文档库 最新最全的文档下载
当前位置:文档库 › 函数与几何综合题的解题方法

函数与几何综合题的解题方法

函数与几何综合题的解题方法
函数与几何综合题的解题方法

函数与几何综合题的解题方法

函数与几何综合题主要有两类,一类是几何元素间的函数关系问题,简称“几函”问题,其特点是根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质去解决几何图形中的问题。另一类是函数图像中的几何图形的问题,简称“函几”问题,其特点是根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题。

下面,笔者就上述两类典型试题为例,谈谈函数与几何综合题的解题策略。

一、综合使用分析法和综合法

就是从条件与结论出就是从条件与结论出发进行联想、推理,“由已知得可知”,“从要求到需求”,通过对问题的“两边夹击”,使它们在中间的某个环节上产生联系,从而使问题得以解决。如本文例5中的第(2)、(3)问的解答就使用了此种方法。

【例1】已知二次函数y=x2+bx+c的顶点在直线y=-4x上,并且图象经过点A(-1,0)。

(1)求这个二次函数的解析式;

(2)设此二次函数与x轴的另一个交点为B,与y轴的交点为C,求经过M、B、C三点的⊙O′的直径长;

(3)设⊙O′与y轴的另一个交点为N,经过P(-2,0)、N两点的直线为l则圆心O′是否在直线l上,请说明理由请说明理由。

二、运用方程的思想

就是寻找要解决的问题中量与量之间的等量关系,建立已知量与未知量间的方程,通过解方程从而使问题得到解决;在运用这种思想时,要注意充分挖掘问题的的隐藏条件,寻找等量关系建立方程或方程组;如本文例2中的第(2)个问题的解决就用到了此种思想。

【例2】如图所示,已知A、B两点的坐标分别为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个单位长度的速度向原点O运动,动直线EF从x轴开始以每秒1个单位长度的速度向上平移(即EF∥x轴),并且分别与y轴、线段AB交于E、F点,连结FP,设动点P与动直线EF同时出发,运动时间为t秒。

(1)当t=1时,求梯形OPFE的面积。t为何值时,梯形OPFE的面积最大,最大面积是多少?

(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长。

(3)设t的值分别取t1、t2时,(t1≠t2),所对应的三角形分别是Δ AF1P1

和Δ AF2P2,试判断这两个三角形是否相似;请证明你的判断。

三、注意使用分类讨论的思想

函数与几何结合的综合题中往往注意考查学生的分类讨论的数学思想,因此在解决这类问题时,一定要多一个心眼儿,多从侧面进行缜密地思考,用分类讨论的思想探讨出现结论的一切可能性,从而使问题的解答完整无遗。如本文例3中的第(2)、(3)问,要从直角的顶点的位置、矩形的第四个顶点的位置进行讨论,例3第(2)问中,求面积S与x间的函数关系式时,也要分直线l在点C 的左边和右边两种情况来讨论,千万不能一蹴而就。

【例3 】已知二次函数的图象如图所示,(1)求二次函数的解析式及抛物线的顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q,当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值围;(3)在对称轴右侧的抛物线上是否存在点P,使ΔPAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(4)将ΔOAC补成矩形,使ΔOAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这边的对边上,试直接写出矩形的未知顶点的坐标(不需要计算过程)。

四、运用数形结合的思想

在中学数学中,“数”与“形”不是孤立的,它们的辩证统一表现在:“数”可以准确地澄清“形”的模糊,而“形”能直观地启迪“数”的计算;使用数形结合的思想来解决问题时,要时刻注意由图形联想其性质,由性质联想相应的图形,从而使问题得以简化;如本文中的例4,在解决y与x间的函数关系时,首先根据图形的性质,建立起线段间的关系式,然后再利用线段间的关系,建立y 与x间的函数关系;在求自变量x的取值围时,把自变量所对应的几何元素推到两个极端的位置,求出相应的值,再结合几何量的实际意义和题目中的已知条件加以确定。

【例4】如图,AB为半圆的直径,O为圆心,AB=6,延长BA到F,使FA =AB,若P为线段AF上的一个动点(不与

A重合),过P点作半圆的切线,切点为C,

过B点作 BE⊥PC交PC的延长线于E.设

AC=x,AC+BE=y,求y与 x的函数关系

式及x的取值围。

评析:这是一道集圆、直角三角形、相似三角形与函数的综合题,由于已知条件中有切线,因此可以联想切线的性质、切割线定理、弦切角定理、切线长定理;又因为有直径这一已知条件,又可联想构造直径所对的圆周角。因此,连

结BC,构造出“双直角三角形”和弦切角定理的典型图形,然后利用两对相似三角形中的一对建立比例式,再结合勾股定理解决问题。

五、运用转化的思想

转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,因此在解决这类问题时,要善于把“新知识”转化为“旧知识”,把“未知”化为“已知”,把“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题,上面所有各例,都用到了转化的数学思想,可以大胆地说,不掌握转化的数学思想,就很难正确而全面地解决函数与几何结合的综合问题。

一、函数与几何问题的综合题的分类和特点

1.几何元素间的函数关系问题

这类问题的特点是:

2.函数图像中的几何图形的问题

这类问题的特点是:

