文档库 最新最全的文档下载
当前位置:文档库 › 矩形堰计算

矩形堰计算

矩形堰计算
矩形堰计算

LB1矩形板计算

LB1矩形板计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: LB1 二、示意图 三、依据规范 《建筑结构荷载规范》 GB50009-2001 《混凝土结构设计规范》 GB50010-2002 四、计算信息 1.几何参数 计算跨度: Lx = 5400 mm; Ly = 6600 mm 板厚: h = 120 mm 2.材料信息 混凝土等级: C30 fc=14.3N/mm2 ft=1.43N/mm2 ftk=2.01N/mm2 Ec=3.00×104N/mm2 钢筋种类: HPB235 fy = 210 N/mm2Es = 2.1×105 N/mm2 最小配筋率: ρ= 0.200% 纵向受拉钢筋合力点至近边距离: as = 20mm 保护层厚度: c = 15mm 3.荷载信息(均布荷载) 永久荷载分项系数: γG = 1.200 可变荷载分项系数: γQ = 1.400 准永久值系数: ψq = 0.500 永久荷载标准值: qgk = 4.050kN/m2 可变荷载标准值: qqk = 2.000kN/m2 4.计算方法:弹性板 5.边界条件(上端/下端/左端/右端):固定/固定/固定/固定

6.设计参数 结构重要性系数: γo = 1.00 泊松比:μ = 0.200 五、计算参数: 1.计算板的跨度: Lo = 5400 mm 2.计算板的有效高度: ho = h-as=120-20=100 mm 六、荷载组合 可变荷载控制组合: q = γG*qgk+γQ*qqk = 1.200*4.050+1.400*2.000 = 7.660 KN/m2 永久荷载控制组合: q = γG*qgk+γQ*qqk = 1.35*qgk+0.7*γQ*qqk = 1.35*4.050+0.7*1.400*2.000 = 7.428 KN/m2 取较大值荷载控制组合为:q = 7.660 KN/m2 七、配筋计算(lx/ly=5400/6600=0.818<2.000 所以按双向板计算): 1.X向底板钢筋 1) 确定X向板底弯矩 Mx = 表中系数q*Lo2 = (0.0262+0.0148*0.200)*7.660*5.42 = 6.513 kN*m 2) 确定计算系数 αs = γo*M/(α1*fc*b*ho*ho) = 1.00*6.513×106/(1.00*14.3*1000*100*100) = 0.046 3) 计算相对受压区高度 ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.046) = 0.047 4) 计算受拉钢筋面积 As = α1*fc*b*ho*ξ/fy = 1.000*14.3*1000*100*0.047/210 = 318mm2 5) 验算最小配筋率 ρ = As/(b*h) = 318/(1000*120) = 0.265% ρ≥ρmin = 0.200% 满足最小配筋要求 用户选择了底板放大系数,系数值为:1.00 所以最后面积As = 318*1.00 = 318 mm2 采取方案d8@150, 实配面积335 mm2 2.Y向底板钢筋 1) 确定Y向板底弯矩 My = 表中系数q*Lo2 = (0.0148+0.0262*0.200)*7.660*5.42 = 4.484 kN*m 2) 确定计算系数

矩形运算方法

一败涂地、 解线性方程组(线性矩阵方 程) 解线性方程组是科学计算中最常见的问题。所说的“最常见”有两方面的含义: 1)问题的本身是求解线性方程组; 2)许多问题的求解需要或归结为线性方程组的求解。 关于线性方程组 B A x B Ax 1-=?= (1) 其求解方法有两类: 1) 直接法:高斯消去法(Gaussian Elimination ); 2) 间接法:各种迭代法(Iteration )。 1、高斯消去法 1) 引例 考虑如下(梯形)线性方程组: ()?? ???==+==+-=?????? ??=????? ????????????--??????==-=+-5.01 41315 .3221122004301211214322332321321332321x x x x x x x x x x x x x x x 高斯消去法的求解思路:把一般的线性方程组(1)化成(上或下)梯形的形式。 2)高斯消去法——示例 考虑如下线性方程组: ???? ? ??-=????? ????????????---??????=++-=-+-=+-306015129101.2001.221113*********.2001.221321321321321x x x x x x x x x x x x 1) 第一个方程的两端乘 1 2 加到第二个方程的两端,第一个方程的两端乘 -1加到第三个方程的两端,得

???? ? ??-=????? ????????????--3060031110001.0001.0011 1321x x x 2) 第二个方程的两端乘001 .010 - 加到第三个方程的两端,得 ???? ? ??-=????? ????????????--60600311010001.0001.0011 1321x x x 3)从上述方程组的第三个方程依此求解,得 ()??? ??==+-==+-=600300001.031000 2401 13 32321x x x x x x 3)高斯消去法的不足及其改进——高斯(全、列)主元素消去法 在上例中,由于建模、计算等原因,系数2.001而产生0.0005的误差,实际求解的方程组为 ????? ??-=????? ????????????---306015129101.20005.22111321x x x ?????===?70.4509.30142.2565 3 2 1x x x 注:数值稳定的算法 高斯列主元素消去法就是在消元的每一步选取(列)主元素—一列中绝对值最大的元取做主元素,高斯列主元素消去法是数值稳定的方法。 列主元素消去法的基本思想:在每轮消元之前,选列主元素(绝对值最大的元素),使乘数1≤ik l . 列主元素消去法的步骤:设已经完成第1步到第1-k 步的按列选主元、交换两行、消元计算,得到矩阵

