文档库 最新最全的文档下载
当前位置:文档库 › 微波测量2

微波测量2

微波测量2
微波测量2

[复习]归一化传输线电路理论(Ι) 电压 电流 阻抗 功率

一 TEM 波电路理论

◆电压和电流电报方程解得 ◆ 阻抗◆传输功率 ◆ 问题

◇传输线的工作状态,由L Γ确定L L 0=10<1?Γ=-?

Γ-??

Γ<-?行波驻波

行驻波

◇ 阻抗Z 的计算,匹配技术 ◇传输功率P 及其考虑 二 归一化传输电路理论 ◆问题 阻抗 电压 电流

U U /1/U U I I I=0 ???=?????

?→= ??

? ?????????

◆归一化传输电路理论

三 归一化传输线理论向传输10

T E 波的矩形波导系统的推广

εL

Z

ε

U =U /I I ??

?=??

y x E U H I ???? ? ?

????

和的对应关系式, 10

T E 波的波导系统。

第二讲 归一化传输线电路理论(Ⅱ)

——归一化电压U 和电流I 以及传输功率P 与电路系统的关系 ◆微波源的归一化描述

◇源反射系数g g g

g g g

Z 11Z Z 1

1-+ΓΓ

=

→=

+-Γ

◇资用功率a P —源最大的输出功率。 *

Γ=Γ=s

in in avs p p

◇额定功率0P —in 0Z =Z 时的输出功率。 ◇输入功率in p —注入到网络的功率。 ◇传到负载的功率L p 。 *

Γ=Γ=out

L L

avn p p

in

ε

g

Z

当*

Γ=ΓL s 时:

i n

g

i n

L

a i n

0i n

0o r Z

1

P P P P *Γ

Γ

====

U

和I 与电路系统的关系

◇A-A 处

()

j2z

j2l

L L g j2l z g 1+Z =

,e

; e

11Z ,e

;

1βββ

----Γ'Γ=Γ→ΓΓ=ΓΓ-Γ

'+Γ''=

Γ=Γ'

a 0P o rP L

Z

ε

Z

Z '

A-A

Z '

L

Z

由戴维宁定理,可得

()

g j l z 1e

1βεε---Γ'=

'

◇()

j l z g 011e

E Z 11U (1)

11Z Z 111βεε---Γ-Γ?'''+Γ-Γ===+Γ'+Γ-Γ''+-ΓΓ+

'-Γ+Γ

式中

()()

L j l z 0g

1E 1e

U

2

βε--Γ='=

-Γ= 行波电压

◇综上

()()U U 1I I 1+

+

?=+Γ??=-Γ??

式中

L

j 2z

g L

j 2z

L

E U

,E U 1e e

ββ+

Γ

=--''=

=-ΓΓ

Γ=Γ

二 传输功率P

()

(

)

()

()()

j 2l

i n

g

L

g

2

L

2

L 2

+

02

2

j 2

l

j 2

l

g

L

g

L

2

00

a

i n e

20

a

a

g

2g

22

L

g a

2

j 2

l

g

L

P

P

1P 1P 1P

U

P 21e

1e

1P E 2P P P P P P P 11 11P P 1e

ββββ*

-*+

+

--Γ

Γ

-=

-

Γ

-

Γ

=

=

→=

Γ

-ΓΓ'=-=

=

∴=

=

-

Γ

-

Γ

-

Γ

=

Γ源的额定功率

三重要结论

1 传输线的最佳长度l

()

(

)

20

L

m a x 2

L

g

P 1P

P 1l l =-

Γ

==

-ΓΓ

显然应有

()g L

a rg ()a rg 22k ,k 0,1, l l βπΓ+Γ-==???

↓佳

2

——功率方程

3 匹配问题

g

a P

1

负载与传输线匹配 L

L L 0

0(Z 1)

P P Γ

===

——传输线上的导行波,负载吸收功率未必就大

2

源与传输线匹配

()

g

g 2L a

L

0(Z 1)

P P 1Γ

===-

Γ

——入射波功率(大小)与负载无关的条件:源匹配(g

Γ

=)

3

共轭匹配

()in

g

L a

P P m a x *Γ

= ——负载吸收功率最大,传输线上未必为行波

4

双匹配

L

g

00

Γ

=且

——此时“线”上为行波,负载吸收功率最大 L

a P P =

[]S []S '—匹配网络(互易,无耗)

散射参数信号流图

将网络的散射参数方程用信号流图表示,用图解法简化计算。 一、 网络信号流图建立的法则: 1、 每个变量(信号)都用节点?表示。

2、 每个S 参数和反射系数都用一条支线 s 表示,箭矢方向表示信号流出方

向,系数表示流出的大小。

3、 节点上信号流出的大小,等于该信号乘以它所经支线的系数,而与其他支线

上信号流通无关。

4、 节点上流入信号的总和等于该节点的信号,而与其流出的信号无关。 如: b=Γ

1

a 1b

2121111a s a s b += 2

a

2、不接触环法则:

(1)、在信流图中,从一个结点顺着箭头到另外一个结点的通路叫做路,路的值 等于通路上各系数之积。

(2)、在信流图中,一条闭合的路叫做“一阶环”,简称环,环之值就是这条闭合 路之值。

(3)、两个互不接触的“环”构成一个“二阶环”,二阶环的值等于该两个互不接触 环之值的乘积。

不接触环法则:信号流图中任意两点的信号比为T ,则:

?

?=

=n

i i

i P T

1

i P 是由A 结点到B 结点的第i 条路之值 ?=1-()()()+-+∑∑∑321L L L ···

()

()

()

+

-

+

-

=?∑∑∑i

i

i

i

L L L 3211···

?

