文档库 最新最全的文档下载
当前位置:文档库 › 玻璃液体温度计测量不确定度报告-实验室认证

玻璃液体温度计测量不确定度报告-实验室认证

玻璃液体温度计测量不确定度报告-实验室认证
玻璃液体温度计测量不确定度报告-实验室认证

工作用玻璃液体温度计测量不确定度报告

1、 概述 1.1、测量依据

JJG130-2004《工作用玻璃液体温度计检定规程》 1.2、测试标准

二等标准水银温度计,温度范围0~50℃。 1.3、被测对象

工作用玻璃液体温度计,分度值0.1℃,温度范围为0~50℃,浸没方式为全浸式,感温液体为水银。 1.4、测量方法

将二等标准水银温度计和被检工作用玻璃液体温度计同时以全浸方式放入恒定温度为50℃的恒温槽中,待示值稳定后,分别读取标准温度计和被检温度计的示值,计算被检温度计的修正值。 2、数学模型

()s s x t t t =+?-

式中x --工作用玻璃液体温度计的修正值;

s t --二等标准水银温度计的示值; s t ?--二等标准水银温度计的修正值; t --工作用玻璃液体温度计的示值。

3、灵敏系数

1/1s c x t =??= 2/1s c x t =???= 3/1c x t =??=- 4、标准不确定度评定

4.1、输入量s t 的标准不确定度()s u t

输入量s t 的标准不确定度主要来源如下:

a)二等标准水银温度计读数分辨力(估读)引入的标准不确定度1()s u t ,用B 类标准不确定度评定。

二等标准水银温度计的读数分辨力为其分度值的1/10,即0.01℃,则不确定度区

间半宽为0.01℃,均匀分布,1()s u t

=≈0.006℃,估计不可靠性为20%,自由度

1()s t ν=12。

b)二等标准水银温度计读数时视线不垂直引入的标准不确定度2()s u t ,用B 类标准不确定度表示。二等标准水银温度计读数误差范围为0.005±℃,不确定度区间半宽为0.005

℃,按反正弦分布处理。2()s u t =≈0.004℃,估计其不可靠性为20%,自由度2()s t ν=12。

c)由恒温槽温场不均匀引入的标准不确定度3()s u t ,用B 类标准不确定度评定。 恒温槽温场最大温差为0.02℃,则不确定度区间半宽为0.01℃,按均匀分布处理。

3()s u t

=≈0.006℃,估计不可靠性为10%,自由度3()s t ν=50。

d)恒温槽温度波动引入的标准不确定度4()s u t ,用B 类标准不确定度表示。 恒温槽温场稳定性为0.02±℃/10min,则不确定度区间半宽为0.02℃,按均匀分布处理。4()s u t

=0.02≈0.01℃,估计不可靠性为10%,自由度4()s t ν=50。

因为1()s u t 、2()s u t 、3()s u t 、4()s u t 互不相关,所以

()0.014s u t ==℃

44444

12341234()

()99()()()()

()()()()s s s s s s s s s s u t t u t u t u t u t t t t t ννννν==+++

4.2、输入量s t ?的标准不确定度()s u t ?

由修正值引入的标准不确定度()s u t ?,用B 类标准不确定度评定,由二等标准水银温度计检定规程可知,二等标准水银温度计检定结果的扩展不确定度95U =0.03℃,包含因子 2.58p k =,所以()s u t ?=0.03/2.58=0.01℃, 估计不可靠性为10%,自由度

()s t ν=50。

4.3、输入量t 的标准不确定度()u t 输入量t 的标准不确定度来源如下。

a)被检温度计示值重复性引入的标准不确定度1()u t ,用A 类标准不确定度评定。将二等标准水银温度计和一支被检温度计同时以全浸的方式放入恒定温度为50℃恒温槽中,待示值稳定后,进行10次等精度测量,分别计算修正值,其标准差0.013s ≈℃,故1()u t =0.013℃,自由度1()t ν=9。

b) 被检读数分辨力(估读)引入的标准不确定度2()u t ,用B 类标准不确定度评定。 被检温度计的分度值为0.1℃,读数分辨力为其分度值的1/10,即0.01℃,则不确定度区间半宽为0.01℃,均匀分布,2()u t

=≈0.006℃,估计不可靠性为20%,自由度2()t ν=12。

c)被检温度计读数时视线不垂直引入的标准不确定度3()u t ,用B 类标准不确定度表示。

被检温度计读数误差范围为0.01±℃,不确定度区间半宽为0.01℃,按反正弦分布

处理。3()u t =≈0.007℃,估计其不可靠性为20%,自由度3()t ν=12。 因1()u t 、2()u t 、3()u t 互不相关,所以:

()0.016u t ==℃

4444312123()()18()

()()()()()u t t u t u t u t t v t v t νν==++

5、合成标准不确定度 5.1、标准不确定度汇总

5.2、合成标准不确定度计算

以上各项标准不确定度分量是互不相关的,所以其合成标准不确定度为:

()0.02c u y =

=℃

4444

()

53()()()

()()()

c eff

s s s s u y u t u t u t t t t νννν==?++? 5.3、扩展标准不确定度计算

取95%p =,查t 分布表,得包含因子0.95(53) 2.01k t ==,则:

()0.04c U ku y ==℃。

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

工作用玻璃液体温度计理论考试及答案

工作用玻璃液体温度计理论考试 一、填空题 1、玻璃液体温度计用感温液体主要有和。 2、玻璃液体温度计在0℃时的感温泡容积与 成正比,与成反比。 3、全浸检定的温度计,若局浸使用,当露液的平均温度与被测介质温 度不同时,应对进行修正。 4、用放大镜取玻璃液体温度计示值的正确方法,使, 并与。 5、外压增大,会造成玻璃液体温度计示值,而它的内压相对减少,会导致温度计示值。 6、对于同一感温液体的温度计而言,凡是玻璃体胀系数小的,则温度计的视胀系数,玻璃体胀系数在的,它的视胀系数。 7、二等标准水银温度计的检定项目可分为和。 8、二等标准水银温度计的传递温度范围为,它是由支组成。 9、二等水银温度计的用途,也可。 10、对恒温槽场均匀性的技术要求可分为和。 二、选择题 1、国际实用温标是属于温标。 (1)热力学(2)国际协议性经验(3)国际性 2、是最准确的温标。 (1)气体温标(2)热力学温标(3)经验温标(4)国际实用温标3、用玻璃液体温度计测量温度变化呈下降趋势的介质温度时,其测温结果被测介质的实际温度。 (1)高于(2)等于(3)低于 4、对新制温度计抽检中点的结果是考核了温度计。 (1)毛细管的孔径均匀性

(2)定点刻度的工艺质量 (3)毛细管孔径均匀性和标尺刻度等分均匀性 5、玻璃液体温度计,随温度变化的感温液体的体积改变。 (1)是感温液体与玻璃的体胀系数之差 (2)是感温液体体积的单纯改变 (3)是感温液体体积与玻璃容积改变之差 三、问答题 1、用水银作玻璃液体温度计的感温液体的主要优点是什么? 缺点是什么? 2、何谓玻璃液体温度计的分度值?它分为几类和几种?具体数 值是多少? 3、对恒温槽温场均匀性有何技术要求?怎样选择温场均匀性的 测试部位?

不确定度评估

测量不确定度评估报告

测量不确定度的评估 1. 概述 测量依据 计量标准 表1 计量标准器和配套设备 被测对象 测量方法 见检定规程。 2. 分辨力带宽测量结果不确定度的评估 2.1. 数学模型 1234D D D D D =+++ 式中: D ——频谱分析仪分辨力带宽误差; 1D ——信号发生器频率稳定性引入的误差; 2D ——信号发生器频率分辨力引入的误差; 3D ——3dB 衰减器不准引入的误差; 4D ——重复性引入的误差。

2.2. 不确定度传播率 4 4 222c 1 1 ()()i i i i u D u D u ====∑∑ 式中:灵敏系数/1i i c D D =??=。 2.3. 标准不确定度评定 2.3.1. 信号发生器频率稳定性引入的相对标准不确定度 信号发生器稳定度为11110-?,服从均匀分布,包含因子3=k ,用 B 类不确定度评定方法,其标准不确定度611 1a u k -== 2.3.2. 信号发生器频率分辨力引入的相对标准不确定度 分辨力服从均匀分布,包含因子k =用B 类不确定度评定方法,

其相对标准不确定度 2a u k ==读数分辨力

2.3.3. 3dB 不准引入的相对标准不确定度 衰减器RSP3dB 衰减值上级量传不确定度为0.025dB U = 1.96k =,可认为衰减器衰减值修正后的最大允许误差为±0.025dB 。该 误差引起的频率读数误差服从均匀分布,包含因子k =用B 类不 确定度评定方法,其相对标准不确定度3a u k ==读数误差 2.3.4. 重复性引入的相对标准不确定度