量水堰

如何选择量水堰槽 非满管状态流动的水路称作明渠(open channel),明渠流量计的应用场所有城市供水引水渠、火电厂冷却水引水和排水渠、污水治理流入和排放渠、工矿企业废水排放以及水利工程和农业灌溉用渠道。 选择量水堰槽的种类,要考虑渠道内流量的大小,渠道内水的流态,是否能形成自由流。最大流量小于40升/秒建议使用直角三角堰;大于40升/秒建议使用巴歇尔槽;上游渠道较短,最大流量又大于40升/秒建议使用矩形堰。 条件允许,最好选择巴歇尔槽。巴歇尔槽的水位-流量关系是由实验室标定出来的,而且对于上游行进渠槽条件要求较弱。三角堰和矩形堰的水位-流量关系来源于理论计算,容易由于忽略一些使用条件,带来附加误差。 三角堰 材料:PVC、玻璃钢、不锈钢可选。流量越大,相应增加壁厚。 注意事项: ◇三角口处的尺寸准确、缘台平直、光滑。板面光滑、平整、无扭曲。; ◇三角堰的中心线要与渠道的中心线重合。 ◇ j为堰板嵌入渠道墙的部分,尺寸请用户根据现场情况而定。适应范围: ◇三角堰可按图1.1加工。注意:安装该直角三角堰的上游渠道宽是600mm,三角顶角与上游渠底的高度是250mm。 ◇如使用图1.1直角三角堰,可在明渠菜单“10堰槽种类”→“1直角三角堰”项选择“开启”,仪表内已有该堰板的水位-流量表,可根据水位值直接给给出流速。 最小流量0.0136升/秒,最大流量45.010升/秒(162吨/小时)

图1.1 直角三角堰堰板构造

图1.2 三角堰建造效果图 图1.3 三角堰在渠道上的安装和三角堰的水位零点 三角堰安装在渠道上如图1.3所示。堰板要竖直,要安在渠道的中轴线上。加工三角堰时,可以会使顶角变成圆角,在确定水位等于零的位置时要注意,三角堰的水位零点应在三角堰的侧边的延长线的交点上。仪表的探头要安装在上游距离堰板0.5~1米的位置。 二:矩形堰 材质:PVC、玻璃钢、不锈钢可选。流量越大,相应增加壁厚。 注意事项: ◇矩形口处的尺寸要准确、缘台平直、光滑。板面光滑、平整、无扭曲。 ◇矩形堰的中心线要与渠道的中心线重合。 ◇ j为堰板嵌入渠道墙的部分,尺寸请用户根据现场情况而定。 适用范围: ◇矩形堰可按图2.1加工,注意:矩形堰的水位-流量关系主要取决于堰口宽的“b”。也与上游渠道宽“B”和堰坎高“p”有关。 ◇如使用图2.1的矩形堰,可以在明渠菜单“10 堰槽种类”→“2矩形堰”项选择:0.25、0.50、0.75、1.00(注:此选项代表堰口宽b)仪表内已有该堰板的水位-流量表,可根据水位值直接给给出流速。 1:b=0.25米最小流量0.4375升/秒(1.6吨/小时),最大流量56.907升/秒(205吨/小时)

塔吊矩形板式基础计算书

矩形板式基础计算书计算依据: 1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009 2、《混凝土结构设计规范》GB50010-2010 3、《建筑地基基础设计规范》GB50007-2011 一、塔机属性 二、塔机荷载 1、塔机传递至基础荷载标准值

2、塔机传递至基础荷载设计值 三、基础验算

基础布置图

基础及其上土的自重荷载标准值: G k=blhγc=6.2×6.2×1.35×25=1297.35kN 基础及其上土的自重荷载设计值:G=1.35G k=1.35×1297.35=1751.423kN 荷载效应标准组合时,平行基础边长方向受力: M k''=661kN·m F vk''=F vk'/1.2=36.9/1.2=30.75kN 荷载效应基本组合时,平行基础边长方向受力: M''=892.35kN·m F v''=F v'/1.2=49.815/1.2=41.512kN 基础长宽比:l/b=6.2/6.2=1≤1.1,基础计算形式为方形基础。 W x=lb2/6=6.2×6.22/6=39.721m3 W y=bl2/6=6.2×6.22/6=39.721m3 相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=661×6.2/(6.22+6.22)0.5=467.398kN·m M ky=M k l/(b2+l2)0.5=661×6.2/(6.22+6.22)0.5=467.398kN·m 1、偏心距验算 相应于荷载效应标准组合时,基础边缘的最小压力值: P kmin=(F k+G k)/A-M kx/W x-M ky/W y =(333+1297.35)/38.44-467.398/39.721-467.398/39.721=18.879kPa≥0 偏心荷载合力作用点在核心区内。

