文档库 最新最全的文档下载
当前位置:文档库 › ansys桁架和梁的有限元分析

ansys桁架和梁的有限元分析

ansys桁架和梁的有限元分析
ansys桁架和梁的有限元分析

桁架和梁的有限元分析

第一节基本知识

一、桁架和粱的有限元分析概要

1.桁架杆系的有限元分析概要

桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。

桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。

2.梁的有限元分析概要

梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。

梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。

二、桁架和梁的常用单元

桁架和梁常用的单元类型和用途见表7-1。

通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。

第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析

问题

人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。

条件

人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。

解题过程

制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。

1.ANSYS分析开始准备工作

(1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。

(2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。

(3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。

(4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。

(5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。

2.定义单元类型

运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

ANSYS结构力分析实例

基于图形界面的桁架桥梁结构分析(step by step) 下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。背景素材选自位于密执安的"Old North Park Bridge" (1904 - 1988),见图3-22。该桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3 种不同型号的型钢,结构参数见表3-6。桥长L=32m,桥高H=5.5m。桥身由8 段桁架组成,每段长4m。该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2 和P3 ,其中P1= P3=5000 N, P2=10000N,见图3-23。 图3-22 位于密执安的"Old North Park Bridge" (1904 - 1988) 图3-23 桥梁的简化平面模型(取桥梁的一半) 表3-6 桥梁结构中各种构件的几何性能参数 解答以下为基于ANSYS 图形界面(Graphic User Interface , GUI)的菜单操作流程。 (1) 进入ANSYS(设定工作目录和工作文件)

程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname (设置工作文件名):TrussBridge →Run →OK (2) 设置计算类型 ANSYS Main Menu:Preferences… →Structural →OK (3) 定义单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete... →Add…→Beam: 2d elastic 3 →OK(返回到Element Types窗口)→Close (4) 定义实常数以确定梁单元的截面参数 ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete →Add…→select Type 1 Beam 3 →OK →input Real Constants Set No. : 1 , AREA: 2.19E-3,Izz: 3.83e-6(1号实常数用于顶梁和侧梁) →Apply →input Real Constants Set No. : 2 , AREA: 1.185E-3,Izz: 1.87E-6 (2号实常数用于弦杆) →Apply →input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3号实常数用于底梁) →OK (back to Real Constants window) →Close (the Real Constants window) (5) 定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX: 2.1e11, PRXY: 0.3(定义泊松比及弹性模量) →OK →Density (定义材料密度) →input DENS: 7800, →OK →Close(关闭材料定义窗口) (6) 构造桁架桥模型 生成桥体几何模型 ANSYS Main Menu:Preprocessor →Modeling →Create →Keypoints →In Active CS →NPT Keypoint number:1,X,Y,Z Location in active CS:0,0 →Apply →同样输入其余15个特征点坐标(最左端为起始点,坐标分别为(4,0), (8,0), (12,0), (16,0), (20,0), (24,0), (28,0), (32,0), (4,5.5), (8,5.5), (12,5.5), (16.5.5), (20,5.5), (24,5.5), (28,5.5))→Lines →Lines →Straight Line →依次分别连接特征点→OK 网格划分 ANSYS Main Menu: Preprocessor →Meshing →Mesh Attributes →Picked Lines →选择桥顶梁及侧梁→OK →select REAL: 1, TYPE: 1 →Apply →选择桥体弦杆→OK →select REAL: 2, TYPE: 1 →Apply →选择桥底梁→OK →select REAL: 3, TYPE:1 →OK →ANSYS Main Menu:Preprocessor →Meshing →MeshTool →位于Size Controls下的Lines:Set →Element Size on Picked →Pick all →Apply →NDIV:1 →OK →Mesh →Lines →Pick all →OK (划分网格) (7) 模型加约束 ANSYS Main Menu: Solution →Define Loads →Apply →Structural→Displacement →On Nodes →选取桥身左端节点→OK →select Lab2: All DOF(施加全部约束) →Apply →选取桥身右端节点→OK →select Lab2: UY(施加Y方向约束) →OK (8) 施加载荷 ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Force/Moment →On Keypoints →选取底梁上卡车两侧关键点(X坐标为12及20)→OK →select Lab: FY,Value: -5000 →Apply →选取底梁上卡车中部关键点(X坐标为16)→OK →select Lab: FY,Value: -10000 →OK →ANSYS Utility Menu:→Select →Everything (9) 计算分析 ANSYS Main Menu:Solution →Solve →Current LS →OK (10) 结果显示 ANSYS Main Menu:General Postproc →Plot Results →Deformed shape →Def shape only →OK(返回到Plot Results)→Contour Plot →Nodal Solu →DOF Solution, Y-Component of Displacement →OK(显示Y方向位移UY)(见图3-24(a))