玻璃液体温度计测量不确定度报告

工作用玻璃液体温度计测量不确定度报告 1、 概述 1.1、测量依据 JJG130-2004《工作用玻璃液体温度计检定规程》 1.2、测试标准 二等标准水银温度计,温度范围0~50℃。 1.3、被测对象 工作用玻璃液体温度计,分度值0.1℃,温度范围为0~50℃,浸没方式为全浸式,感温液体为水银。 1.4、测量方法 将二等标准水银温度计和被检工作用玻璃液体温度计同时以全浸方式放入恒定温度为50℃的恒温槽中,待示值稳定后,分别读取标准温度计和被检温度计的示值,计算被检温度计的修正值。 2、数学模型 ()s s x t t t =+?- 式中x --工作用玻璃液体温度计的修正值; s t --二等标准水银温度计的示值; s t ?--二等标准水银温度计的修正值; t --工作用玻璃液体温度计的示值。 3、灵敏系数 1/1s c x t =??= 2/1s c x t =???= 3/1c x t =??=- 4、标准不确定度评定 4.1、输入量s t 的标准不确定度()s u t 输入量s t 的标准不确定度主要来源如下: a)二等标准水银温度计读数分辨力(估读)引入的标准不确定度1()s u t ,用B 类标准不确定度评定。

二等标准水银温度计的读数分辨力为其分度值的1/10,即0.01℃,则不确定度区间半宽为0.01℃,均匀分布,1()s u t =≈0.006℃,估计不可靠性为20%,自由度1()s t ν=12。 b)二等标准水银温度计读数时视线不垂直引入的标准不确定度2()s u t ,用B 类标准不确定度表示。二等标准水银温度计读数误差范围为0.005±℃,不确定度区间半宽为0.005℃ ,按反正弦分布处理。2()s u t =≈0.004℃,估计其不可靠性为20%,自由度2()s t ν=12。 c)由恒温槽温场不均匀引入的标准不确定度3()s u t ,用B 类标准不确定度评定。 恒温槽温场最大温差为0.02℃,则不确定度区间半宽为0.01℃,按均匀分布处理。 3()s u t =≈0.006℃,估计不可靠性为10%,自由度3()s t ν=50。 d)恒温槽温度波动引入的标准不确定度4()s u t ,用B 类标准不确定度表示。 恒温槽温场稳定性为0.02±℃/10min,则不确定度区间半宽为0.02℃,按均匀分布处理。4()s u t =0.02≈0.01℃,估计不可靠性为10%,自由度4()s t ν=50。 因为1()s u t 、2()s u t 、3()s u t 、4()s u t 互不相关,所以 ()0.014s u t ==℃ 4444412341234()()99()()()() ()()()()s s s s s s s s s s u t t u t u t u t u t t t t t ννννν==+++ 4.2、输入量s t ?的标准不确定度()s u t ? 由修正值引入的标准不确定度()s u t ?,用B 类标准不确定度评定,由二等标准水银温度计检定规程可知,二等标准水银温度计检定结果的扩展不确定度95U =0.03℃,包含因子 2.58p k =,所以()s u t ?=0.03/2.58=0.01℃, 估计不可靠性为10%,自由度 ()s t ν=50。

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

GBT 18204.1-2013 3.1 玻璃液体温度计法

方法证实报告 方法名称:公共场所卫生检验方法第1部分:物理因素GB/T 18204.1-2013 3.1 玻璃液体温度计法 报告编写人: 报告日期:

一、方法依据 依据:公共场所卫生检验方法第1部分:物理因素GB/T 18204.1-2013 3.1 玻璃液体温度计法 二、基本情况 2.1参加验证的人员情况登记表 2.2使用仪器情况登记表 1 方法依据 公共场所卫生检验方法第1部分:物理因素GB/T 18204.1-2013 3.1 玻璃液体温度计 法。 2 方法原理 玻璃液体温度计是由容纳温度计液体的薄壁温包和一根与温包密封连接的玻璃细管组成。空气温度的变化会引起温包温度的变化,温包内液体体积则随之变化。当温包温度增加时液体膨胀,细管内液柱上升,反之亦然。玻璃细管上标以刻度,以指示管内液柱的高度,液柱高度读数准确地指示了温包的温度。 3 仪器 3.1 水银温度计:刻度最小分值<0.2℃,测量精度±0.5℃,测量范围:0℃至50℃。 3.2 温度计悬挂支架。 4 测定步骤 4.1 测点布置见表1 4.2 经过5min-10min后读数,读数时先读小数后再读整数。读数时视线应与温度计标尺垂 直,水银温度计按凸月面最高点读数。 4.3 读数应快速准确,以免人的呼吸气影响读数的准确性。 4.4 由于玻璃的热后效应,玻璃液体温度计零点位置应经常用标准温度计校正,如零点有位 移时,应把位移值加到读数上。 4.5 为了防止日光等热辐射的影响,必要时温包需用热遮蔽。