四边简支矩形板计算

四边简支矩形板计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: LB-1 二、示意图 三、依据规范 《建筑结构荷载规范》 GB50009-2001 《混凝土结构设计规范》 GB50010-2010 四、计算信息 1.几何参数 计算跨度: Lx = 11000 mm; Ly = 7500 mm 板厚: h = 400 mm 2.材料信息 混凝土等级: C30 fc=14.3N/mm2 ft=1.43N/mm2 ftk=2.01N/mm2Ec=3.00×104N/mm2钢筋种类: HRB400 fy = 360 N/mm2Es = 2.0×105 N/mm2 最小配筋率: ρ= 0.200% 纵向受拉钢筋合力点至近边距离: as = 55mm 保护层厚度: c = 40mm 3.荷载信息(均布荷载) 永久荷载分项系数: γG = 1.200 可变荷载分项系数: γQ = 1.400 准永久值系数: ψq = 1.000 永久荷载标准值: qgk = 15.000kN/m2 可变荷载标准值: qqk = 0.000kN/m2 4.计算方法:弹性板 5.边界条件(上端/下端/左端/右端):简支/简支/简支/简支 6.设计参数 结构重要性系数: γo = 1.00 泊松比:μ = 0.200 五、计算参数: 1.计算板的跨度: Lo = 7500 mm 2.计算板的有效高度: ho = h-as=400-55=345 mm

六、配筋计算(lx/ly=11000/7500=1.467<2.000 所以按双向板计算): 1.X向底板钢筋 1) 确定X向板底弯矩 Mx = 表中系数(γG*qgk+γQ*qqk)*Lo2 = (0.0287+0.0707*0.200)*(1.200*15.000+1.400*0.000)*7.52 = 43.374 kN*m 2) 确定计算系数 αs = γo*Mx/(α1*fc*b*ho*ho) = 1.00*43.374×106/(1.00*14.3*1000*345*345) = 0.025 3) 计算相对受压区高度 ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.025) = 0.026 4) 计算受拉钢筋面积 As = α1*fc*b*ho*ξ/fy = 1.000*14.3*1000*345*0.026/360 = 354mm2 5) 验算最小配筋率 ρ = As/(b*h) = 354/(1000*400) = 0.088% ρ<ρmin = 0.200% 不满足最小配筋要求 所以取面积为As = ρmin*b*h = 0.200%*1000*400 = 800 mm2采取方案?12@140, 实配面积807 mm2 2.Y向底板钢筋 1) 确定Y向板底弯矩 My = 表中系数(γG*qgk+γQ*qqk)*Lo2 = (0.0707+0.0287*0.200)*(1.200*15.000+1.400*0.000)*7.52 = 77.430 kN*m 2) 确定计算系数 αs = γo*My/(α1*fc*b*ho*ho) = 1.00*77.430×106/(1.00*14.3*1000*345*345) = 0.045 3) 计算相对受压区高度 ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.045) = 0.047 4) 计算受拉钢筋面积 As = α1*fc*b*ho*ξ/fy = 1.000*14.3*1000*345*0.047/360 = 638mm2 5) 验算最小配筋率 ρ = As/(b*h) = 638/(1000*400) = 0.160% ρ<ρmin = 0.200% 不满足最小配筋要求 所以取面积为As = ρmin*b*h = 0.200%*1000*400 = 800 mm2采取方案?12@100, 实配面积1131 mm2 七、跨中挠度计算: Mk -------- 按荷载效应的标准组合计算的弯矩值 Mq -------- 按荷载效应的准永久组合计算的弯矩值 1.计算荷载效应 Mk = Mgk + Mqk

水堰的流量计算

水堰 水堰由堰板和堰槽构成,当水经堰槽流过堰板的堰口时,根据堰上水头的高 低即可计算出流量。 1.堰板的结构 (1)堰口的断面如图3所示,堰口与内侧面成直角,唇厚2毫米,向外侧倒45° 倾斜面,毛刺应清除干净。 (2)堰口棱缘要修整成锐棱,不得呈圆形,堰板内侧面要平滑,以防发生乱流。 (3)堰板的材料必须保证不生锈和耐腐蚀。 (4)堰板安装时必须铅直,堰口应位于堰槽宽度的中央,与堰槽两侧壁成直角。 (5)各种水堰的堰口如图4所示。90°三角堰的直角等分线应当铅直,直角允差为±5′。形堰和全宽堰的堰口下缘应保证水平,堰口直角允差为±5, 堰口宽度允差为±0.001b。 (1)堰槽要坚固,不易变形,否则使测量产生误差。 (2)在堰槽上流设置适当整流装置,以减少水面披动。 (3)堰槽的底面应平滑,侧面和底面应垂直。 (4)全宽堰槽堰的两侧面应向外延长,如图4c所示,延长壁应和两侧面一样的平滑,与堰口下边缘垂直,直角允差±5′。延长壁上应设置通气孔,通气孔应靠近堰口并在水头下面以保证测量时水头内侧空气畅通。通气孔的面积S≥ B——堰口宽度(mm) h'——最大水头(mm)。 (5)堰进水部分的容量应尽可能大些厂这部分的宽度和深度不能小于整流栅下流的宽度和深度,导水管应埋设在水中。 3.堰的水头测定方法 (1)水头是指水流的上水面至堰口底点(90’三角堰)或堰口下边缘(矩形堰、全宽堰)的垂直距离。 (2)为避免近堰板处水面降低而引起的误差,测定水头h处离堰口的距离等于200~B(毫米)。 (3)应当在越过堰口流下来的水流与堰板不附着的情况下进行测量。