基于ANSYS分析的平面桁架结构优化设计

文章编号:100926825(2007)2020054203 基于ANSYS 分析的平面桁架结构优化设计 收稿日期:2007201229 作者简介:李炳宏(19822),男,后勤工程学院军事建筑工程系硕士研究生,重庆 400041 李 新(19812),男,后勤工程学院军事建筑工程系硕士研究生,重庆 400041 李炳宏 李 新 摘 要:以六杆平面桁架结构为例,利用大型有限元分析软件ANSYS5.7对其按照重量最轻的原则进行了优化分析,实 现了利用ANSYS5.7进行结构优化设计的全过程,得到了重量最轻的优化分析结果,在满足工程要求的前提下,节约了大量的工程材料。 关键词:ANSYS ,有限元分析,平面桁架结构,优化设计中图分类号:TU323.4文献标识码:A 1 概述 在工程实践中,结构优化设计的方法一直是科学工作者和工 程技术人员最为关注的问题之一。从已有工程经验看,与传统设计相比,优化设计可以使土建工程降低造价5%~30%。20世纪60年代以来,随着计算机计算能力的不断提高,人们把有限元分析的方法和各种数学规划方法相结合,并逐步发展成为一种系统和成熟的方法,使得结构优化的技术得到了更快的发展。 文中以六杆平面桁架为例,利用ANSYS 的优化分析功能对其按照重量最轻的原则进行了优化设计,方便快捷地得到了较好的优化结果(重量最轻),实现了利用ANSYS 的优化分析功能进行平面桁架结构优化设计的全过程。 2 有关ANSYS 优化分析的基本概念 ANSYS 优化分析中包括的基本概念有设计变量、状态变量、 目标函数、分析文件等。 1)设计变量是作为自变量,通过改变设计变量的数值来实现结果的优化,设计变量的上下限决定了设计变量的变化范围。坏可能引起结构的连续倒塌和整体破坏。研究火灾高温下,不同结构的性能变化规律;研究火灾高温下,结构连续倒塌和整体破坏的机理,是结构抗火研究的主要内容。 3.3 混凝土结构抗火设计方法的研究 设想混凝土结构的抗火设计可从两个途径进行研究:1)把火灾的高温作用等效为一种荷载,与结构上的其他荷载(恒载、活载、风载、地震作用等)一起参与荷载效应组合,按概率极限状态设计方法进行设计,即建立考虑火灾高温作用的统一的结构设计方法。2)对已按常规方法完成设计的混凝土结构,进行抗火能力的验算,以满足相应的抗火要求。 除进行抗火计算外,加强结构的抗火构造措施也是提高结构抗火能力的一个重要手段。需要研究和发掘实用、有效的抗火构造措施,以使结构的抗火能力得到保证。 3.4 火灾后混凝土结构的损伤评估和修复加固方法的 研究 在具体操作上,可采用观察与计算相结合的方法。通过观察燃烧残留物的性状和分布,结构表观的物理特征,用回弹法、磁力探伤法、超声法、钻取芯样法、恒压恒速冲击钻法对重要部位进行现场或试验室检测,然后通过计算来确定结构的损伤度。 只有在确定了混凝土结构的火灾损伤度的前提下,才有可能制订出科学、合理的策略和方案,对受损混凝土结构进行修复和 加固。目前,对现有建筑结构加固方法的研究非常活跃,充分研究混凝土结构的火灾损伤特点,借助已有的加固方法和手段,应是火灾后混凝土结构修复加固研究的努力方向。 火灾作为一种多发的灾害,对人们的生命及财产造成惨重的损失。建筑火灾对混凝土结构造成一定的损伤甚至整体的破坏。研究混凝土结构的抗火性能,建立混凝土结构的抗火设计方法,建立抗火混凝土结构的损伤评估及修复加固方法,理应成为混凝土结构研究的一项重要任务。建立我国的混凝土结构抗火设计规范和损伤评估及修复加固规程,应是混凝土结构抗火研究的中期目标。参考文献: [1]董毓利.混凝土结构的火安全设计[M ].北京:科学出版社,2001.[2]李 卫,过镇海.高温混凝土的强度和变形性能试验研究[J ].建筑结构学报,1993(2):74275. [3]刘永军.钢筋混凝土结构火灾反应数值模拟及软件开发[D ].大连:大连理工大学博士学位论文,2002.5. [4]过镇海,时旭东.钢筋混凝土的高温性能及其计算(第一版) [M ].北京:清华大学出版社,2002. [5]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究[J ].土木工程学报,2000(4):76277. Investigation on state 2of 2the 2art of f ire 2resistance design for concrete structures WU Wen 2fa WANG H ong 2yong Abstract :This paper summarizes the state 2of 2the 2art of the research reset on fire 2resistance performance of reinforced concrete structures ,pro 2poses the development of researches on fire 2resistance design of reinforced concrete structures ,brings forward the design method of fire 2resis 2tance of concrete structures based on calculation and makes suggestions to the content of the regulation about fire 2resistance design of concrete structres. K ey w ords :concrete structure ,fire 2resistance performance ,fire 2resistance design ? 45?第33卷第20期2007年7月 山西建筑SHANXI ARCHITECTURE Vol.33No.20J ul. 2007