5 结果计算 计算公式: t实=t测+d 式中:t实----实际温度 t测----测得温度 d-------零点位移值 d=a-b 式中:a----温度计所示零点 b----标准温度计校准的零点位置 6 温度计校正法 6.1将要校正的水银温度计与标准温度计一并插入恒温水浴槽中,放入冰块,校正零点,经 5-10min后记录读数 6.2提高水浴温度,记录标准温度计20℃、40℃、60℃、80℃、100℃时的读数。即可得到 相应的校正温度。 校正温度数据见表: 人员比对测试: 7 已知测量条件

ISO17025:2017实验室-测量不确定度评定程序

页次第 69 页共 6页文件名称测量不确定度评定程序发布日期2019年1月1日 1 目的 对测量结果不确定度进行合理的评估,科学表达检测结果。 2 范围 本程序适用于客户有要求时、新的或者修订的测试方法验证确认时、当报告值与合格临界值接近时需评定不确定度并在报告中注明。 3 职责 3.1 检测人员根据扩展不确定度评定的适用范围,按规定在记录和报告中给出测量结果的不确定度。 3.2 检测组组长负责审核测量不确定度评定过程和结果报告。 3.3 技术负责人负责批准测量不确定度评定报告。 4 工作程序 4.1 测量不确定度的来源 4.1.1 对被测量的定义不完善或不完整。 4.1.2 实现被测量定义的方法不理想。 4.1.3 取样的代表性不够,即被测量的样本不能代表所定义的被测量。 4.1.4 对被测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善。 4.1.5对模拟仪器的读数存在认为偏差(偏移)。 4.1.6测量仪器的分辨力或鉴定力不够。 4.1.7赋予测量标准和测量物质的值不准。 4.1.8用于数据计算的常量和其他参量不准。 4.1.9测量方法和测量程序的近似性和假定性。 4.1.10 抽样的影响。

页次 第 70 页 共 6页 文件名称 测量不确定度评定程序 发布日期 2019年1月1日 4.1.11在表面上看来完全相同的条件下,被测量重复观测值的变化。 4.2 测量不确定度的评定方法 4.2.1 检测组根据随机取出的样本做重复性测试所获得的结果信息,来推断关于总体性质时,应采用A 类不确定度评定方法,用符号A u 表示,其评定流程如下: A 类评定开始 对被测量X 进行n 次独立观测得到 一系列测得值 (i=1,2,…,n )i x 计算被测量的最佳估计值x 1 1n i i x x n ==∑计算实验标准偏差() k s x 计算A 类标准不确定度() A u x ()()() k A s x u x s x n == 4.2.2 检测组根据经验、资料或其他信息评估时,应采用B 类不确定度评定方法,用符号B u 表示,B 类不确定度评定的信息来源有以下六项: 4.2.2.1 以前的观测数据。 4.2.2.2 对有关技术资料和测量仪器特性的了解和经验。 4.2.2.3 相关部门提供的技术说明文件。 4.2.2.4 校准证书或其他文件提供的数据,准确度的等别或级别,包括目前暂

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

玻璃液体温度计自校正规程

玻璃液体温度计自校正规程 文件编号:BDBT/JS-GC-23 版本号:A/0 1.目的 保证工作用玻璃液体温度计(以下简称温度计)满足使用需求,保证所检测的数据真确可靠;明确职能人员的相关职责与操作顺序,保证校准过程和结果得到有效控制。 2.范围 适用于公司各量程工作用温度计的校准。 3.职责 3.1检定人员:负责检定过程的操作,对检定结果做出正确的结论。负责检定记录的填写。 3.2 Q A人员:严格监督温度计使用中的受控状态,杜绝使用不合格的温度计。如发现问题,立即行使职权停用相应温度计,要求进行再校准或更换已校准合格者,同时调查问题出现的原因以及有无必要执行追踪程序等。 4.内容 4.1 环境条件 温度:23℃±5℃。 4.2 使用器具 外校合格的数显温度表(精度0.1℃)。 4.3 校准步骤 4.3.1 检查玻璃体是否破裂及刻度是否清晰,否则更换。 4.3.2 用一透明容器盛装适量自然溶解的冰水混合物。 4.3.3把温度计有水银液体的一端放进冰水混合物中,然后观察水银柱的变化情况。 4.3.4 待水银柱变化稳定,再对照温度计刻度是否在0℃的位置,记录读数。4.3.5第一次测量完成后,取出温度计,待水银柱回到自然的位置后,重新第二次测量,这样连续测量三次,得出结果再取其平均值,记录在《玻璃液体温度计自校正记录表》内,允许误差±1.0℃。