(4)水堰的堰口至堰口外水池液面的高度不得小于100毫米。 (5)可以采用钳针或测针液面计测量水头。钩针液面计构造如图6所示。使用时应将针先沉入水内再提上对准水面,以消除水的表面张力的影响。 (6)水位零点的测定精度应在0.2毫米以内,最好当堰口流出来的水流刚停止时测定水位的零点,每次试验时都要测定零点。由于表面张力的影响,矩形堰和全宽堰测量零位数值时应减少1毫米。 4.水堰流量的计算公式和计算表 (1) 90°三角堰如图7所示 90°三角堰流量计算公式 式中 Q——流量(l/s) h——堰口水头(m) c——流量系数 c=1354++(140+)(-0.09)2 B——堰槽宽度(m) D——堰槽底面至堰口底点距离(m) 流量系数公式在下述范围内适用: B=0.5~1.2(m) D=0.1~0.75(m) (2) 矩形堰如图8所示 矩形堰流量计算公式 式中 Q——流量(l/s)

双向板 计算步骤

LB-1矩形板计算 一、构件编号: LB-1 二、示意图 三、依据规范 《建筑结构荷载规范》 GB50009-2001 《混凝土结构设计规范》 GB50010-2010 四、计算信息 1.几何参数 计算跨度: Lx = 3000 mm; Ly = 4600 mm 板厚: h = 120 mm 2.材料信息 混凝土等级: C25 fc=11.9N/mm2 ft=1.27N/mm2 ftk=1.78N/mm2 Ec=2.80×104N/mm2 钢筋种类: HRB400 fy = 360 N/mm2Es = 2.0×105 N/mm2 最小配筋率: ρ= 0.200% 纵向受拉钢筋合力点至近边距离: as = 40mm 保护层厚度: c = 20mm 3.荷载信息(均布荷载) = 1.200 永久荷载分项系数: γ G 可变荷载分项系数: γ = 1.400 Q 准永久值系数: ψq = 1.000 永久荷载标准值: qgk = 4.100kN/m2

可变荷载标准值: qqk = 2.000kN/m2 4.计算方法:弹性板 5.边界条件(上端/下端/左端/右端):固定/简支/简支/简支 6.设计参数 结构重要性系数: γo = 1.00 泊松比:μ = 0.200 五、计算参数: 1.计算板的跨度: Lo = 3000 mm 2.计算板的有效高度: ho = h-as=120-40=80 mm 六、配筋计算(lx/ly=3000/4600=0.652<2.000 所以按双向板计算): 1.X向底板钢筋 1) 确定X向板底弯矩 Mx = 表中系数(γG*qgk+γQ*qqk)*Lo2 = (0.0634+0.0307*0.200)*(1.200*4.100+1.400*2.000)*32 = 4.829 kN*m 2) 确定计算系数 αs = γo*Mx/(α1*fc*b*ho*ho) = 1.00*4.829×106/(1.00*11.9*1000*80*80) = 0.063 3) 计算相对受压区高度 ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.063) = 0.066 4) 计算受拉钢筋面积

三角堰计算

三角堰流量公式为 式中h为堰顶的淹深,K为特征常数(图D3.3.1b)。 式中h为堰顶的淹深(图D3.3.1c)。 图D3.3.1 楼上所述公式Q=1.343*H的2.47次方和Q = K h5/2有应用范围的当H=0.021-0.200M时用公式Q = K h5/2 当H=0.301-0.350M时用公式Q = 1.343*H的2.47次方 当H=0.201-0.300时用上俩公式的平均值 详见给排水手册1册682页 3.出水三角堰(90度) 1)初沉池出水堰的负荷不大于2.9L/s·m,表面水力负荷2m3/m2·h 出流堰单位长度溢流量相等,一般250m3/m·d(约0.003m3/m·s) 出水堰总堰长:(320/3600)*103/2.9=30.7m 2)堰上水头:H1=0.1mH2O(即三角口底部到上游水面的高度) 每个三角堰的流量:q1=1.343*(0.1)2.47=0.00455m3/s