ansys桁架和梁的有限元分析

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

ANSYS 有限元分析 四杆桁架结构

《有限元基础教程》作业三 :四杆桁架结构的有限元分析 班级:机自101202班 姓名:韩晓峰 学号:201012030210 一.问题描述: 如图3-8所示的结构,各杆的弹性模量和横截面积都为4229.510N/mm E =?, 2100mm A =,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。 图3-8 四杆桁架结构 二.求解过程: 1. 基于图形界面的交互式操作(step by step) (1)进入ANSYS(设定工作目录和工作文件) 程序→ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname(设置工作文件名):planetruss →Run → OK (2) 设置计算类型 ANSYS Main Menu: Preferences… → Structural → OK (3) 选择单元类型 ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete… →Add… →Link :2D spar1→OK (返回到Element Types 窗口) →Close (4) 定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:2.95e11 (弹性模量),PRXY:0(泊松比) → OK → 鼠标点击该窗口右上角的“ ”来关闭该窗口 (5) 定义实常数以确定单元的截面积 ANSYSMain Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1→ OK →Real Constant Set No: 1(第1号实常数), AREA: 1e-4 (单元的截面积)→OK →Close (6) 生成单元 ANSYS Main Menu: Preprocessor →Modeling →Creat →Nodes →In Active CS →Node number 1 →X:0,Y:0,Z:0→Apply →Node number 2 →X:0.4,Y:0,Z:0→Apply →Node number 3 →X:0.4,Y:0.3,Z:0→Apply →Node number 4 →X:0,Y:0.3,Z:0→OK ANSYS Main Menu: Preprocessor →Modeling →Create →Elements →Elem Attributes (接受默认值)→User numbered →Thru nodes →OK →选择节点 1,2→Apply →选择节点 2,

