文档库 最新最全的文档下载
当前位置:文档库 › 有限元考试试题

有限元考试试题

有限元考试试题
有限元考试试题

一.是非题(认为该题正确,在括号中打;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。(×)(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。(√)(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。(√)(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。(×)(5)有限元位移法求得的应力结果通常比应变结果精度低。(×)(6)等参单元中Jacobi行列式的值不能等于零。(√)(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。(×)(8)四边形单元的Jacobi行列式是常数。(×)(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。(√)(10)一维变带宽存储通常比二维等带宽存储更节省存储量。(√)

二.单项选择题(共20分,每小题2分)C B B C B C D C C C

1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为

____C__________。

(A)配点法(B)子域法(C)伽辽金法

2 等参变换是指单元坐标变换和函数插值采用__B____的结点和______的插值函数。(A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同

3 有限元位移模式中,广义坐标的个数应与_____B______相等。

(A)单元结点个数(B)单元结点自由度数(C)场变量个数

4 采用位移元计算得到应力近似解与精确解相比较,一般______C_____。

(A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律

5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少

是__B____完全多项式。

(A)m-1次(B)m次(C)2m-1次

6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了____C_____形式,因此,不用

进行回代计算。

(A)上三角矩阵(B)下三角矩阵(C)对角矩阵

7 对称荷载在对称面上引起的________D________分量为零。

(A)对称应力(B)反对称应力(C)对称位移(D)反对称位移

8 对分析物体划分好单元后,______C____会对刚度矩阵的半带宽产生影响。

(A)单元编号(B)单元组集次序(C)结点编号

9 n个积分点的高斯积分的精度可达到__C____阶。

(A)n-1 (B)n(C)2n-1 (D)2n

10 引入位移边界条件是为了消除有限元整体刚度矩阵K的____C______。

(A)对称性(B)稀疏性(C)奇异性

三.简答题(共20分,每题5分)

1、简述有限单元法结构刚度矩阵的特点。

(1)对称性;(2)奇异性;(3)主对角元恒正;(4)稀疏性;(5)非零元素带状分布

2、简述有限元法中选取单元位移函数(多项式)的一般原则。 答:

一般原则有

(1) 广义坐标的个数应该与结点自由度数相等;

(2) 选取多项式时,常数项和坐标的一次项必须完备;

(3) 多项式的选取应由低阶到高阶; (4) 尽量选取完全多项式以提高单元的精度。

3、简述有限单元法的收敛性准则。

完备性要求,协调性要求 (2分) 具体阐述内容

4、考虑下列三种改善应力结果的方法(1)总体应力磨平、(2)单元应力磨平和(3)分片应力磨平,请分别将它们按计算精度(高>低)和计算速度(快>慢)进行排序。

计算精度 (1)>(3)>(2) 计算速度 (2)>(3)>(1)

四.计算题(共40分,每题20分)

1、如图1所示等腰直角三角形单元,其厚度为t ,弹性模量为E ,泊松比0ν=;单元的边

长及结点编号见图中所示。求 (1) 形函数矩阵N

(2) 应变矩阵B 和应力矩阵S (3) 单元刚度矩阵e K 1、解:

设图1所示的各点坐标为

点1(a ,0),点2(a ,a ),点3(0,0)

于是,可得单元的面积为 12

A =2

a ,及 (1) 形函数矩阵N 为

(7分)

12122121

(0a a )a

1

(00a )a 1

(a a 0)

a

N x y N x y N x y =

+-=++=-+ ;

[][]

12312

3 N N N ==N I I I N N N

(2) 应变矩阵B 和应力矩阵S 分别为

(7分)

12a 010-a a -a a ????=??????B ,220010a a a 0????=??????B ,32-a 0100a 0

-a ??

??=??????

B ; []12

3=B B B B

12a 00-a a 11-a a 2

2E ?

?????=??????S ,22000a a 1a 02E ??????=??????S ,32-a 000a 10-a 2E ??????=????

??

S ;

[][]

123123 ==S D B B B S S S

1

2

3

(3) 单元刚度矩阵e K

(6分)

11

1213T 21

222331

32

333110211312011110014020200200020111001e Et tA ---????---????

--??

??===?

?

??-????????-??--??