4.3.6 以上步骤完成后,把温度计放在50℃以下的温水中(30℃为宜),用基准数显温度表进行校对(把探头放在水银柱旁边的温水中),对比并记录温度计的和基准温度表的温度读数。 4.3.7第一次测量完成取出温度计,待水银柱回到自然的位置后,再进行第二、第三次测量,测得结果取其平均值,记录在《玻璃液体温度计自校正记录表》内,允许误差数±1.0℃。 4.3.8 把温度计放在50℃以上的热水中(80℃为宜),重复 5.6、5.7相关步骤。 4.3.9 三次测量值与标准值之差,均在允许误差范围内,该温度计判校准合格。 4.4 检定结果的处理: 按本规程规定的要求校正的待检测厚计是否合格,加盖合格印记。 4.5 检定周期: 校正周期为1年。

测量不确定度的方法

测量不确定度评定U,p,k,u代表什么? 当测量不确定度用标准偏差σ表示时,称为标准不确定度,统一规定用小写拉丁字母“u”表示,这是测量不确定度的第一种表示方式。但由于标准偏差所对应的置信水准(也称为置信概率)通常还不够高,在正态分布情况下仅为68.27%,因此还规定测量不确定度也可以用第二种方式来表示,即可以用标准偏差的倍数kσ来表示。这种不确定度称为扩展不确定度,统一规定用大写拉丁字母U表示。于是可得标准不确定度和扩展不确定度之间的关系: U=kσ=ku 式中k为包含因子。 扩展不确定度U表示具有较大置信水准区间的半宽度。包含因子有时也写成kp的形式,它与合成标准不确定度uc(y)相乘后,得到对应于置信水准为p的扩展不确定度Up=kpuc(y)。 在不确定度评定中,有关各种不确定度的符号均是统一规定的,为避免他人的误解,一般不要自行随便更改。 在实际使用中,往往希望知道测量结果的置信区间,因此还规定测量不确定度也可以用第三种表示方式,即说明了置信水准的区间的半宽度a来表示。实际上它也是一种扩展不确定度,当规定的置信水准为p时,扩展不确定度可以用符号Up表示。 测量不确定度评定步骤? 评定与表示测量不确定度的步骤可归纳为 1)分析测量不确定度的来源,列出对测量结果影响显著的不确定度分量。 2)评定标注不确定度分量,并给出其数值ui和自由度vi。 3)分析所有不确定度分量的相关性,确定各相关系数ρij。 4)求测量结果的合成标准不确定度,则将合成标准不确定度uc及自由度v . 5)若需要给出展伸不确定度,则将合成标准不确定度uc乘以包含因子k,得展伸不确定度 U=kuc。 6)给出不确定度的最后报告,以规定的方式报告被测量的估计值y及合成标准不确定度uc 或展伸不确定度U,并说明获得它们的细节。 根据以上测量不确定度计算步骤,下面通过实例说明不确定度评定方法的应用。 我们单位的不确定度都是我写,其实计算不确定度,并写出报告,整体来说也就分几个步骤, 一、概述 二、数学模型 三、输入量的标准不确定度评定 这里面就包括数学模型里所有影响结果的参量,找出所有影响因素,计算各个影响量的标准不确定度,其中又分为A类评定和B类评定 这个按B类评定进行计算,影响万用表的因素也很多,比如万用表的仪器设备检定证书中如果有不确定度,可以直接用,如果没有,就看给出的允许误是多少,用这个数字除以根号3,得出误差的标准不确定度。还有要考虑温湿度的影响,以及人为读数误差(不知道你们那个万用表是不是人工读数),基本上万用表就考虑这些因素差不多了,你就是一个万用表的读书不确定度,一般按正态分布,K取根号3,一般会把标准不确定度先转换成相对标准不确定度,这样都变成无量纲的,方便后边合成。 四、计算合成不确定度 五、计算扩展不确定度 六、最后的不确定度表示 一般试验室能力验证,查的就是不确定度报告,按这个格式就可以

玻璃液体温度计考题(A卷)1

玻璃液体温度计考题(A卷) 单位:姓名: 一.填空题 1 90年国际实用温标规定以热力学温度为基本温度,她的符号是以表示,其对应的单位是开尔文,它的符号为。 2 热力学温度的单位是开尔文,它等于水三相点热力学温度的;热 力学温度T与摄氏温度t之间的关系为。 3 温度是反映分子的激烈程度,温标是描述的表示 方法。 4 全浸检定的温度计,若局浸使用,当露液的平均温度与被测介质温度不同时,应对进行修正。 5 用放大镜读取玻璃液体温度计示值的正确方法:应使,并与。 6 T符号表示为,单位名称是;摄氏温度的符号是,单位名称是。 7 水三相点温度比冰点温度高℃, K。 8 玻璃液体温度计用感温液体主要有和。 9 外压增大,会造成玻璃液体温度计示值,而它的内压相对减小,会导致温度计示值。 10 在示值检定中,温度计插入槽内要,标准器和被检温度计露出液柱度数不得大于。