?=

=n

i i

i P E

b 1

2

=()L g L g L g S S S S S S S ΓΓ+ΓΓ+Γ+Γ-22112112221121

1

=()()L g L

g

S S S S S ΓΓ-

Γ-

Γ-1221221121

11

如果某个信号流图没有一阶环和高阶环,则1=? 1=?i

==

n

i i

P T 1

在没有环的信号流图中,任意两结点的信号比等于该两点间所有路之值的和。

微波基本参数测量

浙江师范大学实验报告 实验名称微波基本参数测量班级物理071 姓名陈群学号07180116 同组人刘懿钧实验日期09/10/27 室温气温 微波基本参数测量 摘要:微波是一种波长较短的电磁波。在电磁波波谱表中,微波的波长介于无线电波与光波之间。波长较长的分米波和无线电波的性能相近,波长较短的毫米波则 与光波的性质相一致。本实验有以下目的(1)了解微波传输系统的组成部分。 (2)掌握微波的基本测量:频率、功率、驻波比和波导波长 关键词:微波功率驻波比频率特性阻抗波长可变衰减器 引言:微波通常是指波长从1米(300MHZ)到1毫米(300GHZ)范围内的电磁波,其低频端与超短波波段相衔接,高频端与远红外相邻,由于它比一般无线电波的 波长要短的多,故把这一波段的无线电波称为微波,可划分为分米波,厘米波 和毫米波。微波有以下基本特征:1.微波的波长极短,比地球上一些物体的几 何尺寸小得多,因此当微波照射到这些物体上时,产生显著的反射,其传播特 性与几何光学相似,具有“似光性”直线传播的特点;2.微波的频率极高,即 振荡周期极短(10-9~10-12秒),与一般电真空器械中的电子渡越时间同一数量 级;3.微波可以毫无阻碍地穿过电离层,具有穿透性;4.许多的原子和分子发 射和吸收原子电磁波波长正好处于微波波段内;5.研究方法和测量技术上,要 从“电磁场”的概念去研究和分析,测量功率、驻波比、频率和特性阻抗等。 近年来,微波边缘学科,如微波超导、微波化学、微波生物学、微波医学都得 到长足的发展。 实验方案: 1、实验原理 微波的波长通常被认为在1mm~1M之间,其频率范围相当于300GHz~300MHz。如此之高的振荡频率,势必会引起一系列新的问题。现将微波与无线电波的主要不同点简述如下:(1)微波的产生具有其独特性 电子管中,电子由阴极到达阳极的时间称为“电子渡越时间”,一般是在s的数 量级。这对频率较低的无线电波来讲,几乎可被忽略。但对频率高于300 MHZ的微波,则将受到制约。若想从电子管中获得微波信号,只能借助于电子流与谐振腔相互交换能量的方式来进行。 (2)在研究方法上两者有明显的不同 在低频电路中,工作波长已远远超出实际电路的几何尺寸(例如:对应于50Hz的电磁波其波长值为6000KM)。电路中各点的电流和电压值可被认为是在同一时刻建立起来。

现代测量技术实验2

西华大学实验报告 西华大学实验报告(理工类) 开课学院及实验室:电气与电子信息学院 实验室6A217 实验时间 :2016年 5 月20日 学 生 姓 名 学 号 成 绩 学生所在学院 年级/专业/班 课 程 名 称 现代测试技术及应用 课 程 代 码 6002699 实验项目名称 数字存储示波器原理和应用 项 目 代 码 2(必做) 指 导 教 师 王维博 项 目 学 分 一、实验目的: 1、了解示波测量的基本原理。 2、熟悉虚拟数字存储示波器的操作,对几种电压波形进行参数测量并观察波形的显示。 二、实验原理: 数字示波器原理:数字存储示波器是用 A/D 变换器把模拟信号转换成数字信号,然后把数据存储在半导体存储器 RAM 中。当有需要时,将 RAM 中存储的内容调出,通过 LCD 用点阵或连线的方式再现波形,其原理框图可以参考图2-1。在这种示波器中信号处理和信号显示功能是分开的,它的性能主要取决于进行信号处理的AD 、RAM 和微处理器的性能。由于采用 RAM 存储器,可以快写数慢读数,使得即使在观察缓慢信号时也不会有闪烁现象。 图2-1 虚拟数字存储示波器 虚拟示波器将计算机和测量系统融合于一体,用计算机软件代替传统仪器的某些硬件的功能,用计算机的显示器代替传统仪器物理面板。通过相关的软件可以设计出的操作方便、形象逼真的仪器面板,不仅可以实现传统示波器的功能,而且具有存储、再现、分析、处理波形等特点,还可以进行各种信号的处理、加工和分析,完成各种规模的测量任务。而且仪器的体积小、耗电少,方便携带,可以在不同的计算机上使用。 因此,在SJ-8002B 中,也引用了虚拟数字存储示波器的原理来实现数据的采集。其中的信号调理、AD 转换、存储数据的SRAM 以及控制逻辑都在是实验平台中,计算机主要起到了数据的处理和显示的作用。 SJ-8002B 电子测量实验箱示波器硬件结构 (1)测试范围及采集参数调整范围 测试电压幅度范围:-20V ~+20V (峰峰值) 测量频率范围:1Hz ~1MHz 第 组

微波电路S参数测量实验报告

微波电路S参数测量实验报告 一、实验目的 掌握微波电路S参数的基本概念、测试的原理和方法。 二、实验内容 用矢量网络分析仪测试微波滤波器的二端口S参数。 三、基本原理 网络分析仪中最常用的应用是矢量网络分析仪,它是用来测量、分析各种微波器件和组件S参数的高精度仪器,在整个行业中使用率极高,作为重要仪器很多从事产品研发和测试的电子工程师都有可能需要使用。矢量网络分析仪的原理如图1所示。 图1 矢量网络分析仪的原理图 上图中各部分的功能如下: A、信号源:提供被测件激励输入信号,被测器件通过传输和反射对激励波作出响应,被测器件的频率响应可以通过信号源扫频来获取,由于测试结构需要考虑多种不同的信号源参数对系统造成的影响,故一般我们采用合成扫频信号源。 B、信号分离装置:含功分器和定向耦合器,分别提取被测件输入和反射信号,从而测量出它们各自的相位和幅度大小,测试装置可以单独也可以集成到分析仪的内部。 C、接收机:对被测件的反射、传输和输入信号进行测试;采用调谐接收机可以提供最好的灵敏度和动态范围,还能抑制谐波和寄生信号。 D、处理显示单元:对测试结果进行处理和显示,它作为多通道一起,需要有基准通道和测试通道,通过二者的比较才能知道测试的精准度,它的显示功能很强大并且灵活,如多种标记功能、极限线功能等,给系统和元器件的性能和参数测试带来很大的便利性。