K K K K B DB K K K K K K

2、图2(a )所示为正方形薄板,其板厚度为t ,四边受到均匀荷载的作用,荷载集度为21/N m ,

同时在y 方向相应的两顶点处分别承受大小为2/N m 且沿板厚度方向均匀分布的荷载作用。设薄板材料的弹性模量为E ,泊松比0ν=。试求

(1) 利用对称性,取图(b )所示1/4结构作为研究对象,并将其划分为4个面积大小

相等、形状相同的直角三角形单元。给出可供有限元分析的计算模型(即根据对称性条件,在图(b )中添加适当的约束和荷载,并进行单元编号和结点编号)。 (2) 设单元结点的局部编号分别为i 、j 、m ,为使每个单元刚度矩阵e K 相同,试在

图(b )中正确标出每个单元的合理局部编号;并求单元刚度矩阵e K 。 (3) 计算等效结点荷载。

(4) 应用适当的位移约束之后,给出可供求解的整体平衡方程(不需要求解)。

2、解:

(1) 对称性及计算模型正确 (5分)

图1

图2

(a )

(b )

(2) 正确标出每个单元的合理局部编号 (3分)

(3) 求单元刚度矩阵e K (4分)

(4) 计算等效结点荷载 (3分)

(5) 应用适当的位移约束之后,给出可供求解的整体平衡方程(不需要求解)。 (5分)

对 称 1011012020031214301201e Et --??

??-??

--?

?=??-??

????

??

K 对 称 123356322000026121006120146101620212v v u Et t v u u ??

--??????

??????--??????

--???

???=??????--??????

????-????????

????-??

??

有限元基础(期末考试题)

《有限元基础》期末测试 一、结构线性静力分析 如图所示的托架,其顶面承受2 lbf in的均匀分布载荷。托架通过有孔的表面 50/ ν=,托架尺固定在墙上,托架是钢制的,弹性模量6 =?,泊松比0.3 E psi 2910 寸如图,单位为英寸。试通过ANSYS求其变形图及von Mises应力分布图。 对题目分析。进行建模,网格划分 托架网格图

施加约束后,就可以对实体进行加载求解, 托架变形图 托架变形图输出的是原型托架和施加载荷后托架变形图的对比,

虚线部分即为托架的原型,托架变形图可看出,由于载荷的作用,托架上面板明显变形了,变形最严重的就是红色部分,这是因为其离托板就远,没有任何物体与其分担载荷,故其较容易变形甚至折断。这是我们在应用托架的时候应当注意的。 节点位移图

托架von Mises 应力分布图

上面两个图为托架的应力分布图,由图可看出主要在两孔处出现应力集中,也就是说这些地方所受的应力的最大的,比较容易出现裂痕。我们在应用托架的时候,应当注意采取一些设施,以便减缓其应力集中。特别是在施加载荷时,绝对不能够超过托架所能承受的极限,否则必将导致事故的发生。 二、动力分析 如图1有一梁板结构,板的四角由四根梁固定支撑,板质量集中于中央。梁板材料相关参数为弹性模量112210/E N m =?,泊松比0.3ν=,密度 337.810/kg m ρ=?。板的厚度0.02t =,板长2000L mm =,宽1000B mm =,板的质量100M kg =。梁长1000h mm =,截面面积为42210A m -=?,惯性矩为 84210J m -=?,现在板的表面施加均匀压力载荷如图2。试研究该梁板结构的瞬 态动力响应。 图 1 图2

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

北京科技大学有限元考试试题

一.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。()(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。()(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。()(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。()(5)有限元位移法求得的应力结果通常比应变结果精度低。()(6)等参单元中Jacobi行列式的值不能等于零。()(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。()(8)四边形单元的Jacobi行列式是常数。()(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。()(10)一维变带宽存储通常比二维等带宽存储更节省存储量。() 二.单项选择题(共20分,每小题2分) 1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为 ________________。 (A)配点法(B)子域法(C)伽辽金法 2 等参变换是指单元坐标变换和函数插值采用______的结点和______的插值函数。 (A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同 3 有限元位移模式中,广义坐标的个数应与___________相等。 (A)单元结点个数(B)单元结点自由度数(C)场变量个数 4 采用位移元计算得到应力近似解与精确解相比较,一般___________。 (A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律 5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少 是______完全多项式。 (A)m-1次(B)m次(C)2m-1次 6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了_________形式,因此,不用进 行回代计算。 (A)上三角矩阵(B)下三角矩阵(C)对角矩阵 7 对称荷载在对称面上引起的________________分量为零。 (A)对称应力(B)反对称应力(C)对称位移(D)反对称位移 8 对分析物体划分好单元后,__________会对刚度矩阵的半带宽产生影响。 (A)单元编号(B)单元组集次序(C)结点编号 9 n个积分点的高斯积分的精度可达到______阶。 (A)n-1 (B)n(C)2n-1 (D)2n 10 引入位移边界条件是为了消除有限元整体刚度矩阵K的__________。 (A)对称性(B)稀疏性(C)奇异性 三.简答题(共20分,每题5分) 1、简述有限单元法结构刚度矩阵的特点。 2、简述有限元法中选取单元位移函数(多项式)的一般原则。 3、简述有限单元法的收敛性准则。