简单桁架桥梁ANSYS分析

下面以一个简单桁架桥梁为例,以展示有限元分析的全过程。背景素材选自位于密执 安的"Old North Park Bridge" (1904 - 1988),见图3-22。该桁架桥由型钢组成,顶梁及侧梁, 桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。桥长L=32m,桥高 H=5.5m。 桥身由8段桁架组成,每段长4m。该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间 位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1, P2和P3,其中P1= P3=5000 N, P2=10000N,见图3-23。 图3-22位于密执安的"Old North Park Bridge" (1904 - 1988) 图3-23桥梁的简化平面模型(取桥梁的一半) 表3-6桥梁结构中各种构件的几何性能参数 构件惯性矩m4横截面积m2 顶梁及侧梁(Beam1) 643.8310m-′322.1910m-′ 桥身弦梁(Beam2) 61.8710-′31.18510-′ 底梁(Beam3) 68.4710-′33.03110-′ 解答以下为基于ANSYS图形界面(Graphic User Interface , GUI)的菜单操作流程。安全提示:如果聊天中有涉及财产的操作,请一定先核实好友身份。发送验证问题或

点击举报 天意11:36:47 (1)进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →ANSYS Interactive →Working directory(设置工作目录)→Initial jobname (设置工作文件名):TrussBridge →Run →OK (2)设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3)定义单元类型 hhQ?RRN??QQ https://www.wendangku.net/doc/5a14946516.html,oomm QM?9NN?} ANSYS Main Menu: Preprocessor →Element Type →Add/Edit/Delete... →Add…→Beam : 2d elastic 3 →OK(返回到Element Types窗口)→Close (4)定义实常数以确定梁单元的截面参数 ANSYS Main Menu: Preprocessor →Real Constants…→Add/Edit/Delete →Add…→select Type 1 Beam 3 →OK →input Real Constants Set No. : 1 , AREA: 2.1 9E-3,Izz: 3.83e-6(1号实常数用于顶梁和 侧 梁) →Apply →input Real Constants Set No. : 2 , AREA: 1.18 5E-3,Izz: 1.87E-6 (2号实常数用于弦杆) →Apply →input Real Constants Set No. : 3, AREA: 3.031E-3,Izz: 8.47E-6 (3号实常数用于底梁) →OK (back to Real Constants window) →Close (the Real Constants win dow) (5)定义材料参数

基于ANSYS的桁架桥简单的力学分析

基于ANSYS的桁架桥简单的力学分析 姓名戴航 学号20120680203 专业工程力学 班级2班 二〇一五年六月

一、桁架桥的工程背景及用途 桁架桥简介: 桁架桥是桥梁的一种形式,一般多见于铁路和高速公路,指的是以桁架作为上部结构主要承重构件的桥梁。桁架桥为空腹结构,因而对双层桥面有很好的适应性。桁架是由直杆组成的一般具有三角形单元的平面或空间结构,桁架杆件主要承受轴向拉力或压力,从而能充分利用材料的强度,节约材料,在跨度较大时可比实腹梁节省材料,减轻自重和增大刚度。 本文通过分析在卡车过桥时,对桁架桥进行ansys静力分析和模态分析,给出危险截面,从而为优化设计提供理论依据。

桁架桥实物如下: 桥梁的简化平面模型(取桥梁的一半):

二、研究对象简介 在本文的分析中,分析模型为: 桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表3-6。桥长L=32m,桥高H=5.5m。桥身由8段桁架组成,每段长4m。该桥梁可以通行卡车,若这里仅考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1 ,P2和P3 ,其中P1= P3=5000 N, P2=10000N。 材料性能为:弹性模量E=2.10e10Pa,泊松比为0.3,密度7800kg/m3。 表3-6 桥梁结构中各种构件的几何性能参数