矢量网络分析仪本身自带了一个信号发生器,可以对一个频段进行频率扫描. 如果是单端口测量的话,将激励信号加在端口上,通过测量反射回来信号的幅度和相位,就可以判断出阻抗或者反射情况。而对于双端口测量,则还可以测量传输参数。 图2 利用网络分析仪测微波电路的S参数 微波滤波器可看作是一个二端口网络,具有选频的功能,可以分离阻隔频率,使得信号在规定的频带内通过或被抑制。 滤波器按其插入衰减的频率特征来分有四种类型:(1)低通滤波器:使直流与某一上限角频率ωC(截至频率)之间的信号通过,而抑制频率高于截至频率ωC的所有信号;(2)高通滤波器:使下限频率ωC以上的所有信号通过,抑制频率在ωC以下的所有信号;(3)带通滤波器:使ω1至ω2频率范围内的信号通过,而抑制这个频率范围外的所有信号。(4)带阻滤波器:抑制ω1至ω2频率范围内的信号,而此频率范围外的信号可以通过。 测试前需要特别注意的一点是,如果待测件是有源器件,连接待测件前一定先将网络分析仪的两个端口的输出功率降到-25dBm以下。否则不但不会得到正确的测试结果,而且还有可能将网络分析仪损坏。这一点是测量有源器件时需要特别注意的一点。 四、微波滤波器技术指标 工作频率:9.36GHz; 电压驻波比:<1.3; 插入损耗:< 1dB。 五、实验步骤 1、矢量网络分析仪开机; 2、矢量网络分析仪校准; 3、连接矢量网络分析仪与被测器件; 4、按下“PRESET”键,准备进行设置,并设置监视的频率范围:按下“FREQ”键,按下“CENTER”软键,使用数字键输入扫频段的中心频率,例如9360,然后按下“MHz”软键。同时按下“SPAN”软键,输入测量带宽,使用数字键输入“500”,然后按下“MHz”软键。

微波基本参数的测量原理

微波基本参数的测量 一、实验目的 1、了解各种微波器件; 2、了解微波工作状态及传输特性; 3、了解微波传输线场型特性; 4、熟悉驻波、衰减、波长(频率)和功率的测量; 5、学会测量微波介质材料的介电常数和损耗角正切值。 二、实验原理 微波系统中最基本的参数有频率、驻波比、功率等。要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。 1、导行波的概念: 由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。导行波可分成以下三种类型: (A) 横电磁波(TEM 波): TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。电场E 和磁场H ,都是纯横向的。TEM 波沿传输方向的分量为零。所以,这种波是无法在波导中传播的。 (B) 横电波(TE 波): TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。 (C) 横磁波(TM 波): TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。 TE 波和TM 波均为“色散波”。矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。 2、波导管: 波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。常见的波导管有矩形波导和圆波导,本实验用矩形波导。 矩形波导的宽边定为x 方向,内尺寸用a 表示。窄边定为y 方向,内尺寸用b 表示。10TE 波以圆频率ω自波导管开口沿着z 方向传播。在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到: ()sin()j t z o y x E j e ωβωμππα-=-, ()sin()j t z o x x H j e ωβμαππα -=

现代测量技术

上海第二工业大学 现代测量技术 学号084812099 姓名钱杰 班级08机自A2 院系机械制造及自动化 2011 年11 月 5 日

目录 前言 一、激光传感器简单介绍及其优点 (3) 二、激光测距传感器 (5) 1.激光测距的原理 (5) 2.激光测距传感器的优势: (5) 3.测距传感器的工作原理 (6) 三、激光测长传感器 (6) 四、激光精密测量的现状与未来发展 (6) 五、参考文献 (7)

激光测量 摘要:激光传感器已经广泛应用于国防、生产、医学和非电测量等各方面,激光传感器正以自己独特的优势焕发勃勃生机,本文简单介绍了激光测距传感器工作的原理和用。 关键词:激光测距、望远镜、激光测距原理与应用、应用实例 Laser measurement Abstract: laser sensor has been widely used in national defense, manufacturing, medica l and non electric measurement etc, laser sensor with its own unique advantages of vi gour and vitality, this paper briefly introduces laser ranging sensor working principle a nd use. Key words: laser rangefinder、telescope、laser ranging principle and application、examples 一、激光传感器简单介绍及其优点 激光传感器是利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。 激光具有4个重要特性: (1)高方向性(即高定向性,光速发散角小),激光束在几公里外的扩展范围不过几厘米; (2)高单色性,激光的频率宽度比普通光小10倍以上; (3)高亮度,利用激光束会聚最高可产生达几百万度的温度。 (4)高相干性,两束光交迭时,产生明暗相间懂得条纹(单色光)或彩色条纹(自然光)的现象称为光的干涉。只有频率和振动方向相同,周相相等或周相差恒定的两束光才具有相干性。

现代测量技术在工程中的应用

现代测量技术在工程中运用情况 摘要:我国从20世纪80年代以来,一直都在不断引进各种先进的测绘技术,测绘技术逐渐成了工程测量中的重点。本文介绍数字测绘与城市或工业信息系统技术的应用与发展;城市地下管线探测技术发展与应用;变形监测技术应用与发展;卫星定位技术在工程测量中的应用与发展;工业测量技术的兴起、发展与应用;精密与大型工程测量现状与发展。 关键字:现代工程测量;控制测量;地形测量;施工测量;竣工测量 一、引言 工程测量是一门应用学科,传统的工程测量包括控制测量、地形测量、施工测量、竣工测量和变形监测五大部分。随着测绘技术的高速发展,工程测量技术形成了两个发展趋势:一是在上述五个部分不断出现新仪器、新方法和新手段;二是工程测量的应用领域不断扩展,出现了工业测量和地下管线探测等新的领域,还将测量新技术应用到了建筑测绘中。下面分六个方面介绍工程测量技术近几年的应用现状和发展趋势。 二、数字测绘与城市或工业信息系统技术的应用与发展 我国数字测绘技术从20世纪90年代初开始,经过十几年的发展已日渐成熟,形成了自己的方法和开发出多个具有自主版权的国产软件。现在的数字测绘正在从2维向3维发展,形成3维测绘技术。城市地理信息系统已经得到了足够的重视,工业企业地理信息系统也正在兴起。 现在数字化测绘技术已经普及,大比例尺地形图、地籍图、房产图、竣工图、地下管网图、导航电子地图等基本上都已经实现了数字化测绘,白纸测图方法已经淘汰。主要数字化测图系统有全站仪+PDA+地形图绘图软件,全站仪+便携机(PDA掌上电脑)+带有地物编码的地形图绘图软件,GPS RTK + PDA +地形图绘图软件,摄影测量进行大比例尺测图,数字摄影技术+GPS+便携机(PDA 掌上电脑)+导航图测绘软件。