3)三角堰个数n1=q/q1=160/3600/0.00455=9.77 q=出水流量。取10个。(每个池) 4)三角堰中距L1=b/n1=3/10=0.3m 通常三角堰之頂角為90°,tan(θ/2) =1,則(29)及(30)式變成Q=1.47H3/2(31) 4.水堰流量的计算公式和计算表 (1) 90°三角堰如图7所示 图6,7,8 90°三角堰流量计算公式 式中 Q——流量(l/s) h——堰口水头(m) c——流量系数 c=1354++(140+)(-0.09)2 B——堰槽宽度(m) D——堰槽底面至堰口底点距离(m) 流量系数公式在下述范围内适用:

三边支承板计算

单块矩形板计算(BAN-1) 项目名称构件编号日期 设计校对审核 执行规范: 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 按弹性板计算: 1 计算条件 计算跨度: L x=1.500m L y=4.000m 板厚h=130mm 板容重=25.00kN/m3;板自重荷载设计值=3.90kN/m2 恒载分项系数=1.20 ;活载分项系数=1.40 活载调整系数=1.00 ; 荷载设计值(不包括自重荷载): 均布荷载q=6.70kN/m2 砼强度等级: C25, f c=11.90 N/mm2, E c=2.80×104 N/mm2 支座纵筋级别: HRB400, f y=360.00 N/mm2, E s=2.00×105 N/mm2 板底纵筋级别: HRB400, f y=360.00 N/mm2, E s=2.00×105 N/mm2 纵筋混凝土保护层=20mm, 配筋计算as=25mm, 泊松比=0.20 支撑条件= 四边上:简支下:简支左:自由右:简支 角柱左下:无右下:无右上:无左上:无 2 计算结果 弯矩单位:kN.m/m, 配筋面积:mm2/m, 构造配筋率:0.20% 弯矩计算方法: 双向板查表 挠度计算方法: 双向板查表。 --------------------------------------------------------------- 2.1 跨中: [水平] [竖向] 弯矩 2.5 3.8 面积 260(0.20%) 260(0.20%) 实配 E12@200(565) E12@200(565) 2.2 四边: [上] [下] [左] [右] 弯矩 0.0 0.0 0.0 0.0 面积 260(0.20%) 260(0.20%) 260(0.20%) 260(0.20%) 实配 E12@200(565) E12@200(565) E12@200(565) E12@200(565) 2.3 平行板边: [左] [中] [右] 左边弯矩: 0.0 6.4 0.0 左边配筋: 260(0.20%) 260(0.20%) 260(0.20%) 左边实配: E12@200(565) E12@200(565) E12@200(565)

矩形容器统一要求

一、计算书格式* 1、按照项目规定格式设计封面。 2、设计数据及基础资料: 设计压力:2.7kPaG; 设计温度:50℃; 工作压力:ATM.; 工作温度:AMB. 试验压力:10kPaG; 保温材料:岩棉,厚度75mm; 腐蚀裕度:碳钢或低合金钢选取3mm,不锈钢选取0mm。 结构参数:长(L)x宽(W)x高(L)按照数据表及最新版P&ID内壁净尺寸输入; 3、材料选取: ?壁板材料按GB6654-1996的16MnR的要求;数据表中用不锈钢的,其材质选用按GB/T4237-1992的0Cr18Ni9的要求。 ?接管规格按GB8163-1999,材料20#的要求;数据表中用不锈钢的,其材质选用GB/T14976-2002,材料0Cr18Ni9。 ?法兰规格按ANSI B16.5,材质按16Mn/JB4726-2000;数据表中用不锈钢的,其材质按JB4728-2000的0Cr18Ni9的要求。 ?弯头规格按ANSI B16.9,ANSIB16.28,材质按20#/JB4726-2000;数据表中用不锈钢的,其材质选用按JB4728-2000的0Cr18Ni9的要求。 ?垫片材料选用不含石棉的石墨垫片或不锈钢缠绕垫片。 4、开口补强: D N80尺寸以上的需进行开口补强。补强圈与壁板选取相同材质、壁厚。 5、吊耳材质按GB3274-1988,材料Q235-A;吊耳垫板与筒体选取相同材质。 二、图纸要求* 一)、设计数据栏 1、设计压力:2.7kPaG,或最新版P&ID的要求。 2、设计温度:50℃,或按照有关数据表及最新版P&ID的要求。 3、工作介质:按照数据表中给定的填写。

矩形板式基础计算

3#5710矩形板式基础计算书计算依据: 1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-2009 2、《混凝土结构设计规范》GB50010-2010 3、《建筑地基基础设计规范》GB50007-2011 一、塔机属性 塔机竖向荷载简图 1、塔机自身荷载标准值