三、单元类型: 共选用三种单元: 1、顶梁及侧梁(beam1),定义1号是实常数用于beam1,截面参数见上 表; 2、桥身弦梁(beam2),定义2号实常数用于beam2,截面数据见上表; 3、底梁(beam3),定义3号实常数用于beam3,截面数据见上表。

ansys桁架屈曲分析实例

一、桁架结构屈曲分析实例 命令流 !步骤一前处理 /TITLE,buckling of a frame /PREP7 ET,1,BEAM4 R,1,2.83e-5,2.89e-10,2.89e-10,0.01,0.01, , RMORE, , , , , , , MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,1.5e11 MPDATA,PRXY,1,,0.35 RPR4,3,0,0,86.6025e-3, VOFFST,1,1, , /VIEW,1,1,1,1 /ANG,1 /REP,FAST VDELE, 1 FLST,2,5,5,ORDE,2 FITEM,2,1 FITEM,2,-5 ADELE,P51X LPLOT FLST,5,3,4,ORDE,2 FITEM,5,7 FITEM,5,-9 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,20, , , , ,0 FLST,5,6,4,ORDE,2 FITEM,5,1 FITEM,5,-6 CM,_Y,LINE LSEL, , , ,P51X CM,_Y1,LINE CMSEL,,_Y LESIZE,_Y1, , ,3, , , , ,0 FLST,3,6,4,ORDE,2 FITEM,3,4 FITEM,3,-9

LGEN,15,P51X, , , , ,1, ,0 /PLOPTS,INFO,3 /PLOPTS,LEG1,1 /PLOPTS,LEG2,1 /PLOPTS,LEG3,1 /PLOPTS,FRAME,1 /PLOPTS,TITLE,1 /PLOPTS,MINM,1 /PLOPTS,FILE,0 /PLOPTS,LOGO,1 /PLOPTS,WINS,1 /PLOPTS,WP,0 /PLOPTS,DATE,2 /TRIAD,LTOP /REPLOT NUMMRG,KP, , , ,LOW NUMCMP,KP NUMCMP,LINE FLST,2,93,4,ORDE,2 FITEM,2,1 FITEM,2,-93 LMESH,P51X FINISH !步骤二获得静力解/SOL ANTYPE,0 NLGEOM,0 NROPT,AUTO, , LUMPM,0 EQSLV, , ,0, PRECISION,0 MSAVE,0 PIVCHECK,1 PSTRES,ON TOFFST,0, /PNUM,KP,0 /PNUM,LINE,0 /PNUM,AREA,0 /PNUM,VOLU,0 /PNUM,NODE,1 /PNUM,TABN,0 /PNUM,SVAL,0 /NUMBER,0 /PNUM,ELEM,0

平面桁架ansys分析

作业一 平面桁架ansys 分析 用ansys 分析图1。设250.1,100.2cm A MPa E =?=。 图1 1 设置计算类型 Preferences →select Structural →OK 2 选择单元类型 Preprocessor →Element Type →Add/Edit/Delete →Add →Link 3D finit stn 180 →OK 3 定义实常数 ANSYS Main Menu: Preprocessor →Real Constants… →Add… →select Type 1→OK →input AREA:1 →OK →Close (the Real Constants Window) 4 定义材料属性 ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.0e5, PRXY:0.3 →Material →Exit 5 生成几何模型生成关键点,如图2. 图 2

ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS → 1(3,0),2(0,0),3(0,30) →OK 生成桁架 ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →Lines →Straight Line →依次连接点2→1→3→1→OK如图3. 图3 6 网格划分,如图4. ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →Pick All :OK→input NDIV: 1 →OK →(back to the mesh tool window)Mesh: lines →Mesh→Pick All (in Picking Menu) →Close( the Mesh Tool window) 图 4