微波测量实验 实验三

实验三复反射系数(复阻抗)测量 121180166 赵琛 一、实验目的 1、了解测量线的基本结构和调谐方法,掌握微波晶体检波律的校 准方法 2、了解驻波测量与阻抗测量的意义与相互关系,熟练掌握用测量 线测量反射系数,即复阻抗的基本方法。 3、熟悉Smith阻抗圆图的应用 4、了解阻抗调配器作用及阻抗调配方法 二、实验原理 参看序言 1.3有关部分,1.5.2谐振式波长计,讲义第四部分YM1124单频点信号发生器,YM3892/YM3892A选频放大器使用说明。测试框图:

三、实验要求与步骤 1 在测量线后接短路片。按仪器使用说明正确调试微波信号源,放大器等。在调试中,一般测量线的探针调节旋钮无需调动,将信号调至最大,并用波长计测出信号源工作频率f,由此计算导波长λg。 2 在测量线后接短路片,用交叉读数法测出各最小点位置Dmin,求导波长λg,并与上面计算得到λg做比较。 3 在测量线后接匹配负载,用直接法测出其驻波系数。 4 在测量线后接膜片+匹配负载,用直接法、二倍最小法、功率衰减法测量其驻波系数,并测出最小点位置,计算该负载的输入阻抗及输入导纳。功率衰减器的刻度通过查表得到衰减量。 5 取下负载,测量线开口,测一下此时驻波系数ρ及Dmin,计算终端开口时的等效阻抗值。 6 在测量线后接短路片,测量晶体检波律。 四、实验数据与实验分析 1 用频率计算λg。 波长计示数为8.45,波长计型号为9507,查表可得,此时 f=9.3735GHz a=2.286cm, 带入公式可求得,λg=44.7mm 2 短路法测导波长λg

最小读数法读数:(单位:mm) 与计算得到λg对比:由数据可见,最小读数法测得的λg稍大于计算频率得到的λg,这个是符合预期的,因为这是由于测量线上开槽线的影响,使得在测量线中测得的导波长比不开槽的相同截面举行波导中的导波长要稍微长一点。因此,测量线测得的波长稍高于波长计测得的波长。 3 用直接法测阻抗匹配时的驻波系数: 分析:可以看出,由于此时阻抗匹配,ρ近似等于1。但是,由于ρ很小,驻波场最大值和最小值区别不大,且变化不尖锐,导致不易测

微波基本参数的测量实验报告

微波基本参数的测量 【目的要求】 1.学习微波的基本知识,了解波导测量系统,熟悉基本微波元件的作用; 2.了解微波在波导中传播的特点,掌握微波基本测量技术; 3.掌握驻波测量线的正确使用方法; 4.掌握电压驻波系数的测量原理和方法。 【仪器用具】 微波参数测试系统,包括:三厘米固态信号源,三厘米驻波测量线,选频放大器,精密衰减器,隔离器,谐振式频率计(波长表),匹配负载,晶体检波器,单螺调配器等。 【原理】 微波技术是近代发展起来的一门尖端科学技术,它不仅在通讯、原子能技术、空间技术、量子电子学以及农业生产等方面有着广泛的应用,在科学研究中也是一种重要的观测手段,微波的研究方法和测试设备都与无线电波的不同。从图1可以看出,微波的频率范围是处于光波和广播电视所采用的无线电波之间,因此 它兼有两者的性质,却又区别于两者。与无线电波相比,微波有下述几个主要特占 八、、 A /it |钏 1 I「F X-io? LU 1 1 1 1 1i I J KT* IN JQ-U 1 1 』」1 p\\r in 1 1 1 n i 1 1 II P 1 卿]□'" 阿見充¥卅 电 恢 图1电磁波的分类 1 ?波长短(1m1mm):具有直线传播的特性,利用这个特点,就能在微 波波段制成 方向性极好的天线系统,也可以收到地面和宇宙空间各种物体反射回来的微弱信 号,从而 确定物体的方位和距离,为雷达定位、导航等领域提供了广阔的应用。 2 ?频率高:微波的电磁振荡周期(10-9—10-12s)很短,已经和电子管中电子在电极间 -9

器、放大器和检波器)中,而必须采用原理完全不同的微波电子管(速调管、磁控管和行波管等)、微波固体器件和量子器件来代替。另外,微波传输线、微波元件和微波测量设备的线度与波长具有相近的数量级,在导体中传播时趋肤效应和辐射变得十分严重,一般无线电元件如电阻、电容、电感等元件都不再适用,也必须用原理完全不同的微波元件(波导管、波导元件、谐振腔等)来代替。 3.微波在研究方法上不像无线电那样去研究电路中的电压和电流,而是研究微波系统中的电磁场,以波长、功率、驻波系数等作为基本测量参量。 4.量子特性:在微波波段,电磁波每个量子的能量范围大约是10-6?10-3eV, 而许多原子和分子发射和吸收的电磁波的波长也正好处在微波波段内。人们利用这一特点来研究分子和原子的结构,发展了微波波谱学和量子电子学等尖端学科,并研制了低噪音的量子放大器和准确的分子钟,原子钟。 5.能穿透电离层:微波可以畅通无阻地穿越地球上空的电离层,为卫星通讯,宇宙通讯和射电天文学的研究和发展提供了广阔的前途。 综上所述微波具有自己的特点,不论在处理问题时运用的概念和方法上,还是在实际应用的微波系统的原理和结构上,都与普通无线电不同。微波实验是近代物理实验的重要组成部分。 在微波波段,随着工作频率的升高,导线的趋肤效应和辐射效应增大,使得普通的导线不能完全传输微波能量,而必须改用微波传输线。常用的微波传输线有平行双线、同轴线、带状线、微带线、金属波导管及介质波导等多种形式的传输线,本实验用的是矩形波导管,波导是指能够引导电磁波沿一定方向传输能量的传输线。 根据电磁场的普遍规律——Maxwell 方程组以及具体波导的边界条件,可以严格求解出只有两大类波能够在矩形波导中传播:①横电波(又称为磁波),简写为TE 波(或H 波),磁场可以有纵向和横向的分量,但电场只有横向分量。