二.选择题 1 国际上公认的最基本的温度是。 (1)摄氏温度;(2)华氏温度;(3)热力学温度;(4)兰氏温度。 2 玻璃液体温度计,随温度变化的感温液体的体积改变 (1)是感温液体与玻璃的体膨胀系数之差;(2)是感温液体体积的单纯改变;(3)是感温液体体积与玻璃容积改变之差。 3 恒温槽的工作区域是所触及的范围。 (1)标准器的感温部分;(2)被检温度计的感温部分; (3)标准器与被检温度计的感温部分。 4 在温度计的示值检定中,开始读数时的槽温与检定点温度偏差不得超过 (1)±2个分度值(2)±0.1℃(3)±3个分度值 5 全浸式温度计,若局浸使用,当露液的平均温度与被测介质温度不同时,应对修正。 (1)露液体积;(2)露液温度;(3)示值进行露液的温度。 三、问答题 1 何谓热平衡?温度计能够测量温度的依据是什么? 2何谓玻璃液体温度计示值的比较法检定?它有什么优缺点?

低温测量不确定度评估报告

低温测量不确定度评定报告 报告编号:201403 1. 测量方法 1.1)按图1所示的线路连接样品; 试验供电电源:220V ±5%~, 50Hz ±1%,电路导线横截面积:1.0mm2。 1.2) 样品放置在试验箱外,将样品感温探头放入试验箱中,进入试验箱的毛细管长度应大于150mm ; 1.3)接通电路,开启试验箱,从常温开始降温,观察指示灯状态,至指示灯熄灭,记录试验起始和结束时间、试验起始温度和指示灯熄灭瞬间样品的动作温度。 2. 数学模型 n x t t = 式中,x t 为样品在低温箱中的实际温度,n t 为低温箱温度显示仪表的相应读数。 3. 不确定度来源 3.1 通过分析识别出影响结果的因素有测量重复性,人员的读数,温度试验箱的偏差,温度试验箱 内的时间波动度与空间均匀性,降温速率,环境温度湿度的影响,电源电压的波动,读数的时延等等。 3.2 不确定度分量的分析评估 温度试验箱的特性对本次测量结果有较大的影响,如箱体的精度,偏差,波动度,均匀性等。 温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致,因此需考虑降温速率所引入的不确定度。 图1

由于在温度箱内进行试验,因此,环境温湿度对结果的影响也较小,基本忽略。 电源电压的波动通过稳压源控制电压参数的可变性,从而使得影响程度最小化。 读数的时延,我们通过选择熟练的操作人员的操作而减小其影响。人员的读数影响较小,可忽略。 综上所述,不确定度分量如下: A 类评定:1. 重复性条件下重复测量引入的标准不确定度分量1u . B 类评定:2. 低温箱的校准(温度偏差)引入的标准不确定度分量2u 3. 低温箱的最大偏差引入的标准不确定度分量 3u 4. 温度变化速率(温度波动度)引入的标准不确定度分量4u 5. 温度均匀度引入的标准不确定度分量 5u 4. 不确定度分量评定 4.1 1u 的计算 (测量重复性) 将样品在重复性条件下重复测量4次指示灯熄灭时的瞬间温度,测的数据列表如下: () () C 4349.01u 10 1 2 1?=--= ∑=n t t i i 4.2 2u 的计算 (温湿度箱的校准) 由校准证书给出扩展不确定度为0.3 °C ,K=2,则标准不确定度为: 15.023 .02== u 4.3 3u 的计算 (温湿度箱的最大偏差) 校准证书显示温度箱在-30°C ~70°C 的最大偏差为0.45°C ,服从均匀分布,3=k ,则 2598 .03 45.03== u 4.4 4u 的计算 (温度变化速率,即温度波动度) 温度箱的降温速率为1K/min ,在到达温控器响应的温度时,温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致。由校准证书给出温度箱的波动度为±0.23°C , ° C °C