【ANSYS算例】3.2.5(4)_四杆桁架结构的有限元分析(GUI)及命令流

四杆桁架结构的有限元分析 下面针对【典型例题】3.2.5(1)的问题,在ANSYS 平台上,完成相应的力学分析。即如图3-8所示的结构,各杆的弹性模量和横截面积都为42 29.510N/mm E = , E=29.5X10 2100mm A =,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。 图3-8 四杆桁架结构 解答 对该问题进行有限元分析的过程如下。 以下为基于ANSYS 图形界面( graphic user interface ,GUI)的菜单操作流程;注意:符号“→”表示针对菜单中选项的鼠标点击操作。关于ANSYS 的操作方式见附录B 。 1. 基于图形界面的交互式操作(step by step) (1) 进入ANSYS(设定工作目录和工作文件) 程序 →ANSYS → ANSYS Interactive →Working directory (设置工作目录) →Initial jobname (设置工作文件名): planetruss →Run → OK (2) 设置计算类型 ANSYS Main Menu : Prefere nces… → Structural → OK (3) 选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete… →Add… →Link :2D spar 1 →OK (返回到Element Types 窗口) →Close (4) 定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic → Isotropic: EX:2.95e11 (弹性模量),PRXY: 0 (泊松比) → OK → 鼠标点击该窗口右上角的“ ”来关闭该窗口 (5) 定义实常数以确定单元的截面积 ANSYS Main Menu: Preprocessor →Real Constant s… →Add/Edit/Delete →Add →Type 1→ OK →Real Constant Set No: 1 (第1号实常数), AREA: 1e-4 (单元的截面积) →OK →Close (6) 生成单元 ANSYS Main Menu: Preprocessor →Modeling →Creat →Nodes → In Active CS →Node number 1 →

ansys有限元分析工程实例大作业

辽宁工程技术大学 有限元软件工程实例分析 题目基于ANSYS钢桁架桥的静力分析专业班级建工研16-1班(结构工程)学号 471620445 姓名 日期 2017年4月15日

基于ANSYS钢桁架桥的静力分析 摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了有限元建模;对桁架桥进行了静力分析,作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面。 关键词:ANSYS;钢桁架桥;静力分析;结构分析。 引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其应用计算机和求解软件快速进行力学分析了解其受力特性具有重要的意义。 1、工程简介 某一下承式简支钢桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1,材料属性见表2。桥长32米,桥高5.5米,桥身由8段桁架组成,每个节段4米。该桥梁可以通行卡车,若只考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2,和P3,其中P1=P3=5000N,P2=10000N,见图2,钢桥的形式见图1,其结构简图见图3。

图1钢桥的形式 图2桥梁的简化平面模型(取桥梁的一半) 图3刚桁架桥简图 所用的桁架杆件有三种规格,见表1

ansys课程设计报告-平面桁架静力学分析

辽宁工程技术大学课程设计 课程大型工程分析软件及应用 题目平面桁架的静力分析 院系力学与工程学院 专业班级 学生姓名 学生学号 2018年01月07 日

力学与工程学院课程设计任务书 课程 大型工程分析软件及应用课程设计 题目 平面桁架的静力分析 专业 姓名 主要内容: 1、 小型铁路桥由横截面积为3250mm 2的钢制杆件组装而成。一辆火车停在桥上,EX=2.1×105MPa ,μ=0.3,ρ=7.8×103kg/m 3。试计算位置R 处由于载荷作用而沿水平方向移动的距离以及支反力,同时,分析各个节点的位移和单元应力。 2、 试件的几何参数 设计报告目录 a=1m a=1m a=1m b=1m R F2=280KN F1=210KN