工程有限元分析_复习题

《工程中的有限元方法》复习提纲 第1章引言 1.简要论述求解工程问题的一般方法和步骤; 图1-1 工程问题的一般求解步骤 2.简要论述有限元方法求解问题的一般步骤

3.说明ANSYS中关于单位制的使用问题 第2章弹性力学问题有限元分析 4.出一道由单刚组装总刚的问题 5.为什么位移有限元得到的应力结果的精度低于位移结果?在当前计算结 果的基础上如何进一步提高应力结果的精度? 6.弹性力学平面问题包括____和____两类,举例说明; 7.平面问题三角常应变有限元中形函数之和为____; 8.什么是命令流文件?编写命令流文件的方法有哪些?如何调试你编写的 命令流文件?结构分析时采用命令流文件的方式有哪些好处? 第3章单元分析 9.有限元解的收敛准则是什么?进行简单的解释。 10.以下几条曲线,哪条对应的计算过程是收敛的? 11.常见的力学问题中,哪些属于C0问题?哪些属于C1问题?二者有什么 不同? 12.为什么ANSYS等商用软件中只提供最高二阶的单元,而没有更高阶的 单元?

13.Serendipity单元和Lagrange矩形单元相比,其不同点在哪里?有什么优 点和缺点? 14.提高有限元计算精度的三种方法是什么?进行简要的阐述。 15.等参变换中的Jacob矩阵有什么物理意义?其行列式又有什么几何意 义? 16.什么是完全积分、减缩积分和选择积分? 17.什么情况下会出现剪切自锁问题?如何解决这个问题? 18.什么情况下会出现体积自锁问题?如何解决这个问题? 19.为什么有时候需要采用减缩积分?减缩积分可能带来什么问题?如何解 决这个问题? 第4章桁架结构有限元分析 20.给定一个微分方程,如何建立其等效积分形式和等效积分弱形式?二者 区别在哪里?为什么后者在数值分析中得到更多的应用? 21.不同的加权余量法的区别在哪里?什么是加权余量法的伽辽金格式? 22.自然边界条件和强制边界条件的区别是什么?为何这样命名?举例说明 在应力分析和温度场分析时自然边界条件和强制边界条件分别是什么? 23.为什么基于最小势能原理的有限元解是下限解,即总体位移和真实值相 比偏小? 24.会手工计算简单的一维杆件结构,如: 已知p、a、b、EA,用有限元计算两端反力及杆件应力:

solidworks进行有限元分析的一般步骤

1.软件形式: ㈠. SolidWorks的内置形式: ◆COSMOSXpress——只有对一些具有简单载荷和支撑类型的零件的静态分析。 ㈡. SolidWorks的插件形式: ◆COSMOSWorks Designer——对零件或装配体的静态分析。 ◆COSMOSWorks Professional——对零件或装配体的静态、热传导、扭曲、频率、掉落测试、优化、疲劳分析。 ◆COSMOSWorks Advanced Professional——在COSMOSWorks Professional的所有功能上增加了非线性和高级动力学分析。 ㈢. 单独发行形式: ◆COSMOS DesignSTAR——功能与COSMOSWorks Advanced Professional相同。 2.使用FEA的一般步骤: FEA=Finite Element Analysis——是一种工程数值分析工具,但不是唯一的数值分析工具!其它的数值分析工具还有:有限差分法、边界元法、有限体积法… ①建立数学模型——有时,需要修改CAD几何模型以满足网格划分的需要, (即从CAD几何体→FEA几何体),共有下列三法: ▲特征消隐:指合并和消除在分析中认为不重要的几何特征,如外圆角、圆边、标志等。▲理想化:理想化是更具有积极意义的工作,如将一个薄壁模型用一个平面来代理(注:如果选中了“使用中面的壳网格”做为“网格类型”,COSMOSWorks会自动地创建曲面几何体)。▲清除:因为用于划分网格的几何模型必须满足比实体模型更高的要求。如模型中的细长面、多重实体、移动实体及其它质量问题会造成网格划分的困难甚至无法划分网格—这时我们可以使用CAD质量检查工具(即SW菜单: Tools→Check…)来检验问题所在,另外含有非常短的边或面、小的特征也必须清除掉(小特征是指其特征尺寸相对于整个模型尺寸非常小!但如果分析的目的是找出圆角附近的应力分布,那么此时非常小的内部圆角应该被保留)。 ②建立有限元模型——即FEA的预处理部分,包括五个步骤: ▲选择网格种类及定义分析类型(共有静态、热传导、频率…等八种类别)——这时将产生一个FEA算例,左侧浏览器中之算例名称之后的括号里是配置名称; ▲添加材料属性: 材料属性通常从材料库中选择,它不并考虑缺陷和表面条件等因素,与几何模型相比,它有更多的不确定性。 ◇右键单击“实体文件夹”并选择“应用材料到所有”——所有零部件将被赋予相同的材料属性。 ◇右键单击“实体文件夹”下的某个具体零件文件夹并选择“应用材料到所有实体”——某个零件的所有实体(多实体)将被赋予指定的材料属性。 ◇右键单击“实体文件夹”下具体零件的某个“Body”并选择“应用材料到实体”——只有