二、函数与几何综合题例析

(一)几何元素间的函数关系问题

1.线段与线段之间的函数关系

(1)观察几何图形的特征。

(2)依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系。

(3)将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的取

值围。

【例1】如图,AB为半圆的直径,O为圆心,AB=6,延长BA到F,使FA =AB,若P为线段AF上的一个动点(不与

A重合),过P点作半圆的切线,切点为C,

过B点作 BE⊥PC交PC的延长线于E.设

AC=x,AC+BE=y,求y与 x的函数关系

式及x的取值围。

评析:这是一道集圆、直角三角形、相似三角形与函数的综合题,由于已知条件中有切线,因此可以联想切线的性质、切割线定理、弦切角定理、切线长定理;又因为有直径这一已知条件,又可联想构造直径所对的圆周角。因此,连结BC,构造出“双直角三角形”和弦切角定理的典型图形,然后利用两对相似三角形中的一对建立比例式,再结合勾股定理解决问题。

2.面积与线段间的函数关系的建立

解决此类问题除了掌握第一类型的知外,还要注意到以下两点:

(1)常见图形的面积公式。

(2)学会灵活地将非特殊图形的面积转化为特殊图形的面积,将同底(或等高)的两个三角形的面积之比转化为它们的高(或底)之比,将相似三角形的面积之比转化为相似比(或周长的比、对应边上的高的比、对应边上的中线的比等)的平方。

【例2】如图所示,已知A、B两点的坐标分别为(28,0)和(0,28),动点P从A点开始在线段AO上以每秒3个单位长度的速度向原点O运动,动直线EF从x轴开始以每秒1个单位长度的速度向上平移(即EF∥x轴),并且分别与y轴、线段AB交于E、F点,连结FP,设动点P与动直线EF同时出发,运动时间为t秒。

(1)当t=1时,求梯形OPFE的面积。t为何值时,梯形OPFE的面积最大,最大面积是多少?

(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长。

(3)设t的值分别取t1、t2时,(t1≠t2),所对应的三角形分别是Δ AF1P1和Δ AF2P2,试判断这两个三角形是否相似;请证明你的判断。

(二)函数图像中的几何图形的问题

1.三类基本初等函数中的图形面积问题

解决这类问题时,通常要将坐标系中的图形进行分割,一般情况是将它分割成一些两边(或三边)在坐标轴上或者两边(或三边)平行于坐标轴的三角形(或梯形、矩形)等;同时要注意点到坐标轴的距离与点的坐标间的区别,正确利用

点的坐标来表示线段的长度。

【例3】如图,直线OC、BC的函数关系式分别为y=x和y=﹣2x+6,动点P (x,0)在OB上移动(0<x<3),过点P作直线l与x轴垂直.(1)求点C的坐标;

(2)设△OBC中位于直线l左侧部分的面积为s,写出s与x之间的函数关系式;

(3)在直角坐标系中画出(2)中函数的图象;

(4)当x为何值时,直线l平分△OBC的面积?

2、三类基本初等函数中的三角形、四边形、圆的问题:

这类题目一般由1~3问组成,第一问往往是求函数的解析式,然后在此基础上再与几何中的三角形(全等、相似或特殊三角形是否存在等问题)四边形(面积的函数关系式、特殊四边形是否存在)和圆(直线与圆的位置关系的判断、圆中的比例式是否成立)结合起来,利用初中的主干知识全面考查学生综合运用所学知识解决问题的能力;解决这类综合性问题时要注意以下几个问题:【例4 】已知二次函数的图象如图所示,(1)求二次函数的解析式及抛物线的顶点M的坐标;(2)若点N为线段BM上的一点,过点N作x轴的垂线,垂足为点Q,当点N在线段BM上运动时(点N不与点B、点M重合),设NQ的长为t,四边形NQAC的面积为S,求S与t之间的函数关系式及自变量t的取值围;(3)在对称轴右侧的抛物线上是否存在点P,使ΔPAC为直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由;(4)将ΔOAC补成矩形,使ΔOAC的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这边的对边上,试直接写出矩形的未知顶点的坐标(不需要计算过程)。

【例5】已知二次函数y=x2+bx+c的顶点在直线y=-4x上,并且图象经过点A(-1,0)。

(1)求这个二次函数的解析式;

(2)设此二次函数与x轴的另一个交点为B,与y轴的交点为C,求经过M、B、C三点的⊙O′的直径长;

(3)设⊙O′与y轴的另一个交点为N,经过P(-2,0)、N两点的直线为l则圆心O′是否在直线l上,请说明理由请说明理由。

一、函数与几何综合题的解题策略:

1、综合使用分析法和综合法。就是从条件与结论出就是从条件与结论出发进行联想、推理,“由已知得可知”,“从要求到需求”,通过对问题的“两边夹击”,使它们在中间的某个环节上产生联系,从而使问题得以解决。如本文例5中的第(2)、(3)问的解答就使用了此种方法;

2、运用方程的思想。就是寻找要解决的问题中量与量之间的等量关系,建立已

知量与未知量间的方程,通过解方程从而使问题得到解决;在运用这种思想时,要注意充分挖掘问题的的隐藏条件,寻找等量关系建立方程或方程组;如本文例2中的第(2)个问题的解决就用到了此种思想;

3、注意使用分类讨论的思想。函数与几何结合的综合题中往往注意考查学生的分类讨论的数学思想,因此在解决这类问题时,一定要多一个心眼儿,多从侧面进行缜密地思考,用分类讨论的思想探讨出现结论的一切可能性,从而使问题的解答完整无遗。如本文例4中的第(2)、(3)问,要从直角的顶点的位置、矩形的第四个顶点的位置进行讨论,例3第(2)问中,求面积S与x间的函数关系式时,也要分直线l在点C的左边和右边两种情况来讨论,千万不能一蹴而就;