第1章概述................................................................................................................... - 4 - 1.1 课程设计的意义、目的..................................................................................................... - 4 - 第2章 ANSYS详细设计步骤........................................................................................ - 4 - 2.1问题分析.............................................................................................................................. - 4 - 2.2基于ANSYS分析的步骤................................................................................................... - 4 - 2.2.1启动ANSYS,进入ANSYS界面........................................................................... - 5 - 2.2.2定义工作文件名和分析标题.................................................................................... - 5 - 2.2.3设定分析类型............................................................................................................ - 5 - 2.2.4选择单元类型............................................................................................................ - 5 - 2.2.5定义实常数................................................................................................................ - 6 - 2.2.6定义力学参数............................................................................................................ - 6 - 2.2.7存盘............................................................................................................................ - 7 - 2.2.8创建关键点先、线.................................................................................................... - 7 - 2.2.9设置、划分网格........................................................................................................ - 9 - 2.2.10施加荷载并求解.................................................................................................... - 11 - 第3章设计结果及分析............................................................................................. - 14 - 3.1显示桁架变形图................................................................................................................. - 14 - 3.2列表显示节点解................................................................................................................. - 15 - 3.3上述分析对应的命令流如下:......................................................................................... - 16 - 结论............................................................................................................................... - 18 - 心得体会....................................................................................................................... - 18 - 参考文献....................................................................................................................... - 19 - 设计报告

【ANSYS算例】3.2.5(3) 四杆桁架结构的有限元分析

【ANSYS算例】3.2.5(3 四杆桁架结构的有限元分析 下面针对【典型例题】3.2.5(1的问题,在ANSYS平台上,完成相应的力学分析。即如图3- 8所示的结构,各杆的弹性模量和横截面积都为, ,基于ANSYS 平台,求解该结构的节点位移、单元应力以及支反力。 图3-8 四杆桁架结构 解答对该问题进行有限元分析的过程如下。 以下为基于ANSYS图形界面( graphic user interface,GUI的菜单操作流程;注意:符号“→”表示针对菜单中选项的鼠标点击操作。关于ANSYS的操作方式见附录B。 (LINK1:单元与单元之间由铰接,只能传递力而不能传递力矩。) 1.基于图形界面的交互式操作(step by step (1进入ANSYS(设定工作目录和工作文件 程序→A NSYS → ANSYS Interactive →Working directory (设置工作目录→Initial jobname(设置工作文件名: planetruss→Run → OK (2 设置计算类型 ANSYS Main Menu: Preferences… →Structural → OK (3 选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete… →Add… →Link:2D spar 1 →OK (返回到Element Types窗口→Close (4 定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Material Models→Structural →Linear →Elastic→Isotropic:EX:2.95e11 (弹性模量,PRXY: 0 (泊松比→ OK → 鼠标点击该窗口右上角的“”来关闭该窗口 (5 定义实常数以确定单元的截面积

