.保险公司 4、在CIF条件下,Bill of Lading对运费的表示应为( )。 A.Freight Prepaid B.Freight Collect C.Freight Pre-payable D.Freight Unpaid 5、在进出口业务中,能够作为物权凭证的运输单据有( )。 A.Rail Waybill B.Bill of Lading C.Air Waybill D.Parcel Post Receipt 6、预约保险以()代替投保单,说明投保的一方已办理了投保手续。 A、B/L B、Shipping advise from abroad C、Mate,s receipt D、Sales contract 7、我某公司与外商签订一份CIF出口合同,以L/C为支付方式。国外银行开来的信

《国际贸易实务模拟实验》实习报告

篇一:《国际贸易实务模拟实验实训总结》 国际贸易实务模拟实验实训总结 经过两周的模拟实验实训,我们对国际贸易的业务流程及操作有了更进一步的了解和感触。现在我们对贸易的理解已经不再停留在单纯的理论层面,而是上升到了一定的高度。 在这次实训中,我们充分利用了世格外贸单证教学系统提供的各项资源进行练习。通过老师的悉心指导和查阅相关资料,我们对知识有了更深入的理解。 这次的模拟实验操作,大致上可以分为三个方面的内容,分别为出口磋商谈判、合同的签订、信用证的审核等。出口磋商谈判又包括建立业务关系、询盘、发盘、还盘、接受等内容。出口磋商谈判的各个环节是相互联系的,形成一个有机的整体。 实训第一天的时候,为了之后的练习能顺利进行,老师让我们在网上查找资料,在相关网站上了解一些与国际贸易相关的知识。开始做练习的时候,我们要建立业务关系、写贸易函电,由于这是在实践中第一次接触,所以就比较迷茫,不知从何做起,完全找不到头绪。后来在老师的指导下,结合上网查找相关资料,

我们慢慢找到了做题的方法。经过两个星期的不间断练习,在后来的操作练习中,我们处理起来就比较轻松,比较得心应手了。 实训过程中,信用证的审核相对来说比较难,但同时这部分也是重点,在进出口贸易中是比较重要的一部分。面对密密麻麻的文字,并且还是英文的,先不审核,自己就先晕了。所以,在做信用证审核的练习中,细心和耐心是必不可少的。刚开始时,面对陌生的合同和信用证,里边好多术语都不明白是什么意思。然后,老师就带着大家一起分析销售合同和信用证,逐句翻译。后来,题做得多了,慢慢就掌握了分析的方法。实训结束时,自己差不多可以独立阅读信用证了,上边的英文看着也不再那么陌生了。 这两周,我们一直坐在电脑前做各种国际贸易实务模拟操作的练习,每天盯着电脑很忙很累,但也收获了很多。在练习中,我了解和掌握了进出口贸易的基本操作程序和主要操作技能,使自己在模拟操作中进步了;同时也认识到了自己身上存在的很多不足点,发现对于国际贸易中的很多东西,我们都没有搞懂,尤其是里面的规则等等。 通过这次实训,我感觉在国际贸易中,出口商是最为重要的角色。在出口过 程中,出口商为了找到客户并顺利完成交易过程,需要经过准备、磋商、签约、履约、善后几个流程。在准备阶段,出口商需要及时了解市场行情,并同工厂和进口商建立广泛而牢固的业务关系,这是非常重要的。

《国际贸易实务模拟实验》实习报告 国际贸易实务实习总结

全面、深入地回顾过去,总结工作中的宝贵经验,还能培养、锻炼自己的思维方式、分析能力和辩证观点,是增长才干的一种好方法。以下是我能网为大家带来的关于《国际贸易实务模拟实验》实习报告国际贸易实务实习总结,以供大家参考! 《国际贸易实务模拟实验》实习报告国际贸易实务实习总结 经过了大约10周上机实验的模拟实训课程操作,从中让我体会到了到了贸易工作其实是一件很复杂性,变化性,灵活性,困难性很强的工作。 在这次模拟实训操作中我一共完成了两笔进出口业务的交易。虽然在实际操作过程中,有许多环节是我以前从没有接触过的,但是在老师和同学的合作与帮助下,让我顺利地完成了任务并且也学到了很多东西。 首先老师叫我们在国际贸易操作平台的一个相关网站上,先登入并注册自己在贸易业务中想要扮演的角色进口商、出口商、进口地银行、出口地银行、生产商、辅助员,并且填写自己相关公司的资料便于后面一系列的贸易操作。 通过两笔贸易我觉得一个完整具体的进出口贸易操作流程应该是这样的:

(1)先利用网络发布自己公司产品的广告与信息(2) 同业务伙伴建立合作关系 (3)询盘、报盘、还盘、成交(4)签订外销合同(5)开立信用证(6)审证和改证信用证(7)签订内销合同(8)租船定舱(9)进出口货物保险与索赔(10)进出口货物报检(11)缮制报关单据(12)办理进出口报关(13)缮制议付单据 (14)银行处理议付结汇(15)办理出口核销退税(16) 各种成交方式和付款方式的具体实施。 我在这两笔外贸业务当中扮演的是进口商与进口地银行。扮演进口商中我的第一步工作是交易准备与磋商。先在产品库里面选择我自己想要进口的产品,通过邮件与出口商建立业务联系,接着便可以和出口商磋商交易细结,进口价格核算,进口询盘和还盘。第二步工作是签订合同。它包括起草合同,填写出口预算表、合同送进口商。其中合同是各类单证必须要填写的单证,是重要的核心单据之一。出口预算表的填写是最为复杂的部分,涉及面广,要考虑的东西很多。如集装费用的合理性,各税目的计算、报关、报验费用,适合的保险费用、其他费用等。往往都是通过对货物的具体分析夹选择广告牌出这些数据,计算这些数据时要细心和耐心,只有把所有相关因素考虑周全,计算后的结果是理、最有利的。同时也为后面的单证填写做好数据准备。 履行合同它包括出口托运定舱、出口货物投保,出口货物报验及报关、出口

国际贸易实务模拟试题及答案

国际贸易实务模拟试卷及参考答案 注意事项:所有的答案都必须写在答题纸上,答在试卷上一律无效 一、把以下英文术语翻译成中文,是英文简称的需先写出其全称再翻译(本大题共5小题,每小题1分,共5分) 1、Neutral Packing 中性包装 2、Insurance Policy 保险单 3、Order B/L 指示提单 4、OCP Overland Common Points 内陆地区(或陆路共通点) 5、O/A Documents against Payment, Trust Receipt 付款交单凭信托收据借单 二、单项选择题(本大题共20小题,每小题1分,共20分) 1、我方出口大宗商品,按CIF Singapore 成交,运输方式为Voyage Charter,, 我方不愿承担卸货费用,则我方应选择的贸易术语的变形是( C )。 A、CIF Liner Terms Singapore B、CIF Landed Singapore C、CIF E x Ship’s Hold Singapore D、CIF Ex Tackle Singapore 2、按照《INCOTERMS2000》的解释,以FOBST成交,则买卖双方风险的划分界限是( B )。 A、货交承运人 B、货物越过装运港船舷 C、货物在目的港卸货后 D、装运港码头 3、山东渤海公司与日本东洋株式会社在万国博览会上签订了一份由日方向中方提供BX2-Q船用设备的买卖合同,采用的贸易术语是DES。运输途中由于不可抗力导致船舶起火,虽经及时抢救,仍有部分设备烧坏,则( A )应来承担烧坏设备的损失。 A.东洋株式会社 B.山东渤海公司 C.船公司 D.保险公司 4、在CIF条件下,Bill of Lading对运费的表示应为( A )。 A.Freight Prepaid B.Freight Collect - 1 - (共7页)

2018年国际贸易实务模拟实训报告

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 2018年国际贸易实务模拟实训报告 这两周一直在进行tmt on line 国际贸易实务模拟操作,每天盯着电脑很忙很累,但真的感觉很好,在以出口商完成整个出口流程的过程中我了解和掌握了出口贸易的基本操作程序和主要操作技能,使自己在模拟操作中进步了,同时也认识到了自己身上存在的很多不足点,发现对于国际贸易的很多东西我们都没有搞懂,尤其是里面的规则等等.。 在这次模拟操作中,一共有十五个步骤,具体为:建立业务关系、出口报价核算、出口发盘出口还价核算、出口还盘、出****易磋商、出口成交、出口成交核算、出口合同签订、信用证审核、修改信用证、出口托运订舱、出口货物投保、出口货物报验报关、出口制单结汇、出口业务善后。 在操作中我被上海安德国际公司聘为销售部经理助理,公司出口的主要是不锈钢茶具厨具以及一些高级精密仪器等等,哈哈,很高兴! 在与埃及客户建立业务关系时,由于刚刚学习了函电,加上老师的指导,写起来还算轻松。但是在出口报价核算时就感觉很吃力了,个人觉得远洋运费的计算有些难,还有银行手续费和银行贷款费用的计算到底使用采购成本还是报价或者发票金额作为基数,总是容易混淆,老师大概花了两个课时详细讲解了这几个问题,总算明白了。我认为出口商是最为重要的角色,在扮演出口商的角色的过程中,要经 1 / 6