4、运用数形结合的思想。在中学数学中,“数”与“形”不是孤立的,它们的辩证统一表现在:“数”可以准确地澄清“形”的模糊,而“形”能直观地启迪“数”的计算;使用数形结合的思想来解决问题时,要时刻注意由图形联想其性质,由性质联想相应的图形,从而使问题得以简化;如本文中的例1,在解决y与x间的函数关系时,首先根据图形的性质,建立起线段间的关系式,然后再利用线段间的关系,建立y与x间的函数关系;在求自变量x的取值围时,把自变量所对应的几何元素推到两个极端的位置,求出相应的值,再结合几何量的实际意义和题目中的已知条件加以确定;

5、运用转化的思想。转化的数学思想是解决数学问题的核心思想,由于函数与几何结合的问题都具有较强的综合性,因此在解决这类问题时,要善于把“新知识”转化为“旧知识”,把“未知”化为“已知”,把“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题,上面所有各例,都用到了转化的数学思想,可以大胆地说,不掌握转化的数学思想,就很难正确而全面地解决函数与几何结合的综合问题;

二次函数与几何综合压轴题题型归纳88728

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:?? ? ??++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此 抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:

已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解? ?? ?==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。 (3)如图,B A 、是直线l 同旁的两个定点,线段a ,在直线l 上确定两点E 、F (E 在F 的左侧 ),使得四边形AEFB 的周长最小。 8、在平面直角坐标系中求面积的方法:直接用公式、割补法 三角形的面积求解常用方法:如右图,S △PAB =1/2 ·PM ·△x=1/2 ·AN ·△y 9、函数的交点问题:二次函数(c bx ax y ++=2 )与一次函数(h kx y +=) (1)解方程组???h kx y c bx ax y +=++= 2可求出两个图象交点的坐标。 (2)解方程组???h kx y c bx ax y +=++= 2,即()02 =-+-+h c x k b ax ,通过?可判断两个图象的交点 的个数 有两个交点 ? 0>?

二次函数与几何综合压轴题题型归纳 学生版

标准实用 二次函数综合压轴题型归类、要学会利用特殊图形的性质去分析二次函数与特殊图形的关系教学目标:1 2、掌握特殊图形面积的各种求法 1、利用图形的性质找 点重点、难点: 2、分解图形求面积 一、二次函数和特殊多边形形状二、二次函数和特殊多边形面积三、函数动点引起的最值问题四、常考点汇总????22x?AB??yy?x:1、两点间的距离公式BAAB x?xy?y??BABA,ABC??的坐标为::线段的中点2 、中点坐标 22??y?kx?bk?0y?kx?bk?0)的位置关系:)与((直线212112??k?bk?kb?k)两直线相交 且(1)两直线平行(2212112??kk?b?1bk?k? 3()两直线重合(4)两直线垂直且2121213、 一元二次方程有整数根问题,解题步骤如下: ?和参数的其他要求确定参数的取值范围;①用②解方程,求出方程的根;(两种形式:分式、 二次根式) ③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 ??22mxm5<m02m?1=x?mx-的值。为整数,求例:关于的一元二次方程有两个整数根,且 x轴的交点为整数点问题。(方法同上)、4二次函数与??2mx3x?y?mx?3m1?为正整数,试确定轴交于两个不同的整数点,且例:若抛物线与此抛物线的解析式。 5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 文案大全. 标准实用 2mxm0?2m?mx3?3(m?1)x?为何值,方程总为实数)(已知关于,求证:无论的方程有一个固定的根。1x0?m?时,解:当;??3?1?m?3??2x?2?x?1?x0?m0??3m??;、时,当,, 12m2m m为何值,方程总有一个固定的根是1。综上所述:无论 6、函数过固定点问题,举例如下: 2mm2?my?x??mx为何值,该抛物线总经过一个固已知抛物线(,求证:不论是常数)定的点,

(word完整版)初中数学几何证明题技巧

初中数学几何证明题技巧 几何证明题入门难,证明题难做,是许多初中生在学习中的共识,这里面有很多因素,有主观的、也有客观的,学习不得法,没有适当的解题思路则是其中的一个重要原因。掌握证明题的一般思路、探讨证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。在这里结合自己的教学经验,谈谈自己的一些方法与大家一起分享。 一要审题。很多学生在把一个题目读完后,还没有弄清楚题目讲的是什么意思,题目让你求证的是什么都不知道,这非常不可取。我们应该逐个条件的读,给的条件有什么用,在脑海中打个问号,再对应图形来对号入座,结论从什么地方入手去寻找,也在图中找到位置。 二要记。这里的记有两层意思。第一层意思是要标记,在读题的时候每个条件,你要在所给的图形中标记出来。如给出对边相等,就用边相等的符号来表示。第二层意思是要牢记,题目给出的条件不仅要标记,还要记在脑海中,做到不看题,就可以把题目复述出来。 三要引申。难度大一点的题目往往把一些条件隐藏起来,所以我们要会引申,那么这里的引申就需要平时的积累,平时在课堂上学的基本知识点掌握牢固,平时训练的一些特殊图形要熟记,在审题与记的时候要想到由这些条件你还可以得到哪些结论(就像电脑一下,你一点击开始立刻弹出对应的菜单),然后在图形旁边标注,虽然有些条件在证明时可能用不上,但是这样长期的积累,便于以后难题的学习。 四要分析综合法。分析综合法也就是要逆向推理,从题目要你证明的结论出发往回推理。看看结论是要证明角相等,还是边相等,等等,如证明角相等的方法有(1.对顶角相等2.平行线里同位角相等、内错角相等3.余角、补角定理4.角平分线定义5.等腰三角形6.全等三角形的对应角等等方法。然后结合题意选出其中的一种方法,然后再考虑用这种方法证明还缺少哪些条件,把题目转换