k

矩形板式基础布置图

G k=blhγc=5.5×5.5×1.25×25=945.31kN 基础及其上土的自重荷载设计值:G=1.2G k=1.2×945.31=1134.38kN 荷载效应标准组合时,平行基础边长方向受力: M k''=G1R G1-G3R G3-G4R G4+0.5F vk'H/1.2 =32.8×20.8-17.6×5.6-135×10.6+0.5×85.97×43/1.2 =692.98kN·m F vk''=F vk'/1.2=85.97/1.2=71.64kN 荷载效应基本组合时,平行基础边长方向受力: M''=1.2×(G1R G1-G3R G3-G4R G4)+1.4×0.5F vk'H/1.2 =1.2×(32.8×20.8-17.6×5.6-135×10.6)+1.4×0.5×85.97×43/1.2 =1139.63kN·m F v''=F v'/1.2=120.36/1.2=100.3kN 基础长宽比:l/b=5.5/5.5=1≤1.1,基础计算形式为方形基础。 W x=lb2/6=5.5×5.52/6=27.73m3 W y=bl2/6=5.5×5.52/6=27.73m3 相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=1001.04×5.5/(5.52+5.52)0.5=707.84kN·m M ky=M k l/(b2+l2)0.5=1001.04×5.5/(5.52+5.52)0.5=707.84kN·m 1、偏心距验算 (1)、偏心位置 相应于荷载效应标准组合时,基础边缘的最小压力值: P kmin=(F k+G k)/A-M kx/W x-M ky/W y =(454.2+945.31)/30.25-707.84/27.73-707.84/27.73=-4.79<0

单块矩形板计算

执行规范: 《混凝土结构设计规范》(GB 50010-2010), 本文简称《混凝土规范》 《建筑结构荷载规范》(GB 50009-2012), 本文简称《荷载规范》 钢筋:d - HPB300; D - HRB335; E - HRB400; F - RRB400; G - HRB500; P - HRBF335; Q - HRBF400; R - HRBF500 ----------------------------------------------------------------------- 1 设计资料 1.1 计算简图 1.2 已知条件 荷载条件: 均布恒载 : 3.00kN/m2恒载分项系数 : 1.20 均布活载 : 2.00kN/m2活载分项系数 : 1.40 板容重 : 25.00kN/m3活载准永久值系数: 0.50 板厚 : 250mm 活载调整系数 : 1.00 局部集中荷载: 编号荷载属性 X(m) Y(m) 荷载数值(kN) 1 恒载 1.100 1.100 20.00 配筋条件: 材料类型 : 混凝土支座配筋调整系数: 1.00 混凝土等级 : C30 跨中配筋调整系数: 1.00 纵筋级别 : HRB400 跨中配筋方向(度): 0.00

纵筋保护层厚: 15mm 1.3 计算内容 (1) 有限元内力计算 (2) 弹性位移计算 (3) 板边及跨中最大最小弯矩位置处配筋 (4) 挠度、裂缝计算 2 计算结果 2.1 单位说明 弯矩:kN.m/m 钢筋面积:mm2/m 2.2 垂直板边弯矩 边号最大弯矩最小弯矩左中右 1 0.05 2 -0.177 0.052 -0.177 0.050 2 0.026 -0.211 0.025 -0.180 0.026 3 0.050 -0.203 0.050 -0.145 0.048 4 0.029 -0.193 0.019 -0.193 0.029 2.3 跨中弯矩 注:跨中弯矩是在用户指定方向上跨中弯矩的最大值(以下同) x(m) y(m) 平行配筋方向垂直配筋方向 1.100 1.100 11.809 ---- 1.100 1.100 ---- 11.428 2.4 垂直板边配筋 边号最大弯矩截面最小弯矩截面左中右 1 500 500 500 500 500 2 500 500 500 500 500 3 500 500 500 500 500 4 500 500 500 500 500 2.5 跨中配筋 x(m) y(m) 平行配筋方向垂直配筋方向 1.100 1.100 500 ---- 1.100 1.100 ---- 500 2.6 垂直板边选筋 边号最大弯矩截面最小弯矩截面左中右 1 E12@220(514) E12@220(514) E12@220(514) E12@220(514) E12@220(514) 2 E12@220(514) E12@220(514) E12@220(514) E12@220(514) E12@220(514) 3 E12@220(514) E12@220(514) E12@220(514) E12@220(514) E12@220(514) 4 E12@220(514) E12@220(514) E12@220(514) E12@220(514) E12@220(514) 2.7 跨中选筋 x(m) y(m) 平行配筋方向垂直配筋方向 1.100 1.100 E12@220(514) ---- 1.100 1.100 ---- E12@220(514)

双向板计算步骤

双向板计算步骤TTA standardization office

双向板计算步骤公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

LB-1矩形板计算 一、构件编号: LB-1 二、示意图 三、依据规范 《建筑结构荷载规范》 GB50009-2001 《混凝土结构设计规范》 GB50010-2010 四、计算信息 1.几何参数 计算跨度: Lx = 3000 mm; Ly = 4600 mm 板厚: h = 120 mm 2.材料信息 混凝土等级: C25 fc=mm2 ft=mm2 ftk=mm2Ec=×104N/mm2钢筋种类: HRB400 fy = 360 N/mm2Es = ×105 N/mm2 最小配筋率: ρ= %