测量不确定度在实验室检测中控制与应用

测量不确定度在实验室检测中控制与应用 摘要:测量不确定度评定是实验室检测活动中的一项重要工作。本文根据自己长期工作经验,对测量不确定度评估的严密程度与类别、控制要求、在纺织品静水压测试的运用和实验室管理应用进行了详细阐述。 关键词:测量不确定度实验室静水压应用 0、前言 一切测量结果都不可避免地具有不确定度,测量不确定度是对测量结果的正确性或准确度的“可疑程度”的定量表征。为了确定实验室检测的测量不确定度,需要对整个实验的所有步骤进行分析,找出不确定度来源,清晰得出不确定度分量中起主要作用的因素。CNAS于2006年6月修改颁布的《测量不确定度评估和报告通用要求》,对检测实验室的测量不确定度评估作出了相关规定。因此,研究测量不确定度对测量的进行和使用测量结果有积极的指导意义和应用价值。 2、测量不确定度的控制要求 根据国家《检测和校准实验室能力认可准则》要求,对实验室测量不确定度检测操作或管理环节中,可能存在影响测量不确定度的因素进行控制。

2.1测量操作中的直接要求 ⑴.记录和控制。每项检测的记录应包含充分的信息,在可能时能够识别不确定度的影响因素,并确保该检测在尽可能接近原条件的情况下能够重复。 ⑵.技术要求总则。实验室检测的正确性和可靠性因素包括:人员、设施和环境条件、检测和校准方法、设备、测量的溯源性、抽样等。实验室在制定检测的方法和程序,培训和考核人员,选择和校准所用设备时,应考虑到这些因素。 ⑶.检测方法及方法的确认。检测方法是实施检测工作的依据,涉及到非标准方法时,所制定的方法在使用前应经适当的确认。在进行检测之前应当制定包含有不确定度或评定不确定度的程序。在方法确认中特别强调了结果的不确定度评定,并对如何进行评定作了明确规定。在评定测量不确定度时,对给定情况下的所有重要不确定度分量,均应采用适当的分析方法加以考虑。 ⑷.测量溯源性。用于检测且对检测和抽样结果的准确性或有效性有显著影响的所有设备,包括辅助测量设备,在投入使用前应进行校准,并应确保所用设备能够提供所需的测量不确定度。 ⑸.结果报告。出具检测报告时,需要对报告的内容作了要求,其中包括评定测量不确定度的声明。当不确定度与检测结果的有效性或应用有关,或客户的指令中有要求,或当

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

菌落总数测定结果不确定度评估报告

废水菌落总数测定结果不确定度评估 1. 实验前准备 1.1 设备:恒温培养箱、无菌吸管10ml(具0.1ml刻度)、微量移液器、无菌锥形瓶、无菌培养皿 1.2 培养基及试剂:平板计数琼脂、无菌生理盐水 1.3 因浓缩苹果清汁中一般菌落不容易生长,故用废水作为样品检测。 2. 检测依据及步骤 2.1依据:GB4789.2—2010《食品卫生微生物学检验菌落总数测定》 2.2步骤:定量吸取废水,制备成15份均匀的检测样品,每份样品做两个平行样。 ↓ ↓ ↓ ↓ ↓ 3. 不确定度来源分析 检测步骤主要包括样品的吸取、稀释(移液器)、培养、计数、及结果修约等,由于结果发散性较大的特点,在本次实验中,我们只对样品吸取、重复测定结果的不确定度进行量化分析。

3.1 样品吸取过程中使用刻度吸管体积的相对标准不确定度u rel (V ) 3.1.1 吸管体积校准引入的标准不确定度u (V ) 在吸取样品的过程中均使用经检定合格的10ml 刻度吸管,其允许误差为±0.05ml ,故10ml 吸管体积校准引起的不确定度按矩形分布(k=3)为: u 1(V )= 3 05.0=0.029ml 则样品吸取过程中使用刻度吸管体积的相对标准不确定度: u rel (V )= () V V u = 10 029.0=0.0029ml 3.2 重复测定结果的标准不确定度 菌落总数测定结果不确定度评定 3.2.1 对测定结果X 1、X 2分别取对数,得到lg X 1和lg X 2 3.2.2 每一个样品的残差(在重复性条件下得出n 个观测结果X k 与n 次独立观测结果的算术 平均值X 的差)平方和:() 2 2 1 lg lg ∑=-i i X X 式中:i X lg —每一个样品测定结果的对数值;

玻璃液体温度计检定规程

玻璃液体温度计检定规程 目的:保证工作用玻璃液体温度计(以下简称温度计)满足使用需求,保证所检测的数据真确可靠;明确职能人员的相关职责与操作顺序,保证校准过程和结果得到有效控制。 范围:适用于公司各量程工作用温度计的校准。 职责: 1.检定人员:负责检定过程的操作,对检定结果做出正确的结论。负责检定记录的填写。 2. QA人员:严格监督玻璃液体温度计使用中的受控状态,杜绝使用不合格的玻璃液体温度计。如发现问题,立即行使职权停用相应温度计,要求进行再校准或更换已校准合格者,同时调查问题出现的原因以及有无必要执行追踪程序等。内容: 1.依据 JJG130-2004 《工作用玻璃液体温度计检定规程》。 2. 计量性能要求 2.1 示值稳定性 温度计经稳定性试验后其零点位置的上升值应不超过分度值的1/2(无零点辅标的温度计可测量上限温度示值)。 2.2 示值误差 温度计的示值允许误差限有温度计测量范围和分度值确定。全浸温度计示值误差应符合表1规定,局浸温度计示值误差应符合表2规定。当温度计的量程跨越表2、表3中几个温度范围时,则取其中最大范围示值误差限。 表1 全浸温度计示值允许误差限℃