有限元法试题

《汽车有限元基础》2009-2010二学期考试试卷

《汽车有限元基础》2009-2010第二学期考试试卷 一、填空题 1. 有限元法的基本思想是用个单元的集合来代替原来具有个自由 度的连续体。 2. 单元刚度矩阵K中元素K ij的物理意义:当单元第j个自由度产生而其它自由度固定时,在第i个自由度产生的。 3.按照各杆轴线及外力作用线在空间的位置,杆系结构可分为: 和。4.平面刚架中各单元发生轴向拉压变形及面内的弯曲变形,而且这两种变形相互独立,因此刚架单元可以看成是由单元和单元叠加而成。因此,平面刚架单元的节点位移应包含个平动分量和个转动分量。 5.工程中常用的薄板单元有:单元和单元。6.有限元分析的主要步骤先后为:(1) 网格划分, (2) , (3) 。 7. 单元特性分析的主要内容先后为:(1) 、(2) 、(3) 应力或内力、(4) 、(5) 单元节点载荷。 8.对于弹性变形体,承受的外载荷共有三种:集中载荷、和。在有限元法中,对于没有作用在节点上的这些外载荷,是按照的原则将其移置到节点上。 9.工程中任一平板,若其厚度为t,板面宽度为b,当t/b小于时可以认为是薄板。常用的薄板单元有:单元和单元。10.薄壳单元中的应力可看成平面应力问题和问题中两种应力的叠加。 11.求解结构系统的动力响应时,常用的两种求解方法为:和 12.在有限元分析中,为了描述几何模型和有限元模型,需要用到几种坐标系: (1) (2) (3) 和(4)

《汽车有限元基础》2009-2010第二学期考试试卷 二、 问答题 1.某一薄板矩形单元的节点编号按照逆时针依次为i 、j 、m 和p 。假设该单元每个节点的位移表示为{}{}T yi xi i i w θθδ=, (i, j, m, p );该单元每个节点的载荷表示为{}{}T iy ix i i T T Z F θθ=,(i, j, m, p )。请写出该单元的单元节点位移列阵和单元 节点载荷列阵。 2.请写出使用有限元分析软件时,进行数据前处理的主要工作内容。 3.右下图为一典型三节点三角形平面单元,节点按照逆时针依次编号为i 、j 和m ,节点的坐标依次为(x i ,y i ),(x j ,y j )、(x m ,y m )。假设单元内任意一点的两个位移分量分别表示u 和v 。请写出该单元位移模式的多项式形式,并简述待定常数个数的确定理由。 4. 请简述针对动力问题的有限元分析的基本步骤。

有限元单元介绍

第二章单元 在显式动态分析中可以使用下列单元: ·LINK160杆 ·BEAM161梁 ·PLANE162平面 ·SHELL163壳 ·SOLID164实体 ·COMBI165弹簧阻尼 ·MASS166质量 ·LINK167仅拉伸杆 本章将概括介绍各种单元特性,并列出各种单元能够使用的材料类型。 除了PLANE162之外,以上讲述的显式动态单元都是三维的,缺省时为缩减积分(注意:对于质量单元或杆单元缩减积分不是缺省值)缩减积分意味着单元计算过程中积分点数比精确积分所要求的积分点数少。因此,实体单元和壳体单元的缺省算法采用单点积分。当然,这两种单元也可以采用全积分算法。详细信息参见第九章沙漏,也可参见《LS-DYNA Theoretical Manual》。 这些单元采用线性位移函数;不能使用二次位移函数的高阶单元。因此,显式动态单元中不能使用附加形状函数,中节点或P-单元。线位移函数和单积分点的显式动态单元能很好地用于大变形和材料失效等非线性问题。 值得注意的是,显单元不直接和材料性能相联系。例如,SOLID164单元可支持20多种材料模型,其中包括弹性,塑性,橡胶,泡沫模型等。如果没有特别指出的话(参见第六章,接触表面),所有单元所需的最少材料参数为密度,泊松比,弹性模量。参看第七章材料模型,可以得到显式动态分析中所用材料特性的详细资料。也可参看《ANSYS Element Reference》,它对每种单元作了详细的描述,包括单元的输入输出特性。 2.1实体单元和壳单元 2.1.1 SOLID164 SOLID164单元是一种8节点实体单元。缺省时,它应用缩减(单点)积分和粘性沙漏控制以得到较快的单元算法。单点积分的优点是省时,并且适用于大变形的情况下。当然,也可以用多点积分实体单元算法(KEYOPT(1)=2);关于