现代检测技术样本

现代检测技术 姓名: 周慧慧 学号: 124056 任课老师: 冯晓明 现代检测技术 一、概述

随着现代科学技术的不断发展、社会的日益进步, 现代化生产的规模越来越大, 管理的形式和方式趋于多样性, 管理也更加科学, 人们对产品的产量和质量的要求也越来越高, 这就导致常规的检测参数、检测手段、检测仪表难以满足现代生产和生活的需求。从一般的单参数测量到相关多参数的综合自动检测, 从一般的参数量值测量到参数的状态估计, 从确定性测量到模糊的判断等, 已成为当前检测领域中的发展趋势, 正受到越来越广泛的关注, 从而形成了各种新的检测技术和新的检测方法, 这些技术和方法统称为现代检测技术。 二、传感器的基本原理及检测技术的特点 利用某种转换功能, 将物理的、化学的、生物的等外界信号变成可直接测量的信号的器件称为传感器。由于电信号易于放大、反馈、滤波、微分、存储和远距离传输, 加上计算机只能处理电信号, 因此, 从狭义上说, 传感器又能够定义为可唯一而重视性好的将外界信号转换成电信号的元器件; 从广义上讲, 传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置; 简单说传感器是将外界信号转换为电信号的装置。因此它由敏感元器件( 感知元件) 和转换器件两部分组成, 有的半导体敏感元器件能够直接输出电信号, 本身就构成传感器。敏感元器件品种繁多, 就其感知外界信息的原理来讲, 可分为: ①物理类, 基于力、热、光、电、磁和声等物理效应。②化学类, 基于化学反应的原理。③生物类, 基于酶、抗体、和激素等分子识别功能。一般据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 检测技术的特点能够归纳为: (1)从待测参数的性质看, 现代检测技术主要用于非常见的参数的测量, 对于这些参数的测量当前还没有合适的传感器对应, 难以实现常规意义的”一一对

微波测量实验报告一

近代微波测量实验报告一 姓名:学号: 学院:时间:年月 一实验名称 频谱仪的使用及VCO测量 二实验目的 了解频谱仪原理,熟悉频谱仪的参数设置及使用方法;掌握信号频率、功率、相位噪声和谐波的测试方法。 三实验内容 1、点频信号测试 测试信号源输出点频信号1GHz的二次和三次谐波抑制比(输出功率分别为-20dBm和20dBm),测试信号的相噪(@10KHz、@100KHz、@1MHz),考察仪器分辨力带宽、视频带宽等设置对测试结果的影响; 2、VCO测试 测试VCO的输出频率范围、输出功率(包括对应的控制电压),测试某频率点的相噪(@1MHz)和二次、三次谐波抑制比。 四实验器材 RS公司SMBV信号源、FSL6频谱仪、APS3005S直流稳压电源、VCO、微波同轴电缆、微波转接头。 五实验原理及实验步骤 相位噪声:在频域内,一个理想正弦波信号的表现是一个单谱线;实际信号除了主信号之外还包括一些离散的谱线,它们是随机的幅度和相位的抖动,在正常信号的左右两边以边带调制的形式出现。在频域内信号的所有不稳定度总和表现为载波两侧的噪声边带,边带噪声是一个间接的测量与射频信号功率频谱相关噪声功率的指标。边带噪声可以表述为调频边带噪声和调幅边带噪声。大多数的被相位噪声测试系统测量信号的调幅边带功率相对调频边带功率来说都很小,所以对大多数信号来说测量的边带噪声就是调频边带噪声(即相位噪声也称单边带相位噪声)。它的定义为1Hz带宽内相位调制边带的功率和信号总功率的比值,

单位为dBc/Hz。在信号频谱分析仪上,边带噪声是相位噪声和幅度噪声的总和,通常当已知调幅噪声远小于相位噪声时(小于10dB以上),在频谱仪上读出的边带噪声即为相位噪声。 实验步骤 a)设置矢量信号源,分别产生产生频率为1GHz,功率为20dBm和-20dBm 的正弦信号; b)连接信号源与频谱仪; c)设置频谱分析仪,设置中心频率为1GHz,通过调整Res BW和Video BW, 显示被测信号; d)测试在偏离信号10KHz、100KHz、1MHz时的相位噪声; e)调整频谱仪起始、终止频率或带宽使得屏幕足够显示频率为1GHz信号 的二次和三次谐波; f)通过Mkr键选择Delta设置,测量并标示出二次谐波和三次谐波抑制比; g)关闭矢量信号源,连接直流稳压电源、VCO及频谱分析仪; h)通过调节直流稳压电源的电压大小,在频谱仪上观察信号的频率和输出 功率的变化,记录下最大和最小功率,可得VCO的输出频率范围; i)选定频率点:控制电压7.4V,输出功率14.38dBm,频率1.502817GHz, 测试该频率点的相噪(@1MHz)和二次、三次谐波抑制比。 六实验结果 1、点频信号测试数据及图片 数据图片: a)输入功率为20dBm时 二次、三次谐波抑制比