二次函数与几何综合(习题及答案)

二次函数与几何综合(习题) ?例题示范 例1:如图,抛物线y=ax2+2ax-3a 与x 轴交于A,B 两点(点 A 在点 B 的左侧),与y 轴交于点C,且OA=OC,连接AC. (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a,可以求解A(-3,0),B(1,0),对称轴为直线x=-1;结合题中给出的OA=OC,可得C(0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由y=ax2+2ax-3a=a(x+3)(x-1) 可知A(-3,0),B(1,0), ∵OA=OC, ∴C(0,-3), 将C(0,-3)代入y=ax2+2ax-3a, 解得,a=1, ∴y=x2+2x-3. 1

△ 第二问:铅垂法求面积 【思路分析】 (1) 整合信息,分析特征: 由所求的目标入手分析,目标为 S △ACP 的最大值,分析 A ,C 为定点,P 为动点且 P 在直线 AC 下方的抛物线上运动,即 -3<x P <0; (2) 设计方案: 注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达 S △ACP . 【过程示范】 如图,过点 P 作 PQ ∥y 轴,交 AC 于点 Q , 易得 l AC :y =-x -3 设点 P 的横坐标为 t ,则 P (t ,t 2+2t -3), ∵PQ ∥y 轴, ∴Q (t ,-t -3), ∴PQ =y Q -y P =-t -3-(t 2+2t -3)=-t 2-3t (-3<t <0), ∴ S = 1 PQ ? (x - x ) = - 3 t 2 - 9 t (-3<t <0) △ ACP 2 C A 2 2 ∵ - 3 < 0 , 2 ∴抛物线开口向下,且对称轴为直线t = - 3 , 2 ∴当t = - 3 时,S ACP 最大,为 27 . 2 8 第三问:平行四边形的存在性 【思路分析】 分析不变特征: 以 A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点 A ,B 连接成为定线段 AB . 分析形成因素: 要使这个四边形为平行四边形.首先考虑 AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则 AB 既可以作边,也可以作对角线. 画图求解: 先根据平行四边形的判定来确定 EF 和 AB 之间应满足的条 2

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分

一次函数的应用、二次函数与几何知识的综合应用练习题

2012届一次函数的应用、二次函数与几何知识的综合应用练习题 1、某书报亭开设两种租书方式:一种是零星租书,每册收费1元;另一种是 会员卡租书,办卡费每月12元,租书费每册0.4元.小军经常来该店租书, 若每月租书数量为x 册. (1)写出零星租书方式应付金额y 1(元)与租书数量x (册)之间的函数关系 式; (2)写出会员卡租书方式应付金额y 2(元 )与租书数量x (册)之间的函数关 系式; (3)小军选取哪种租书方式更合算? 2、某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知 大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x (辆),购 车总费用为y (万元). (1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围); (2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最 省的方案,并求出该方案所需费用. 3、如图,抛物线y = 2 1x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论; ⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值. 4、如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物 线交x 轴于另一点C (3,0). 第3题图

⑴ 求抛物线的解析式; ⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求 出符合条件的Q 点坐标;若不存在,请说明理由. 5、已知双曲线x k y 与抛物线y=ax 2+bx+c 交于A(2,3)、B(m,2)、c(-3,n)三点. (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A 、点B 、点C,并求出△ABC 的面积, 6、已知函数y=mx 2-6x +1(m 是常数). ⑴求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点; ⑵若该函数的图象与x 轴只有一个交点,求m 的值. 7、如图所示,二次函数y =-x 2+2x +m 的图象与x 轴的一个交点为A (3,0),另一 个交点为B ,且与y 轴交于点C . 第5题图

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

小学数学常用解题技巧(解几何题技巧)

小学数学常用解题技巧:解几何题技巧 解几何题技巧 1.等分图形 【均分整体】有些几何问题,只要把大图形均分为若干个小图形,就能找到问题的答案。 例如,下面两图中的正方形分别内接于同一个等腰直角三角形(内接指四个顶点全在三角形的边上)。已知左图(图4.11)中正方形面积为72平方厘米,求右图( 4.12)中正方形的面积。 由于左右两个三角形完全相同,我们不妨把这两个图形进行等分,看看这两个正方形分别与同一个等腰直角三角 形有什么样的关系。等分后的情况见图 4.13和图 4.14。 积是 图4.12的正方形面积是 【均分局部】有些几何问题,整体的均分不太方便,或不能够办到,这时可以考虑把它的局部去均分,然后从整 体上去观察,往往也能使问题获得解决。 例如图 4.15,在正方形ABCD中,画有甲、乙、丙三个小正方形。问:乙、丙面积之和与甲相比,哪一个大些? 大家由前面的“均分整体”已经知道,像甲、乙这样的两个正方形,面积不是相等的。如图 4.16,经过等分,正方形甲的面积等于△ABC面积的一半;正方形丙的面积等于△EDF的一半,正方形乙的面积等于梯形ACFE面积的一半。这样,一个大正方形ABCD,就划分成了三个局部:等腰直角△ABC;等腰梯形ACFE;等腰直角△EDF。其中甲、乙、丙的面积分别为各自所在图形的一半,而△EDF的面积加梯形ACFE的面积等于△ADC的面积,即等于△ABC的面积。所以,乙、丙面积之和等于甲的面积。