ANSYS 有限元分析基本流程

第一章实体建模 第一节基本知识 建模在ANSYS系统中包括广义与狭义两层含义,广义模型包括实体模型和在载荷与边界条件下的有限元模型,狭义则仅仅指建立的实体模型与有限元模型。建模的最终目的是获得正确的有限元网格模型,保证网格具有合理的单元形状,单元大小密度分布合理,以便施加边界条件和载荷,保证变形后仍具有合理的单元形状,场量分布描述清晰等。 一、实体造型简介 1.建立实体模型的两种途径 ①利用ANSYS自带的实体建模功能创建实体建模: ②利用ANSYS与其他软件接口导入其他二维或三维软件所建立的实体模型。 2.实体建模的三种方式 (1)自底向上的实体建模 由建立最低图元对象的点到最高图元对象的体,即先定义实体各顶点的关键点,再通过关键点连成线,然后由线组合成面,最后由面组合成体。 (2)自顶向下的实体建模 直接建立最高图元对象,其对应的较低图元面、线和关键点同时被创建。 (3)混合法自底向上和自顶向下的实体建模 可根据个人习惯采用混合法建模,但应该考虑要获得什么样的有限元模型,即在网格划分时采用自由网格划分或映射网格划分。自由网格划分时,实体模型的建立比较1e单,只要所有的面或体能接合成一体就可以:映射网格划分时,平面结构一定要四边形或三边形的面相接而成。 二、ANSYS的坐标系 ANSYS为用户提供了以下几种坐标系,每种都有其特定的用途。 ①全局坐标系与局部坐标系:用于定位几何对象(如节点、关键点等)的空间位置。 ②显示坐标系:定义了列出或显示几何对象的系统。 ③节点坐标系:定义每个节点的自由度方向和节点结果数据的方向。 ④单元坐标系:确定材料特性主轴和单元结果数据的方向。 1.全局坐标系 全局坐标系和局部坐标系是用来定位几何体。在默认状态下,建模操作时使用的坐标系是全局坐标系即笛卡尔坐标系。总体坐标系是一个绝对的参考系。ANSYS提供了4种全局坐标系:笛卡尔坐标系、柱坐标系、球坐标系、Y-柱坐标系。4种全局坐标系有相同的原点,且遵循右手定则,它们的坐标系识别号分别为:0是笛卡尔坐标系(cartesian),1是柱坐标系 (Cyliadrical),2是球坐标系(Spherical),5是Y-柱坐标系(Y-aylindrical),如图2-1所示。

(完整版)福州大学有限元考试题

一 判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (×)10单元位移函数包括了常应变和刚体位移,则该单元一定是完备协调单元。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为{}{}[][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力 基本方程 平衡方程 物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元

有限元法基础试题

有限元法基础试题(A ) 一、填空题(5×2分) 1.1单元刚度矩阵e T k B DBd Ω = Ω? 中,矩阵B 为__________,矩阵D 为___________。 1.2边界条件通常有两类。通常发生在位置完全固定不能转动的情况为_______边界,具体指定有限的非零值位移的情况,如支撑的下沉,称为_______边界。 1.3内部微元体上外力总虚功: ()(),,,,e x x xy y bx xy x y y by d W F u F v dxdy δστδτσδ??=+++++??+(),,,,x x y y xy y x u v u u dxdy σδσδτδδ??+++??的表达式中,第一项为____________________的虚功,第二项为____________________的虚功。 1.4弹簧单元的位移函数1N +2N =_________。 1.5 ij k 数学表达式:令j d =_____,k d =_____,k j ≠,则力i ij F k =。 二、判断题(5×2分) 2.1位移函数的假设合理与否将直接影响到有限元分析的计算精度、效率和可靠性。( ) 2.2变形体虚功原理适用于一切结构(一维杆系、二维板、三位块体)、适用于任何力学行为的材料(线性和非线性),是变形体力学的普遍原理。 ( ) 2.3变形体虚功原理要求力系平衡,要求虚位移协调,是在“平衡、协调”前提下功的恒等关系。 ( ) 2.4常应变三角单元中变形矩阵是x 或y 的函数。 ( ) 2.5 对称单元中变形矩阵是x 或y 的函数。 ( ) 三、简答题(26分) 3.1列举有限元法的优点。(8分) 3.2写出有限单元法的分析过程。(8分) 3.3列出3种普通的有限元单元类型。(6分) 3.4简要阐述变形体虚位移原理。(4分) 四、计算题(54分) 4.1对于下图所示的弹簧组合,单元①的弹簧常数为10000N/m ,单元②的弹簧常数为20000N/m ,单元③的弹簧常数为10000N/m ,确定各节点位移、反力以及单元②的单元力。(10分) 4.2对于如图所示的杆组装,弹性模量E 为10GPa ,杆单元长L 均为2m ,横截面面积A 均为2×10-4m 2,弹簧常数为2000kN/m ,所受荷载如图。采用直接刚度法确定节点位移、作用力和单元②的应力。(10分)