微波测量复习题

微波测量复习题 1.表征微波信号的三个重要基本参数,简要阐述微波测量与低频电子电路测量的区别和联 系。 (1)功率、频率、阻抗。 (2) ①低频电子电路的几何尺寸通常远小于工作波长,属于集中参数电路。便于测量的电压电流和频率是基本测试量。 微波元器件的几何尺寸通常和工作波长相比拟,属于分布参数电路。功率,频率和阻抗是基本测试量。 ②非TEM波传输线系统中电压、电流的定义失去了唯一性,如单导体传输线波导-模式 电压,模式电流。而在TEM波传输线系统工作于主模且在行波条件下,行波电压V、电流I和传输功率P仍满足与低频电路相同关系式。 ③它们在测量任务测量方法和测量仪器方面都有所不同。 2.测量的基本要素与之间互动关系 被测对象、测量仪器、测量技术、测量人员和测量环境 测量过程—基本要素之间的互动关系: 1制定出测试策略(测量算法)和操作步骤(测试程序) 2选择测试仪器,组建测试系统。 3分析测量误差并显示测量出结果。 3.什么是测量环境,举例说明 测量环境是指测量过程中人员、对象和仪器系统所处空间的一切物理和化学条件的总和。比如温度、湿度、力场、电磁场、辐射、化学气雾和粉尘,霉菌以及有关电磁量(工作电压、源阻抗、负载阻抗、地磁场、雷电等)的数值、范围及其变化。 4.测量误差来源有哪些? (1)测量对象变化误差(对应测量基本要素)(2)仪器误差(3)理论误差和方法误差(4)人身误差(5)环境影响误差 5.计量与测量的关系 ?计量的任务是确定测量结果的可靠性。 ?计量是测量的基础和依据。 ?没有计量,也谈不上测量。 ?测量发展的客观需要才出现了计量。 ?测量是计量应用的重要途径。 ?没有测量,计量将失去价值 6.微波信号源的主要性能指标与含义 微波信号源就是产生微波信号的装置,又称为微波信号发生器。 主要性能指标:频率特性,输出特性,调制特性。 (1)频率特性--频率范围,频率的准确度和稳定度,频率分辨率,频率切换时间,频谱纯度。 (2)输出特性--输出电平,电磁兼容性,输出电平的稳定度、平坦度、准确度 (3)调制特性--让微波信号的某个参数值随外加控制信号而改变 *微波三极管的主要特征是利用静电控制原理控制交变电子流的大小,来实现信号产生和放大的功能。这种控制是借助改变控制栅极电压,影响阴极附近的电场来实现的。

现代检测技术大作业

2015年—2016年度第1学期 课程名称:现代检测技术 专业:控制工程 研究生姓名:陈俊亚 学号:2016232011 任课教师姓名:冯晓明

第一部分:现代检测技术的内容 一、概述 随着现代科学技术的不断发展、社会的日益进步,现代化生产的规模越来越大,管理的形式和方式趋于多样性,管理也更加科学,人们对产品的产量和质量的要求也越来越高,这就导致常规的检测参数、检测手段、检测仪表难以满足现代生产和生活的需求。从一般的单参数测量到相关多参数的综合自动检测,从一般的参数量值测量到参数的状态估计,从确定性测量到模糊的判断等,已成为当前检测领域中的发展趋势,正受到越来越广泛的关注,从而形成了各种新的检测技术和新的检测方法,这些技术和方法统称为现代检测技术。 二、传感器的基本原理及检测技术的特点 利用某种转换功能,将物理的、化学的、生物的等外界信号变成可直接测量的信号的器件称为传感器。由于电信号易于放大、反馈、滤波、微分、存储和远距离传输,加上计算机只能处理电信号,所以,从狭义上说,传感器又可以定义为可唯一而重视性好的将外界信号转换成电信号的元器件;从广义上讲,传感器就是能感知外界信息并能按一定规律将这些信息转换成可用信号的装置;简单说传感器是将外界信号转换为电信号的装置。所以它由敏感元器件(感知元件)和转换器件两部分组成,有的半导体敏感元器件可以直接输出电信号,本身就构成传感器。敏感元器件品种繁多,就其感知外界信息的原理来讲,可分为:①物理类,基于力、热、光、电、磁和声等物理效应。②化学类,基于化学反应的原理。③生物类,基于酶、抗体、和激素等分子识别功能。通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。检测技术的特点可以归纳为: (1)从待测参数的性质看,现代检测技术主要用于非常见的参数的测量,对于这些参数的测量目前还没有合适的传感器对应,难以实现常规意义的“一一对应”的测量;另一种情况是待测参数虽已有传感器,但测量误差比较大,受各种因素的影响比较大,不能满足测量要求。 (2)从应用的领域看,现代检测技术主要用于复杂设备、复杂过程的影响性

北理工微波实验报告总结

实验一一般微波测试系统的调试 一、实验目的 1.了解一般微波测试系统的组成及其主要元、器件的作用,初步掌握它们的调整方法。 2.掌握频率、波导波长和驻波比的测量方法。 3.掌握晶体校正曲线的绘制方法。 二、实验装置与实验原理 常用的一般微波测试系统如1-1所示(示意图)。 微波 信号源 隔离 器 可变衰减器 频率计精密 衰减 器 测量线终端 负载 测量放大器图1-1 本实验是由矩形波导(3厘米波段, 10 TE模)组成的微波测试系统。其中,微波信号源(固态源或反射式速调管振荡器)产生一个受到(方波)调制的微波高频振荡,其可调频率范围约为7.5~12.4GHz。隔离器的构成是:在一小段波导内放有一个表面涂有吸收材料的铁氧体薄片,并外加一个恒定磁场使之磁化,从而对不同方向传输的微波信号产生了不同的磁导率,导致向正方向(终端负载方向)传播的波衰减很小,而反向(向信号源)传播的波则衰减很大,此即所谓的隔离作用,它使信号源能较稳定地工作。频率计实际上就是一个可调的圆柱形谐振腔,其底部有孔(或缝隙)与波导相通。在失谐状态下它从波导内吸收的能量很小,对系统影响不大;当调到与微波信号源地频率一致(谐振)时,腔中的场最强,从波导(主传输线)内吸收的能量也较多,从而使测量放大器的指示数从某一值突然降到某一最低值,如图1-2(a)所示。此时即可从频率计的刻度上读出信号源的频率。从图1-1可知,腔与波导(主传输线)只有一个耦合元件(孔),形成主传输线的分路,这种连接方式称为吸收式(或称反应式)连接方法。另一种是,腔与主传输线有两个耦合器件,并把腔串接于主传输线中,谐振时腔中的场最强,输出的能量也较多,因而测量放大器的指示也最大,如