纵向受拉钢筋合力点至近边距离: as = 40mm 保护层厚度: c = 20mm 3.荷载信息(均布荷载) = 永久荷载分项系数: γ G 可变荷载分项系数: γ = Q 准永久值系数: ψq = 永久荷载标准值: qgk = m2 可变荷载标准值: qqk = m2 4.计算方法:弹性板 5.边界条件(上端/下端/左端/右端):固定/简支/简支/简支 6.设计参数 结构重要性系数: γo = 泊松比:μ = 五、计算参数: 1.计算板的跨度: Lo = 3000 mm 2.计算板的有效高度: ho = h-as=120-40=80 mm 六、配筋计算(lx/ly=3000/4600=< 所以按双向板计算): 向底板钢筋 1) 确定X向板底弯矩 Mx = 表中系数(γG*qgk+γQ*qqk)*Lo2 = +***+**32 = kN*m

矩形钢板水箱的设计与计算

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 矩形钢板水箱的设计与计算 矩形钢板水箱的设计与计算随着我国国民经济的迅速发展各地高层建筑日益增多在高层 , 楼房上配置水箱是必不可少的由于钢筋混凝土水箱具有耐腐蚀不。 ?,?需保温措施维修简单等优点因而被大量应用着但是它也有自重量混凝土自重吨米左右不便拆卸不耐温‘水温需℃ 等缺点所以对需要以后加层的大楼临时性水箱热水箱或因地基影响不能用自较重的混凝土水箱时‘水箱放在楼顶凸出部重位地震影响较大则需考虑应用钢板水箱了矩形钢板水箱虽然比园形的用料多但容易制作并便于在室内安放故使用较广泛为了保温与防腐一般钢板水箱均放在室内设计矩形钢板才言目前大多是选用标准图年由北踌。 多年前制定的该经计算发现京工业建筑设计院等单位编制标准图其水箱钢板厚度的选取是不能很好满足刚度要求的,、?,、,、、,?。 ,,,。 ,。 ,?,?,,?下面介绍一种常压矩形钢板水箱的简便迎以的设计计算方法供有关人员在选用标准图或自行设计 1/ 11

水箱时参考二一般构造四周有角钢边框顶部盖板用薄钢板焊接才省构造简图见图讲的。 ?,。 匕呀确成司份呀件毛闷… …… 广州… 州…,之八岭曰亩,之户厂一气一卜广,、长‘万立面图平面常压矩形钢板水箱简图留有人孔口递到水泥梁上,底部平板放在整个平台上或由角钢等支承然后再传,?对较大容积水箱为节省金属材料使用薄钢板而达

矩形板计算

矩形板计算 项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: 二、示意图 三、依据规范 《建筑结构荷载规范》 GB50009-2001 《混凝土结构设计规范》 GB50010-2010 四、计算信息 1.几何参数 计算跨度: Lx = 3300 mm; Ly = 3300 mm 板厚: h = 150 mm 2.材料信息 混凝土等级: C20 fc=9.6N/mm2 ft=1.10N/mm2 ftk=1.54N/mm2 Ec=2.55×104N/mm2 钢筋种类: HPB300 fy = 270 N/mm2Es = 2.1×105 N/mm2 最小配筋率: ρ= 0.200% 纵向受拉钢筋合力点至近边距离: as = 20mm 保护层厚度: c = 10mm 3.荷载信息(均布荷载) 永久荷载分项系数: γG = 1.200 可变荷载分项系数: γQ = 1.400 准永久值系数: ψq = 0.500 永久荷载标准值: qgk = 8.750kN/m2 可变荷载标准值: qqk = 2.000kN/m2 4.计算方法:弹性板 5.边界条件(上端/下端/左端/右端):固定/固定/简支/固定

6.设计参数 结构重要性系数: γo = 1.00 泊松比:μ = 0.200 五、计算参数: 1.计算板的跨度: Lo = 3300 mm 2.计算板的有效高度: ho = h-as=150-20=130 mm 六、荷载组合 可变荷载控制组合: q = γG*qgk+γQ*qqk = 1.200*8.750+1.400*2.000 = 13.300 KN/m2 永久荷载控制组合: q = γG*qgk+γQ*qqk = 1.35*qgk+0.7*γQ*qqk = 1.35*8.750+0.7*1.400*2.000 = 13.772 KN/m2 取较大值荷载控制组合为:q = 13.772 KN/m2 七、配筋计算(lx/ly=3300/3300=1.000<2.000 所以按双向板计算): 1.X向底板钢筋 1) 确定X向板底弯矩 Mx = 表中系数q*Lo2 = (0.0180+0.0231*0.200)*13.772*3.32 = 3.393 kN*m 2) 确定计算系数 αs = γo*M/(α1*fc*b*ho*ho) = 1.00*3.393×106/(1.00*9.6*1000*130*130) = 0.021 3) 计算相对受压区高度 ξ = 1-sqrt(1-2*αs) = 1-sqrt(1-2*0.021) = 0.021 4) 计算受拉钢筋面积 As = α1*fc*b*ho*ξ/fy = 1.000*9.6*1000*130*0.021/270 = 98mm2 5) 验算最小配筋率 ρ = As/(b*h) = 98/(1000*150) = 0.065% ρ<ρmin = 0.200% 不满足最小配筋要求 所以取面积为As = ρmin*b*h = 0.200%*1000*150 = 300 mm2 用户选择了底板放大系数,系数值为:1.00 所以最后面积As = 300*1.00 = 300 mm2 采取方案8@160, 实配面积314 mm2 2.Y向底板钢筋 1) 确定Y向板底弯矩 My = 表中系数q*Lo2 = (0.0231+0.0180*0.200)*13.772*3.32