基于ANSYS的桁架结构受力分析

科学技术创新2019.29 4.5植物多糖降血糖 实验表明,一些植物的活性多糖具有降血糖活,降血脂的作用。 4.6抗辐射 实验表明,电子电器越来越普遍化,人们接触和受到的辐射越来越多,某些植物多糖具有抗辐射用。 4.7抗菌抗病毒 实验表明,很多多糖对细菌和病毒均有抑制作用。 5皂荚多糖的提取方法 目前,国内外常用的植物多糖提取方法有热水提取法和碱提法酶提取法,微波法,超声提取法。 5.1水浸提法 多糖物质的提取最先应用的办法就是水提法。但是水提法提取后会把多糖中其它的许多杂质一起提取出来,这样对之后多糖的有效成分的分离,纯化过程造成很大的阻碍,所以现在水提法已经很少使用了。 5.2多糖碱浸提法 通过碱提取法获得的提取物中的成分相对复杂,并且在提取过程中产生的小分子不易去除,并且容易水解部分多糖,破坏活性多糖结构并降低多糖产量。 5.3多糖酶解提取法 酶法提取植物多糖具有反应条件温和,效率高,提取速度快,工艺简单,省时等优点。缺点是酶的价格相对较高,使用条件相对苛刻。 5.4多糖微波辅助法 微波是指具有很强穿透力的无线电磁波,这个无线电磁波的频率很高,大约在300~300000MHz之间。微波萃取是指微波可以加热所使用原材料,加热完成后,就可以对所要提取的原料中的有效成分进行筛选的萃取技术。具备挑选性优良、减少能源消耗、设备简单、适应面广等优点。对微波萃取效率的影响主要来源于所使用溶剂的极性大小,溶剂极性大小的不同使有效成分的得率不同。 5.5多糖超声波提取法 超声波是使用一种频率大于20000Hz的弹性纵波传递能量的原理,将放入超声波处理器中的药材在超声波产生的剧烈的水力空化作用和振动作用下使药材内的细胞被破坏,从而使其进入溶剂的速度更快,有效成分的提取率更高。和经常使用的传统提取总蒽醌的方法比较,超声波能够快速提取,消耗时间少、效果明显,而且最主要的是超声波提取法并不受高温的影响。 参考文献 [1]张一贞,韩崇选,张宏利,程明.两种皂荚提取物的杀鼠活性研究[J].西北林学院学报,2007,22(1):106-108. [2]龙玲,耿果霞,李青旺.皂荚刺抑制小鼠宫颈癌U14的生长及对增殖细胞核抗原和p53表达的影响[J].中国中医杂志,2006,31(2): 150-153. [3]范科华,刘永强,凌婧.等皂角提取物对心肌缺血犬心肌梗死的保护作[J].中国西药学杂志,2006,25(2):339-342. 基金项目:陕西省大学生创新创业训练计划项目(项目编号:201849005);陕西省大学生创新创业训练计划项目(项目编号:201849001);陕西国际商贸学院校级科研项目(项目编号:SMXY201803)。 通讯作者:高洁,副教授,主要研究方向为天然产物活性成分分析及应用。 基于ANSYS的桁架结构受力分析 苏才航1何嘉兴1邓建东2王保权3李才1 (1、西南石油大学机电工程学院,四川成都6105002、西南石油大学材料科学与工程学院,四川成都610500 3、西南石油大学地球科学与技术学院,四川成都610500) 1软件简介 ANSYS软件是美国ANSYS公司研发的大型通用有限元分析软件,开发初期是为了应用于电力工业,现在已经广泛应用于航空、航天、电子、汽车、土木工程等各个领域,能够满足各行业有限元分析的需要。在力学分析方面,ANSYS提供了MechanicalAPDL和Workbench两种主流的分析界面。Mechanical APDL是ANSYS的原始经典界面GUI的延续,因此也被成为经典界面,Workbench则是ANSYS公司为解决企业产品研发过程中CAE软件的异构问题而开发的新界面。自从ANSYS7.0开始,两种同步进行着开发更新,互为补充。 虽然两者都能独立地完成整套有限元分析流程,但Workbench则更注重于不同CAE软件之间的交互沟通,在有限元分析这一块的功能远不及Mechanical APDL。因此,在桁架等一些经典力学问题中,Mechanical APDL有着广泛的应用。 2分析流程 问题:如图1所示,各杆长度均为2米,截面面积0.005m2,各杆重力不计。左端铰接,右端简支,F大小3KN,现用ANSYSMechanicalAPDL经典界面分析整体形变、各杆内力及等效应力。 图1 摘要:本文对ANSYSMechanical APDL经典界面在求解桁架受力等经典力学问题的典型分析流程进行了简要的介绍,旨在让相关从业人员对其分析过程有大致的了解,从而认识到其解决实际工程问题中的简便性与准确性。 关键词:ANSYSMechanicalAPDL;桁架;受力分析 中图分类号:TU323.4文献标识码:A文章编号:2096-4390(2019) 29-0058-02(转下页) 58 --

相关文档
相关文档 最新文档