现代微波跟天线测量技术_第1讲

现代微波与天线测量技术 第一讲:概述 彭宏利博士 2008.09 微波与射频研究中心 上海交通大学-电信学院-电子工程系

1.意义 谈论“现代微波与天线测量技术”的意义,不能不先从“电磁场与微波技术”的意义谈起。 1870年,Maxwell创立的电磁场方程组标志人类对于电场和磁场本质认识的统一。这一认识后被Richard Feynman称之为19世纪人类科学的最高成就。在21世纪之初的今天,全世界仍然有无数的电磁科学家和工程师继续在采用计算机,努力地在寻找19世纪Maxwell方程组的解。针对这种现象,人们不禁会问:“投入大量资源,继续研究电磁场与微波技术对于当今社会意义何在?” 下面回答这个问题。 20年前,人们研究“电磁场与微波技术”的动力主要来自于国防军事需要。 近20年来,电磁场与微波技术的研究主要动力迅速从军用转到了高速通信和高速计算等民用需要方面。 1.1.军用领域 2战期间,UHF和微波雷达对于拯救England以及盟军的后来胜利,发挥了至关重要的作用。随后的45年,雷达技术与反雷达技术在空中防御力量的较量,一刻也没有停止过。雷达技术,始终是围绕着一系列电磁技术而开展工作的。图1给出了用100MHz雷达波束照射喷气式飞机,在飞机导体上激起表面电流的计算结果。 图1 100MHz雷达波束在飞机导体上激起表面电流的计算结果 问题1:这架飞机能承受多强的照射?能隐性吗?如何进行测试验证? 1960年后,刺激人们研究电磁技术的因素是原子弹爆炸后会产生强烈的电磁脉冲EMP,该EMP能量巨大,足以烧地面上方圆数百英里之内的所有电子设备。由此产生了EMP预测和防护技术。 问题2:如何进行EMP测试验证? 1980年后,高功率微波HPM尖锐波束技术的出现,吸引人们研究HPM透射机理

现代检测技术

《现代检测技术》综述 前言: 随着现代科学技术的不断发展、社会的日益进步,现代化生产的规模越来越大,管理的形式和方式趋于多样性,管理也更加科学,人们对产品的产量和质量的要求也越来越高,这就导致常规的检测参数、检测手段、检测仪表难以满足现代生产和生活的需求。从一般的单参数测量到相关多参数的综合自动检测,从一般的参数的量值测量到参数的状态估计,从确定性的测量到模糊的判断等等,已成为当前检测领域中的发展趋势,正受到越来越广泛的关注,从而形成了各种新的检测技术和新的检测方法,这些技术和方法统称为现代检测技术。 检测的发展和现代检测技术: 检测是指在各类生产、科研、试验及服务等各个领域,为及时获得被测、被控对象的有关信息而实时或非实时地对一些参量进行定性检查和定量测量,而工业化的发展则对传统的检测提出了更高的要求,为了保证生产过过程能正常、高效、经济的运行,严格控制生产过程中某些重要的工艺参数(如温度、压力、流量等)进行严格的控制,基于这样的理念现代检测呼之欲出。 1 检测的发展: 检测技术是20世纪六十年代发展起来的一门具有广泛应运价值的交叉学科,发展过程经历了三个阶段。 (1)第一阶段是依靠人工为主。通过专家现场获取设备运行时的感观状态,感知异常的震动、噪声、温度等信息,凭经验确定可能存在何种故障或故障隐患。 (2)第二阶段是信号分析监测与诊断阶段。随着传感器技术、测量技术以及分析技术的发展,状态监测逐步发展为依靠传感器和测量仪器获取设备的工作参数(如频率、振幅、速度、加速度、温度等参数),通过与正常工作状态下的参数进行对比,确定故障点或故障隐患点。 (3)第三阶段是现代化状态监测与故障诊断阶段。随着信号处理技术、软测量技术、计算机技术和网络技术的发展,状态监测与故障诊断技术也发展到计算机时代,数据采集工作站采集现场的各种传感器信号,通过计算机网络将数据发送到远程的监测与诊断工作站,利用各种信号处理技术和分析软件对设备状态进行监测。 2 现代检测 2.1现代检测技术 现代测试技术是一门交叉性学科,是自动化、电子信息工程、电气自动化、机电一体化等专业的专业基础课程。 尽管现代检测仪器和检测系统的种类、型号繁多,用途、性能千差万别,但它们的作用都是用于各种物理或化学成分等参量的检测,其组成单元按信号传输的流程来区分:通常由各种传感器(变送器)将非电被测物理或化学成分参量转化成电信号,然后经信号调理、数据采集、信号处理后显示并输出,由以上设备以及系统所需要的交、直流稳压电源盒必要的输入设备便组成了一个完整的检测系统,涉及内容主要包括传感器原理与技术、信号调理、数据采集、信号处理、

实验一、微波测量基础知识实验报告

实验一、微波测量基础知识 班级:核32 姓名:杨新宇学号:2013011806 同组成员:杨宗谕一、实验目的 (1)了解和掌握信号发生器使用及校准。 (2)了解微波测量系统的基本组成和工作原理。 (3)掌握常用微波测量系统各器件的调整和使用方法。 (4)频率计(波长表)校准。 (5)了解和掌握测量线使用方法 二、实验原理及系统组成 1、微波信号源 图1是微波信号源的基本框图。通常由微波信号源、微波测量装置和指示器三部分组成。 它负责提供一定频率和功率的微波信号。同低频信号源一样,其信号可以是连续波也可以是调制波,工作方式有点频、扫频两种状态工作。微波信号源被广泛应用的类型主要有以下两种: (1)标准信号发生器 标准信号发生器其输出信号的频率、功率和调制系数可在一定范围内调节(有时调制系数可以固定不变),并能准确读数且屏蔽良好。它能做到输出微波信号准确已知,并能精细调节,特别是能将信号功率连续衰减到毫瓦、微瓦级电平,根据不同用途可具有不同的调制方式。 (2)扫频信号发生器 扫频信号发生器是能产生扫频信号的微波信号源,它能从所需频率范围的一端连续地“扫变”到另一端,所以能直接得到各个频率上的测量结果,在示波器或者记录仪上立即显示出所需要的频率特性曲线。