2.平移变换 【平移线段】有些几何问题,通过线段的上、下、左、右平移以后,能使问题很快地得到正确的解答。 例如,下面的两个图形(图 4.17和图4.18)的周长是否相等? 单凭眼睛观察,似乎图 4.18的周长比图 4.17的要长一些。但把有关线段平移以后,图 4.18就变成了图 4.19,其中的线段,有的上移,有的左移,有的右移,它可移成一个正方形。于是,不难发现两图周长是相等的。 【平移空白或阴影部分】有些求阴影部分或空白部分面积的几何题,采用平移空白部分或平移阴影部分的办法, 往往能化难为易,很快使问题求得解答。例如,计算图 4.20中阴影部分的面积。 圆面积”,然后相加,得整个阴影部分的面积。这显然是很费时费力的。但认真观察一下就会发现,图 4.20左半左上部的空白部分,与右半左上部的阴影部分大小一样,只需将右半左上部的阴影部分,平移到左半左上部的空白部分,所 有的阴影部分便构成一个正方形了(如图 4.21)。所以,阴影部分的面积很快就可求得为5×5=25。 又如,一块长30米,宽24米的草地,中间有两条宽2米的走道,把草地分为四块,求草地的面积(如图 4.22)。 这只要把丙向甲平移靠拢,把丁向乙平移靠拢,题目也就很快能解答出来了。(具体解法略) 3.旋转变换 【旋转成定角】例如下面的题目: “在图 4.23中,半径为8厘米的圆的内外各有一个正方形,圆内正方形顶点都在圆周上,圆外正方形四条边与圆 都只有一个接触点。问:“大正方形的面积比小正方形的面积大多少?”

二次函数和几何综合压轴题题型归纳

学生: 科目: 数 学 教师: 刘美玲 一、二次函数和特殊多边形形状 二、二次函数和特殊多边形面积 三、函数动点引起的最值问题 四、常考点汇总 1、两点间的距离公式:()()22B A B A x x y y AB -+-= 2、中点坐标:线段AB 的中点C 的坐标为:??? ??++22 B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系: (1)两直线平行?21k k =且21b b ≠ (2)两直线相交?21k k ≠ (3)两直线重合?21k k =且21b b = (4)两直线垂直?121-=k k 3、一元二次方程有整数根问题,解题步骤如下: ① 用?和参数的其他要求确定参数的取值范围; ② 解方程,求出方程的根;(两种形式:分式、二次根式) ③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。 例:关于x 的一元二次方程()0122 2 =-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。 4、二次函数与x 轴的交点为整数点问题。(方法同上) 例:若抛物线()3132 +++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定 此抛物线的解析式。 课 题 函数的综合压轴题型归类 教学目标 1、 要学会利用特殊图形的性质去分析二次函数与特殊图形的关系 2、 掌握特殊图形面积的各种求法 重点、难点 1、 利用图形的性质找点 2、 分解图形求面积 教学内容

5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下: 已知关于x 的方程2 3(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。 解:当0=m 时,1=x ; 当0≠m 时,()032 ≥-=?m ,()m m x 213?±-= ,m x 3 21-=、12=x ; 综上所述:无论m 为何值,方程总有一个固定的根是1。 6、函数过固定点问题,举例如下: 已知抛物线22 -+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。 解:把原解析式变形为关于m 的方程()x m x y -=+-122 ; ∴ ???=-=+-0 1 02 2x x y ,解得:???=-=1 1 x y ; ∴ 抛物线总经过一个固定的点(1,-1)。 (题目要求等价于:关于m 的方程()x m x y -=+-122 不论m 为何值,方程恒成立) 小结.. :关于x 的方程b ax =有无数解????==0 b a 7、路径最值问题(待定的点所在的直线就是对称轴) (1)如图,直线1l 、2l ,点A 在2l 上,分别在1l 、2l 上确定两点M 、N ,使得MN AM +之和最小。 (2)如图,直线1l 、2l 相交,两个固定点A 、B ,分别在1l 、2l 上确定两点M 、N ,使得 AN MN BM ++之和最小。

数学几何解题技巧

初中数学教学中几何解题思路分析 【摘要】平面几何在初中数学中一直占据着很重要的位置。而学生在对几何知识进行学习和掌握的过程中,最重要的一个部分就是能够应用到实践中进行解题。正像美国一位著名的数学家曾经所说过的那样:“数学这门学科,真正的组成部分就是问题和解题,在问题与解题中,解题就是数学的心脏所在。”学生在学习的过程中是否会解题,能否对一定的解题技巧与方法进行掌握对学生学习效果有直接的影响。对教师来说,学生对基本的解题能力进行掌握,也是“双基”教学的一个方面。在数学中对基本的解题方法和技巧进行注意,对学生的学习能力的提高无疑有着重要的促进作用,与此同时还能够对学生良好学习习惯的形成有推动作用。 【关键词】初中数学;教学;几何;解题思路; 对初中的几何教学来说,初中几何中的重要部分是解题技巧与规律教学。尤其是在初中几何的后期与复习阶段,通过对学生的几何解题技巧的培养,能够使学生对知识有系统性的掌握,同时能够培养其对知识进行灵活应用的能力。当然,处了解题技巧与规律的培养,还应该注意对学生思维能力的培养。只有思维能力得到提高,才能更好地掌握解题技巧与规律。下面我们通过具体的实例进行详细分析初中数学几何题的解题思路, 一、初中数学几何的解题技巧 1、对常见的题型与解题方法进行归纳总结 初中的几何题中,其实常见的题型并不多,所以这对经常见的几何题型与解题方法进行归纳与总结,是初中几何解题一个和实用的解题技巧。初中几何,证明题是最常见的,而证明题中,又以线段或角的一些关系的证明最为常见。对线段的关系的证明通常包括相等及其和差关系等的证明。在这些中,相等关系的证明是学生应该进行的基本掌握,对线段相等关系的证明,在思路与方法上常用的包括“三角形全等”、“比例线段”以及“等角对等边”和对中间量的过渡进行选取等思路。在这些方法中,“三角形全等”是最常用的,也是应该掌握的基本解题方法。对线段不等关系则一般常用“线段公理”,而对线段的和差及其它(如倍、分)关系,在解题过程中要注意使用截长、补短等技巧。对常见技巧进行掌握,能有效提高学生的解题效率。 2、注意对辅助线进行添加和使用 在对初中几何进行解题的过程中,除了要对常用的解题方法与规律进行掌握外,还要对辅助线的添加与使用加以关注。在初中几何题中,当直接解题出现障碍使,添加辅助线是常见的解题技巧,往往会让人产生一种“柳暗花明又一村”的感觉。对常见技巧进行掌握,能有效提高学生的解题效率。下面我们通过一道例题详细进行分析几何证明题的解题方法及技巧: 如下图所示,已知:在ABC ?中,?=∠90C ,BC AC =,DB AD =,BF AE =,求证:DF DE =,