过准备、磋商、签约、履约、善后几个流程。在准备阶段,需及时了解市场行情,并同工厂和进口商建立广泛而牢固的业务关系是非常重要的交易过程中市场是变化的,作为出口商需不断核算成本、费用和利润,才能获取最佳交易条件和价格,核算过程本身是复杂的,这需要足够耐心、细心。 在国际贸易中,由于交易双方的成交量通常都比较大,而且交易的商品在运输过程中可能遭到各种自然灾害、意外事故和其它外来风险。所以通常还需要办理各种保险,以避免或减少经济损失。保险费的核算很关键,不同的贸易术语下,保险费的承担者有所不同,二者的紧密关系众所周知,在贸易术语上,我们分别采用了cif、 fob、cfr的术语,在十三种贸易术语中这三种是最常用的。 出口单证的审核也是一大难点,密密麻麻的英文表格让你先去缮制然后再审核真的不是一件轻松的事情,不说细看那些英文,就是看见那表格就头疼。静下心是很有必要的,慢慢看就习惯了就会了。在电脑里审核单据有些麻烦,只能把两张表格缩小到同一个界面再来对比。由于老师在发下一步操作时前一步的参考答案系统会自动给出,所以我们在训练时必须克服想看答案的心理。 结汇可选择t/t l/c d/a d/p等方式,信用证结汇可以保证出口商及时得到货款但是费用高,多笔业务的开展,不同术语的运用可以加强我们对知识掌握的熟练程度,在费用上的不同核算和支付更是对我们关于知识掌握程度的考验。签订合同进一步明确双方的权利和义务,标志着完成了一半的业务,通过询盘、发盘、还盘、接受四个环

国际贸易实务实训 (1)

国际贸易实务实训 项目名称:发盘的书写、英文合同的填制以及L/C的审核。 实训目的:学生通过实训熟练掌握如何书写发盘、填制销售合同和审核信用证。组织:一人一组。 内容: 1.书写发盘 (2)填制合同

(3)审核信用证 售 货 确 认 书 SALES CONFIRMA TION 卖方(Sellers ): Contract No.: 09TG28711 NANJING LANXING CO.,LTD Date : JULY ,22,2009 ROOM 2501,JIAFA MANSTION, BEIJING WEST ROAD , NANJING Signed at: NANJING 买方(Buyers ): EAST AGENT COMPANY 3-72,OHTAMACHI,NAKA-KU,YOKOHAMA,JAPAN231 This Sales Contract is made by and between the Sellers and Buyers, whereby the sellers agree to sell and the buyers agree to buy the Packing: CARTON Delivery : From NANJING to AKITA Shipping Marks: V .H LAS PLAMS C/NO. Time of Shipment: Within 30 days after receipt of L/C. allowing transshipment and partial shipment. Term of Payment: By 100% Confirmed Irrevocable Letter of Credit on favor of the Sellers to be available. By sight draft to be opened and to reach China before JULY 30, 2009 and to remain valid for negotiation in China until the 15th days after the foresaid Time of Shipment. L/C must mention this contract number L/C advised by BANK OF CHINA NANJING BRANCH. TLX: 44U4K NJBC, CN. ALL banking Charges outside China (the mainland of China) are for account of the Drawee. Insurance: To be effected by Sellers for 110% of full invoice value covering F.P.A up to AKITA To be effected by the Buyers. Arbitration All dispute arising from the execution of or in connection with this contract shall be settled amicable by negotiation. In case of settlement can be reached through negotiation the case shall then be submitted to China International Economic & Trade Arbitration Commission. In Nanjing for arbitration in act with its sure of procedures. The arbitral award is final and binding upon both parties for setting the Dispute. The fee, for arbitration shall be borne by the losing party unless otherwise awarded. THE SELLER: THE BUYER: ISSUE OF DOCUMENTARY CREDIT

相关文档
相关文档 最新文档