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

西工大有限元试题附答案68872

1.针对下图所示的3个三角形元,写出用完整多项式描述的位移模式表达式。 2.如下图所示,求下列情况的带宽: a)4结点四边形元; b)2结点线性杆元。 3、对上题图诸结点制定一种结点编号的方法,使所得带宽更小。图左下角的四边形在两种不同编号方式下,单元的带宽分别就是多大? 4、下图所示,若单元就是2结点线性杆单元,勾画出组装总刚后总刚空间轮廓线。系统的带宽就是多大?按一右一左重新编号(即6变成3等)后,重复以上运算。

5. 设杆件1-2受轴向力作用,截面积为A,长度为L,弹性模量为E,试写出杆端力F1,F 2与杆端位移21,u u 之间的关系式,并求出杆件的单元刚度矩阵)(][e k 6、设阶梯形杆件由两个等截面杆件\o \a c(○,1)与错误!所组成,试写出三个结点1、2、3的结点轴向力F 1,F 2,F3与结点轴向位移321,,u u u 之间的整体刚度矩阵[K]。 7. 在上题的阶梯形杆件中,设结点3为固定端,结点1作用轴向载荷F 1=P,求各结点的轴向位移与各杆的轴力。 8、 下图所示为平面桁架中的任一单元,y x ,为局部坐标系,x,y 为总体坐标系,x 轴与x 轴的夹角为 。 (1) 求在局部坐标系中的单元刚度矩阵 )(][e k (2) 求单元的坐标转换矩阵 [T]; (3) 求在总体坐标系中的单元刚度矩阵 )(][e k

9.如图所示一个直角三角形桁架,已知27/103cm N E ?=,两个直角边长度cm l 100=,各杆截面面积210cm A =,求整体刚度矩阵[K ] 。 10. 设上题中的桁架的支承情况与载荷情况如下图所示,按有限元素法求出各结点的位移与各杆的内力。

有限元法及其在工程中的应用

机械与汽车学院 曹国强 主要内容: 1、有限元法的基本思想。 2、结构力学模型的简化和结构离散化。 3、有限元法的实施过程。 一、有限元法的基本思想 有限元法是随着计算机的发展而发展起来的一种有效的数值方法。其基本思想是:将连续的结构分割成数目有限的小单元体(称为单元),这些小单元体彼此之间只在数目有限的指定点(称为节点)上相互连接。用这些小单元体组成的集合体来代替原来的连续结构。再把每个小单元体上实际作用的外载荷按弹性力学中的虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程称为结构的离散化。其次,对每个小单元体选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中的变分原理建立起单元节点力和节点位移之间的关系(单元刚度方程),最后,把全部单元的节点力和节点位移之间的关系组集起来,就得到了一组以结构节点位移为未知量的代数方程组(总体刚度方程),同时考虑结构的约束情况,消去那些结构节点位移为零的方程,再由最后的代数方程组就可求得结构上有限个离散节点的各位移分量。求得了结构上各节点的位移分量之后,即可按单元的几何方程和物理方程求得各单元的应变和应力分量。 有限元法的实质就是把具有无限个自由度的连续体,理想化为有限个自由度的单元的集合体,使问题简化为适合于数值解法的结构型问题。 经典解法(解析法)与有限元法的区别 解析法 { } 建立一个描述连续体性质的偏微分方程组 有限元解法 连续体 数目增加到∞ 大小趋于0 微元 有限元 离散化 (单元分析)集合 总体分析 求得近似解