一次函数与几何图形综合题

一次函数与几何图形 1、 平面直角坐标系中,点A 的坐标为(4,0),点P 在直线y=-x-m 上,且AP=OP=4,则m 的值是多少? 2、如图,已知点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,试求点B 的坐标。 3、如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线y=1/3x+b 恰好将矩形OABC 分为面积相等的两部分,试求b 的值。 4、如图,在平面直角坐标系中,直线y= 2x —6与x 轴、y 轴分别相交于点A 、B ,点C 在x 轴上,若△ABC 是等腰三角形,试求点C 的坐标。 5、在平面直角坐标系中,已知A (1,4)、B (3,1),P 是坐标轴上一点,(1)当P 的坐标为多少时,AP+BP 取最小值,最小值为多少? 当P 的坐标为多少时,AP-BP 取最大值,最大

值为多少? 6、如图,已知一次函数图像交正比例函数图像于第二象限的A点,交x轴于点B(-6,0),△AOB的面积为15,且AB=AO,求正比例函数和一次函数的解析式。 7、已知一次函数的图象经过点(2,20),它与两坐标轴所围成的三角形的面积等于1,求这个一次函数的表达式。 8、正方形ABCD的边长是4,将此正方形置于平面直角坐标系中,使AB在x轴负半轴上,A 点的坐标是(-1,0), (1)经过点C的直线y=-4x-16与x轴交于点E,求四边形AECD的面积; (2)若直线L经过点E且将正方形ABCD分成面积相等的两部分,求直线L的解析式。

9、在平面直角坐标系中,一次函数y=kx+b(b 小于0)的图像分别与x 轴、y 轴和直线x=4交于A 、B 、C ,直线x=4与x 轴交于点D ,四边形OBCD 的面积为10,若A 的横坐标为-1/2,求此一次函数的关系式 10、在平面直角坐标系中,一个一次函数的图像过点B(-3,4),与y 轴交于点A ,且OA=OB :求这个一次函数解析式 11、如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,m )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,S AOP =6. 求:(1)△COP 的面积 (2)求点A 的坐标及m 的值; (3)若S BOP =S DOP ,求直线BD 的解析式 12、一次函数y=- 3 3x+1的图像与x 轴、y 轴分别交于点A 、B ,以AB 为边在第一象限内做等边△ABC

中考数学几何型综合题解题技巧及分类训练(一)

中考数学几何型综合题 解题技巧和题型训练(一)几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识。主要研究图形中的数量关系、位置关系、几何计算以及图形的运动和变化等规律。大体可以分为几何综合计算和几何综合论证两类。在近几年的考题中,常以阅读探究性问题、图形变化间题、操作探究问题等形式出现。这类题涉及知识点比较多,题设和结论比较隐蔽、常常需要添加辅助线解答。 解中考几何型综合题技能: 解答几何综合题,关键是要抓住基本图形(相似模型、全等模型等),在复杂的几何图形中辨认、分解岀基本几何图形、或者添加辅助线构造基本图形。需要注意以下几点: 1、注意题目的直观提示,比如我们可以通过测量观察判断线段的数量和位置关系,一些比较隐蔽的数量关系,我们可以通过图形变化的特殊情况寻找关系。 2、注意分析题目的隐含条件,比如看到中点,你就要想想我们初中数学与中点相关的那四种情况,加以分析。简单的说,就是看到什么样的条件要有联想。 解中考几何型综合题类型和技巧: 1、阅读探究型问题 阅读探究型问题一般篇幅较长,解题时要读懂题意,对材料中给出的解题思路提栋解题思维,再理解的基础上分析问题与阅读材料的相关点,用模仿、类比或转化的方法解决问题

2、图形变化问题 图形变化问题的探究往往涉及到作图(这个不难),关键是把我图形运动、变化过程中始终不变的几何量或性质,对于变化的量要分析它的运动状态,注意是否需要分类讨论,分析变化量与不变量之间可能有什么关系,如何建立这种关系。 3、操作探究问题 在操作过程中提炼信息,分析操作步骤与目的,在特例解决的过程中提炼思维,并类比发散解决一般性结论,并借助图形变化帮助我们更有效地找到解题思路。

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________ . 2___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型①割补求面积——铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ ,若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时,当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ . 例题示范例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点 B 的左侧),与y 轴交于点 C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A ,B , E , F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的 点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由2 23y ax ax a =+-(3)(1) a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =, ∴(03)C -,, 将(03)C -,代入2 23y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】 (1)整合信息,分析特征: 由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在1()2 APB B A S PM x x =??-△