压力容器无量纲计算

综合题 、2000m 3丙烯球形储罐 该球罐2003年投入使用,今年首次全面检验时,在赤道带两支柱之间的一块球壳板上发现了一个380X30mm折皱,经过打磨消除后,形成一个长 420mm,宽80mm最深处6mm凹坑。在其周围未发现其它表面缺陷及隐藏缺陷,若不考虑介质的腐蚀和材质劣化,问该凹坑是否需要补焊?回答:1、是否可以根据无量纲参数G0值来判断,该凹坑是否需要补焊?首先判断该凹坑条件是否符合,进行无量纲参数G 0计算的凹坑条件。答:(1)如果在壁厚余量范围内,则该凹坑允许存在。否则,将凹坑按其外接矩形规则化为 2A、2B、C,计算无量纲参数,如果小于0.10,贝U凹坑在允许范围内。

总的比较结果结论:该凹坑条件适合进行无量钢参数GO计算 (2)计算无量纲常数: G o=C/T >A/」RT=6/42 X210/ 7842 M2=0.037<0.10 经无量钢计算不需要补焊

二、综合应用 某中压空气缓冲罐2004年制造,内径=1300mm壁厚14mm,出厂质量证明文件显示A、B类焊缝实际进行了24%射线检测,川级合格,不要求进行焊后热处理,今年在进行首次全面检验发现如下问题: (1 )、位于筒体上的空气进出口管内径为750mm,强度计算表明接管按照HG20582-1998《钢制化工容器强度计算规定》中的压力面积进行了强度计算,经对进出口接管与筒体连接的焊接接头进行磁粉检测未见缺陷显示,焊接接头超声波检测和开口附近壁厚未见异常。 (2)、本次检验中对制造过程未进行射线检测的射线焊接接头进行了部分 X射线检测,发现缺陷的底片评定如下表中片号“ H”代表环焊缝Z”代表纵焊缝探伤人员已按JB/T4730.2-2005进行评定 对发现的条状夹渣采用《TOFD衍射时差法超声检测》方法反复测试等到缺陷厚度方向的高度Z3-1位置长6mm,夹渣的自身高度小于1mm °Z3-2 位置长20mm夹渣自身高度为3mm,两处条状夹渣均无开裂扩展迹象。 如何针对上述所有情况如何按压力容器定期检验规则评定该容器的安全状况等级?并说明各种情况的安全状况等级的评定过程 需要考虑的情况及评级过程(不考虑“如果能采用有效方式确认缺陷是否活动,则表5表6中的缺陷长度容限值可以增加50%”情况)答:(1)因

四边支承矩形薄板自振频率计算

四边支承矩形薄板自振频率计算 1. 基本假定及振动微分方程 弹性板是假定其厚度远小于其他两尺寸的板,且材料假设为各向同性。板的振动理论是以以下几个假定为基础的: 1)板中原来在中面法线上的各点,在板弯曲变形后仍在中面的法线上。这个假设称为直法线假设,表示横向剪切变形忽略不计。 2)板的挠度比板厚小很多,板弯曲时中面不产生变形,即中面为中性面。 3)板的横向正应力与其他两个方向正应力相比较,可以忽略不计。 在此基础上,若假定板的挠度不从平面位置算起,而从平衡位置算起,对板内平行六面体进行微元分析,由平衡条件、变形协调条件和物理方程得板的弯曲平衡方程式,然后分析板在振动过程中的动力平衡,可得板的自由振动微分方程[1]: 022********=??+??+??+??t w m y x w D y w D x w D (1) 等式中) 1(1223ν-=Eh D ,式中: m 为板的单位面积的质量;D 为板的弯曲刚度,E ,ν分别为板的弹性模 量和泊松比,h 为板的厚度。 微分方程(1)的解答形式为薄板上每一点),(y x 的挠度),()sin cos (1 y x W t B t A w m m m m m m ωω+= ∑ ∞ =。被表示 成无数多个简谐振动下的挠度相叠加,而每一个简谐振动的圆频率是m ω。另一方面,薄板在每一瞬时t 的挠度,则表示成为无数多种振形下的挠度相叠加,而每一种振形下的挠度是由振形函数),(y x W m 表示的,为求出各种振形下的振形函数m W ,以及与之相应的圆频率m ω,我们取),()sin cos (y x W t B t A w ωω+=代入方程(1)消 除因子)sin cos (t B t A ωω+得到振形微分方程:022224444 4=-??+??+??W m y x W D y W D x W D ω (2) 2. 边界条件 振形函数需要满足各边界条件,板的边界一般有固支边,简支边,自由边三种情况,这里以x=0的边为例,其相应的边界条件为:

相关文档