二、结构力学模型的简化和结构离散化 (一)结构力学模型的简化 用有限元法研究实际工程结构问题时,首先要从工程实际问题中抽象出力学模型,即要对实际问题的边界条件、约束条件和外载荷进行简化,这种简化应尽可能地反映实际情况,不至于使简化后的解答与实际差别过大,但也不要带来计算上的过分复杂,在力学模型的简化过程中,必须判断实际结构的问题类型,是二维问题还是三维问题。如果是平面问题,是平面应力问题,还是平面应变问题。同时还要搞清楚结构是否对称,外载荷大小和作用位置,结构的几何尺寸和力学参数(弹性模量E、波松比μ等)。 (二)结构的离散化 将已经简化好的结构力学模型划分成只在一些节点连续的有限个单元,把每个单元看成是一个连续的小单元体,各单元之间只在一些点上互相联结,这些点称作节点,每个单元体称为一个单元。用只在节点处连接的单元的集合体代替原来的连续结构,把外载荷按虚功等效原理移置到有关受载的节点上,构成节点载荷,把连续结构进行这样分割的过程称为结构的离散化。现举例说明。 设一平面薄板,中间有一个园孔,其左端固定,右端受面力载荷q,试对其进行有限元分割和力学模型简化。

有限元法分析过程

有限元法分析过程 有限元法分析过程大体可分为:前处理、分析、后处理三大步骤。 对实际的连续体经过离散化后就建立了有限元分析模型,这一过程是有限元的前处理过程。在这一阶段,要构造计算对象的几何模型,要划分有限元网格,要生成有限元分析的输入数据,这一步是有限元分析的关键。 有限元分析过程主要包括:单元分析、整体分析、载荷移置、引入约束、求解约束方程等过程。这一过程是有限元分析的核心部分,有限元理论主要体现在这一过程中。 有限元法包括三类:有限元位移法、有限元力法、有限元混合法。 在有限元位移法中,选节点位移作为基本未知量; 在有限元力法中,选节点力作为未知量; 在有限元混合法中,选一部分基本未知量为节点位移,另一部分基本未知量为节点力。 有限元位移法计算过程的系统性、规律性强,特别适宜于编程求解。一般除板壳问题的有限元应用一定量的混合法外,其余全部采用有限元位移法。因此,一般不做特别声明,有限元法指的是有限元位移法。 有限元分析的后处理主要包括对计算结果的加工处理、编辑组织和图形表示三个方面。它可以把有限元分析得到的数据,进一步转换为设计人员直接需要的信息,如应力分布状态、结构变形状态等,并且绘成直观的图形,从而帮助设计人员迅速的评价和校核设计方案。 附:FELAC 2.0软件简介 FELAC 2.0采用自定义的有限元语言作为脚本代码语言,它可以使用户以一种类似于数学公式书写和推导的方式,非常自然和简单的表达待解问题的微分方程表达式和算法表达式,并由生成器解释产生完整的并行有限元计算C程序。 FELAC 2.0的目标是通过输入微分方程表达式和算法之后,就可以得到所有有限元计算的程序代码,包含串行程序和并行程序。该系统采用一种语言(有限元语言)和四种技术(对象技术、组件技术、公式库技术生成器技术)开发而成。并且基于FELAC 1.0的用户界面,新版本扩充了工作目录中右键编译功能、命令终端输入功能,并且丰

有限元考试试题.(优选)

一.是非题(认为该题正确,在括号中打;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。(×)(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。(√)(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。(√)(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。(×)(5)有限元位移法求得的应力结果通常比应变结果精度低。(×)(6)等参单元中Jacobi行列式的值不能等于零。(√)(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。(×)(8)四边形单元的Jacobi行列式是常数。(×)(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。(√)(10)一维变带宽存储通常比二维等带宽存储更节省存储量。(√) 二.单项选择题(共20分,每小题2分)C B B C B C D C C C 1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为 ____C__________。 (A)配点法(B)子域法(C)伽辽金法 2 等参变换是指单元坐标变换和函数插值采用__B____的结点和______的插值函数。(A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同 3 有限元位移模式中,广义坐标的个数应与_____B______相等。 (A)单元结点个数(B)单元结点自由度数(C)场变量个数 4 采用位移元计算得到应力近似解与精确解相比较,一般______C_____。 (A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律 5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少 是__B____完全多项式。 (A)m-1次(B)m次(C)2m-1次 6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了____C_____形式,因此,不用 进行回代计算。 (A)上三角矩阵(B)下三角矩阵(C)对角矩阵 7 对称荷载在对称面上引起的________D________分量为零。 (A)对称应力(B)反对称应力(C)对称位移(D)反对称位移 8 对分析物体划分好单元后,______C____会对刚度矩阵的半带宽产生影响。 (A)单元编号(B)单元组集次序(C)结点编号 9 n个积分点的高斯积分的精度可达到__C____阶。 (A)n-1 (B)n(C)2n-1 (D)2n 10 引入位移边界条件是为了消除有限元整体刚度矩阵K的____C______。 (A)对称性(B)稀疏性(C)奇异性 三.简答题(共20分,每题5分) 1、简述有限单元法结构刚度矩阵的特点。 (1)对称性;(2)奇异性;(3)主对角元恒正;(4)稀疏性;(5)非零元素带状分布