初中数学几何证明题解题方法--

初中数学几何证明题解题方法--

————————————————————————————————作者:————————————————————————————————日期:

浅谈初中数学几何证明题解题方法 内容摘要:几何证明题的一般结构由已知条件和求证目标组成。做几何证明题的一般步骤:审题,寻找证明的思路,书写证明过程 关键词:几何证明 条件 结论 .执因索果 执果索因 辅助线 初中学生正处于自觉形象思维向逻辑思维的过度阶段,几何证明,是学生逻辑思维的起步。这种思维方式学生刚接触,会遇到一些困难。许多学生在几何证明这里“跌倒了”,丧失了信心,以至于几何越学越糟。为此,我根据自己几年的数学教学实践,就初中数学中几何证明题的一般结构,解题思路进行初步探讨。 学好几何证明,起步要稳,要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。 一、几何证明题的一般结构 初中几何证明题的一般结构由已知条件和求证目标两部分(即前提和结论)组成。已知条件是几何证明的前提,指题目中用文字和符号直接给出的明确条件,也包括所给图形中暗含的条件。求证指题目要求的经过推理最终得出的结论。已知条件是题目既定成立的、毋庸置疑而且必然正确的。求证是几何证明题的最终目标,就是根据题目给出的已知条件,利用数学中的公理、定理、性质,用合理的推理形式推导出的最后结果,而且只能出现在证明过程的最后。 例如:如图,在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . 求证:△ABC ≌△DCB ; 已知条件:文字给出的有:△ABC 和△DCB ,AB = DC ,AC = DB ,AC 与DB 交于点M 图形给出的有:BC=CB,∠BMA 与∠CMD 是对顶角等等 求证目标是:△ABC ≌△DCB 注意,已知条件除了上面列出的,就没有其它的了,不可随意出现AM=DM ,BN=CN 等等 二、做几何证明题的一般步骤 (一)、审题 审题就是读题,这一步是解决几何证明题的关键,非常重要。许多学生读几何证明题时讲快,常常忽略了题目中蕴含的重要信息。和读其它类型的题有所不同,读几何证明题要求 B A M N

浅说函数与几何综合题的解题策略及复习

浅说函数与几何综合题的解题策略及复习 Last revision on 21 December 2020

浅说函数与几何综合题的解题策略及复习 函数与几何是初中数学中的重点内容,是中考命题重点考查的内容之一;函数中的几何问题,能使代数知识图形化,而几何中的函数问题,能使图形性质代数化;由于函数与几何结合的综合题的形式灵活、立意新颖,能更好地考查学生的思维水平和数学思想方法,因而成为近几年各地中考的一类热门试题;这一特点在孝感市近三年的中考数学试卷中表现得尤为突出;如2001年的中考压轴题是以直角三角形为背景,揉合一次函数、相似形、直线与圆的位置关系等知识构成;2002年的中考压轴题是以矩形为背景,揉合轴对称、二次函数、几何证明等知识构成;2003年的压轴题是以二次函数为背景,揉合直角三角形的知识构成;因此,将函数知识与几何知识有机结合编制出综合题作为压轴题是我市中考命题的一大特点,也是今后中考命题的一大趋势; 函数知识与几何知识有机结合的综合题,根据构成命题的主要要素可分为以下两类:一类是几何元素间的函数关系问题(这类问题不妨称简称为“几函”问题),这类问题的特点是:根据已知几何图形间的位置和数量关系(如平行、全等、相似,特别是成比例)建立自变量与函数所表示的几何元素间的等量关系,求出函数关系式,运用函数的性质解决几何图形中的问题;另一类是函数图像中的几何图形的问题(如三角形、四边形,特别是圆)(这类问题不妨简称为“函几”问题),这类问题的特点是:根据已知函数图像中的几何图形的位置特征,运用数形结合方法解决有关函数、几何问题;本文特从2003年各地的中考试题中略选几例,谈一谈解决这类问题的策略和复习方法,以期达到抛砖引玉的目的。 一、函数与几何综合题例析 (一)“几函”问题: 1、线段与线段之间的函数关系: 由于这类试题的主要要素是几何图形,因此,在解决此类问题时首先要观察几何图形的特征,然后依据相关图形的性质(如直角三角形的性质、特殊四边形的性质、平行线分线段成比例定理及其推论、相似三角形的性质、圆的基本性质、圆中的比例线段等等)找出几何元素之间的联系,最后将它们的联系用数学式子表示出来,并整理成函数关系式,在此函数关系式的基础上再来解决其它的问题;解决此类问题时,要特别注意自变量的 取值范围。 例1 如图,AB是半圆的直径,O为圆心 AB=6,延长BA到F,使FA=AB,若P为线段 AF上的一个动点(不与A重合),过P点作半 圆的切线,切点为C,过B点作BE⊥PC交PC 的延长线于E,设AC=x,AC+BE=y,求y与x 的函数关系式及x的取值范围。(2003年山东省烟台市中考题)O

最新初中数学几何题解题技巧

最新初中数学几何题解题技巧 初中数学几何题解题技巧一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此"添线"应该叫做"补图"!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线

(2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整

时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形

(完整版)题型五二次函数与几何图形综合题

目录 题型五二次函数与几何图形综合题 (2) 类型一与特殊三角形形状有关 (2) 类型二与特殊四边形形状有关 (8) 类型三与三角形相似有关 (18) 类型四与图形面积函数关系式、最值有关 (23) 类型五与线段、周长最值有关 (29)