本实验采用的微波源是YM1123 标准信号发生器,工作在等幅模式下。 2、微波测量装置 微波测量装置如图2 所示。主要包括驻波测量线、调配元件、待测元件和辅助元件(如短路器、衰减器、匹配负载、移相器等)。 3、指示器部分 指示器是用于显示测量信号特性的仪表,如直流电流表、测量放大器、功率计、示波器、数字频率计、频率计(波长表)等。 4、元件基本原理及作用 信号源:本次实验采用YM1123标准信号发生器作为信号源,测量时工作在等幅模式,非测量时工作在其他模式,具体原理见本节第一部分。 数字频率计:由于信号源显示的频率不准,所以要用一个数字频率计来进行频率校准。后面的频率值均为数字频率计的示数。 同轴波导转换:将同轴线和后面的矩形波导连接起来,将同轴线中的TEM波转变成要测量的微波信号。 隔离器:隔离器是单向通过的,可以屏蔽反射波,保护信号源。 可变衰减器:用一个薄片插入波导,可以吸收微波的能量,衰减微波的功率,通过调节薄片插入深度来调整吸收能量的大小,在实验开始时将其调至最大值,保护后面的元件。实验过程中用来将微波功率衰减到适合测量的值(大约10-20mV)。 波长表:用来测量微波信号频率,本次实验用的波长表是吸收式波长表,当波长表的谐振腔与信号源谐振时,主波导中一部分能量被耦合到波长表谐振腔内,因此电表指示明显下降。电表指示最小时,波长表所对应的频率为信号源工作频率。 波导型晶体检波器:将波导中的微波信号转变成电流信号或电压信号,方便测量,本次实验中将信号转变成电压信号,再用万用表进行测量。 万用表:测量波导型晶体检波器输出的电压信号,从而得到微波功率。

关于现代距离测量技术

关于现代距离测量技术 摘要:现代科学技术的发展,进入了许多新领域,而在测距方面先后出现了激光测距、微波雷达测距、超声波测距及红外线测距等新型测量技术。本 文将简单介绍当前距离测量的意义、方法、原理及现状,以及各种测量 方法的测量原理及方法的简单对比,方便人们可以在生产生活中结合实 际灵活运用各种测量技术。 关键词:距离测量;传感器;原理及运用

About the modern distance measurement technology Abstract:The development of modern science and technology, has gone into many new areas has emerged, while the ranging laser ranging, microwave radar ranging, ultrasonic ranging and infrared ranging new measurement techniques. This article will briefly describes the significance of the distance measurement, a simple comparison of the methods, principles and the status quo, as well as a variety of measurement methods, measurement principle and method to facilitate the people in the production and living combined with practical flexibility in the use of various measurement techniques. Key words:Distance measurement; Sensor; Principle and Use

现代各种测量技术的应用

现代测量技术的应用 当今时代是一个发展极为迅速的时代,随着科技的不断发展,测量技术的应用也更为广泛。现代测量技术是一门集光学、电子、传感器、图像、制造及计算机技术为一体的综合性交叉学科,涉及广泛的学科领域,它在我们的日常生活生产中有着不可小觑的力量。 一、激光测量 激光测量是一种非接触式测量,它不影响被测物体的运动,精度高、测量范围大、检测时间短,具有很高的空间分辨率。激光技术日益受到重视,这与激光的特性有着密不可分的关系: (1)亮度高:由于激光的发射能力强和能量的高度集中,所以亮度很高,激光束经过会聚,可在焦点出产生几千到几万度的高温。 (2)方向性好:激光发射后发散角非常小,在几公里外的扩展范围不过几厘米。 (3)激光的波长基本一致,谱线宽度很窄,颜色很纯,单色性很好。 (4)相干性好:激光是受激辐射光,具有极强的相干性。 利用激光的上述特性,激光传感器可用于测量速度、长度、距离、震动等物理量。 激光测距的原理和无线雷达相同:激光对准目 标发射出去后,测量它的往返时间,再乘以光速即 得到往返距离,在激光测距仪基础上发展起来的激 光雷达不仅能测距,而且还可以测目标方位、运运 速度和加速度等,已成功地用于人造卫星的测距和 跟踪,例如采用红宝石激光器的激光雷达,测距范 围为500~2000公里,误差仅几米。 激光测震则是基于多普勒原理测量物体的振 动速度。多普勒原理是指:若波源或接收波的观察 者相对于传播波的媒质而运动,那么观察者所测到 的频率不仅取决于波源发出的振动频率而且还取决于波源或观察者的运动速度的大小和方向。这种测振仪在测量时由光学部分将物体的振动转换为相应的多普勒频移,并由光检测器将此频移转换为电信号,再由电路部分作适当处理后送往多普勒信号处理器将多普勒频移信号变换为与振动速度相对应的电信号,最后记录于磁带。它的优点是使用方便,不需要固定参考系,不影响物体本身的振动,测量频率范围宽、精度高、动态范围大。缺点是测量过程受其他杂散光的影响较大。 激光测速也是基多普勒原理的一种激光测速方法,用得较多的是激光多普勒流速计,它可以测量风洞气流速度、火箭燃料流速、飞行器喷射气流流速、大气风速和化学反应中粒子的大小及汇聚速度等。 二、摄影测量 提到摄影大家并不陌生,摄影测量则是是通过影像研究被摄物体构像信息的获取、处理、提取和成果表达的一门信息科学。摄影测量的主要特点是对影像或相片进行量测和解译,无需接触被研究物体本身,因而很少受到各种条件限制。相片及其他各种类别影像均是客观物体或目标的真实反应,信息丰富、图像逼真,人们可以从中获取被研究物体的大量几何信息和物理信息。 在生活当中,摄影测量常常被用来测制各种比例尺的地图、建立地形数据库、并为各种地理信息系统和土地信息系统提供基础数据。

相关文档
相关文档 最新文档