平面三角形单元有限元程序的设计说明

. . P 9 m 9 m 一、题目 如图1所示,一个厚度均匀的三角形薄板,在顶点作用沿板厚方向均匀分布的竖向载荷。已知:P=150N/m,E=200GPa,=0.25,t=0.1m,忽略自重。试计算薄板的位移及应力分布。 要求: 1.编写有限元计算机程序,计算节点位移及单元应力。(划分三角形 单元,单元数不得少于30个); 2.采用有限元软件分析该问题(有限元软件网格与程序设计网格必 须一致),详细给出有限元软件每一步的操作过程,并将结果与程序计算结果进行对比(任选取三个点,对比位移值); 3.提交程序编写过程的详细报告及计算机程序; 4.所有同学参加答辩,并演示有限元计算程序。 有限元法中三节点三角形分析结构的步骤如下: 1)整理原始数据,如材料性质、荷载条件、约束条件等,离散结构并进行单元编码、结点编码、结点位移编码、选取坐标系。 2)单元分析,建立单元刚度矩阵。 3)整体分析,建立总刚矩阵。 4)建立整体结构的等效节点荷载和总荷载矩阵 5)边界条件处理。 6)解方程,求出节点位移。 7)求出各单元的单元应力。 8)计算结果整理。 一、程序设计 网格划分 如图,将薄板如图划分为6行,并建立坐标系,则

刚度矩阵的集成 建立与总刚度矩阵等维数的空矩阵,已变单元刚度矩阵的集成。 由单元分析已知节点、单元的排布规律,继而通过循环计算求得每个单元对应的节点序号。 通过循环逐个计算:(1)每个单元对应2种单元刚度矩阵中的哪一种; (2)该单元对应总刚度矩阵的那几行哪几列 (3)将该单元的单元刚度矩阵加入总刚度矩阵的对应行列 循环又分为3层循环:(1)最外层:逐行计算 (2)中间层:该行逐个计算 (3)最里层:区分为第 奇/偶 数个计算 单元刚度的集成:[ ][][][][][]' '''''215656665656266256561661e Z e e e Z e Z e e e e k k k K k k k k k k +?++=? =?==?==?=?????? 边界约束的处理:划0置1法 X Y P X Y P 节点编号 单元编号

有限元d 分析与介绍

有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 有限元分析是用较简单的问题代替复杂问题后再求解。它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。 有限元是那些集合在一起能够表示实际连续域的离散单元。有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。 有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。

工程有限元实例分析

溜槽挡板槽帮的有限元分析 摘要:本文根据刮板输送机溜槽在煤矿井下推溜工况下时的受力情况,对溜槽挡板槽帮建立力学模型。根据计算得溜槽挡板槽帮最大的载荷值及其作用部位,结合Solidworks和ABAQUS软件强大的CAD/CAE功能建立挡板槽帮的实体模型并对其进行有限元分析。根据溜槽在井下的实际工作情况,重点分析挡板槽帮的凹、凸端头和推移耳这三个部位的强度。通过有限元分析,明确挡板槽帮在实际工作中易损部位,并为槽帮的焊接制造提供建设性建议。 关键词:刮板输送机;溜槽挡板槽帮;ABAQUS有限元分析 Chute Baffle Slot for Finite Element Analysis Abstract: In this paper, according to the stress situation of scraper conveyor chute in coal mine underground pushing conditions, establishing the mechanical model of chute baffle slot. Based on the calculation of chute baffle groove for maximum load value and its location, solid and finite element analysis model is established for the baffle slot combining with SolidWorks and ABAQUS software with powerful function of CAD/CAE. In the light of the chute's actual working situation in the mine, taking the strength analysis for baffle of concave convex end and passes the ear of the three parts as emphasis. By the finite element analysis, the baffle vulnerable in practical work site can be clear, so as to help the groove welding manufacturing provide constructive advices. Key words: scraper conveyor; baffle; ABAQUS finite element analysis

相关文档