题型五二次函数与几何图形综合题 类型一与特殊三角形形状有关 针对演练 1. (’16原创)如图,已知抛物线y=-x2+bx+c的对称轴为x=1,与y轴的交点第1题图C为(0,3),与x轴交于点A、B,顶点为D. (1)求抛物线的解析式; (2)求A、B、D的坐标,并确定四边形ABDC的面积; (3)点P是x轴上的动点,连接CP,若△CBP是等腰三角形,求点P的坐标. 2. (’15长沙模拟)如图,抛物线y=ax2+bx+c的图象过点M(-2,3),顶点为N (-1, 43 3 ),与x轴交于点A、B(点A在点B的右侧),与y轴交于点C. (1)求抛物线解析式; (2)判断△ABC的形状,并说明理由; (3)若点Q是抛物线对称轴上一点,当△QBC是直角三角形时,求点Q的坐标.

3. (’16原创)如图,抛物线y = -1 2 x2+mx+n与x轴交于点A、B两点,与y轴 交于点C,其对称轴与x轴的交点为D,已知A(-1,0),C(0,2). (1)求抛物线的解析式; (2)判断△ACD的形状,并说明理由; (3)在抛物线对称轴上是否存在一点P,使得△PBC是以P为直角顶点的直角三角形,若存在,求点P的坐标;若不存在,说明理由. 4. 如图,已知二次函数L1:y=x2-4x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C. (1)写出A、B两点的坐标; (2)二次函数L2:y=kx2-4kx+3k(k≠0),顶点为P. ①直接写出二次函数L2与二次函数L1有关图象的两条相同的性质; ②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由; ③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否会发生变化?如果不会,请求出EF的长度;如果会,请说明理由.

平面几何证明题的一般思路及方法简述

平面几何证明题的一般思路及方法简述 【摘要】惠特霍斯曾说过,“一般地,解题之所以成功,在很大程度上依赖于选择一种最适宜的方法。”灵活、恰当地选择解题方法是求解平面几何问题的良好途径。解决任何一道平面几何证明题,都要应用这样或那样的方法,而选择哪一种方法,就取决于我们用什么样的解题思路。本文试对平面几何证明题中常用的几种解题思路及方法进行分析。 【关键词】平面几何证明题思路方法 平面几何难学,是很多初中生在学习中的共识,这里面包含了很多主观和客观因素,而学习不得法,没有适当的解题思路则是其中的一个重要原因。波利亚曾说过,“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒。为了辨别哪一条思路正确,哪一个方向可接近它,就要试探各种方向和思路。”由此可见,掌握证明题的一般思路、探索证题过程中的数学思维、总结证题的基本规律是求解几何证明题的关键。常见的证题思路有直接式思路和间接式思路。 一、直接式思路 证题时,首先应仔细审查题意,细心观察题目,分清条件和结论,并尽量挖掘题目中隐含的一些解题信息,以在缜密审题的基础上,根据定义、公式、定理进行一系列正面的逻辑推理,最后得出命题的证明,这种证题的思路被称为直接式思路。由于思维方式的逆顺,在证题时运用的方法主要有“分析法”和“综合法”。 1.分析法。分析法是从命题的结论入手,先承认它是正确的,执果索因,寻求结论正确的条件,这样一步一步逆而推之,直到与题设会合,于是就得出了由题设通往结论的思维过程。在由结论向已知条件的寻求追溯过程中,则由于题设条件的不同,或已知条件之间关系的隐含程度不同等,寻求追溯的形式会有一定差异,因而常把分析法分为以下四种类型。 (1)选择型分析法。选择型分析法解题,首先要从题目要求解的结论A出发,逐步把问题转化为分析要得出结论A需要哪些充分条件。假设有条件B,就有结论A,那么B就成为选择找到的使A成立的充分条件,然后再分析在什么条件下能选择得到B……最终追溯到命题中的某一题设条件。 (2)可逆型分析法。如果再从结论向已知条件追溯的过程中,每一步都是推求的充分必要条件,那么这种分析法又叫可逆型分析法,因而,可逆型分析法是选择型分析法的特殊情形。用可逆型分析法证明的命题用选择型分析法一定能证明,反之用选择型分析法证明的命题,用可逆型分析不一定能证明。 (3)构造型分析法。如果在从结论向已知条件追溯的过程中,在寻找新的充分条件的转化“三岔口”处,需采取相应的构造型措施:如构造一些条件,作某些辅助图等,进行探讨、推导,才能追溯到原命题的已知条件的分析法叫做构造型分析法。 (4)设想型分析法。在向已知条件追溯的过程中,借助于有根据的设想、假定,形成“言之成理”的新构思,再进行“持之有据”的验证,逐步地找出正确途径的分析法称为设想型分析法。 2.综合法。综合法则是由命题的题设条件入手,由因导果,通过一系列的正确推理,逐步靠近目标,最终获得结论。再从已知条件着手,根据已知的定义、公式、定理,逐步推导出结论。在这一过程中,由于思考角度不同,立足点不同,综合法常分为四种类型: (1)分析型综合法。我们把分析法解题的叙述倒过来,稍加整理而得到的解法称为分析型综合法。 (2)奠基型综合法。当由已知条件着手较难,或没有熟悉的模式可供归纳推导,就可转而寻找简单的模式,然后再将一般情形化归到这个简单的模式中来,这样的综合法称为奠基型综合法。 (3)媒介型综合法。当问题给出的已知条件较少,且看不出与所求结论的直接联系时,或条

相关文档
相关文档 最新文档