表2 局浸温度计示值允许误差限℃ 3.通用技术要求 3.1 标度和标志 3.1.1 温度计的标度线应与毛细管的中心线垂直。标度线、标度值和其他标志应清晰,涂色应牢固,不应有脱色、污迹和其他影响读数的现象。 3.1.2 相邻两标度线的间距,水银棒式温度计应不小于0.7mm,水银内标式温度计应不小于0.6mm。标度线的宽度应不超过相邻标度间距的1/5。 3.1.3 在温度计上、下限温度的标度线外,应标有不少于该温度计示值允许误差限的展刻线。有零点辅标度的温度计,零点标度线上、下的标度线应不少于5条。 3.1.4 内标式温度计标度板的纵向位移应不超过相邻两标度线间距的1/3.毛细管应处于标度板纵轴中央,不应有明显的偏斜,与标度板的间距应不大于1mm。

不确定度评定报告

不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型 数学模型 A=A S +δ 式中:A —频率计上显示的频率值 A S —参考频率标准值; δ—被测与参考频标频率的误差。 3、输入量的标准不确定度 3.1 标准晶振引入的标准不确定度()s A u ,用B 类标准不确定度评定。 标准晶振的频率准确度为±2×10-10,即当被测频率为10MHz 时,区间半宽为a =10×106×2×10-9=2×10-2Hz ,在区间内认为是均匀分布,则标准不确定度为 ()s A u =a/k =1.2×10-2Hz ()=rel s A u 1.2×10-2/107=1.2×10-9 3.2被测通用计数器的测量重复性引入的标准不确定度分量u(δ2) u(δ2)来源于被测通用计数器的测量重复性,可通过连续测量得到测量列,采用A 类方式进行评定。对一台通用计数器10MHz 连续测量10次,得到测量列9999999.6433、9999999.6446、9999999.6448、9999999.6437、9999999.6435、9999999.6428、9999999.6446、9999999.6437、9999999.6457、9999999.6451Hz 。 由测量列计算得 算术平均值 ∑==n i i f n f 1 1=9999999.6442Hz, 标准偏差 () Hz n f f s n i i 00091.01 2 1 =--= ∑=

标准不确定度分量u(δ 3 )=0.00091/=0.00029Hz u(δ 3 )rel=2.9×10-11 4 合成标准不确定度评定 主要标准不确定度汇总表 输入量A S 、δ 1 、δ 2 相互独立,所以合成标准不确定度为 u c (A)= 9 2 2 2 1 210 5.1 ) ( ) ( ) (- ? = + +δ δu u A u S 5 扩展不确定度评定 取k=2,则 扩展不确定度为 U rel =k×u c=2×1.5×10-9=3×10-9 6测量不确定度报告 f=f0(1±3×10-9)Hz,k=2 不确定度评定报告 1、测量方法 由标准晶振输出频标信号,输入到通用计数器中,在通用计数器上显示读数。 2、数学模型

5种常见温度计的工作原理

5种常见温度计的工作原理(动图) 介绍以下五种常见的工业用温度计:液体膨胀式温度计、固体膨胀式温度计、压力式温度计、热电偶温度计、热电阻温度计。 液体膨胀式温度计 液体膨胀式温度计是根据液体的热胀冷缩的性质制造而成的。最常见的为玻璃管液体温度计,它利用玻璃管内液体的体积随温度的升高而膨胀的原理。由液体存储器、毛细管、标尺、安全泡四部分组成。液体可为:水银、酒精、甲苯等。 图:玻璃管液体温度计 使用玻璃管液体温度计时,视线应与标尽垂直,并与液柱于同一水平面上,手持温度计顶端的小耳环,不可触摸标尺。 固体膨胀式温度计 固体膨胀式温度计利用两种线膨胀系数不同的材料制成。常见的类型有:杆式温度计(一般采用膨胀系数较大的固体材料构成),双金属片式温度计(它的感温元件是由膨胀系数不同的两种金属片牢固地结合在一起制成)。

固体膨胀式温度计具有结构简单、可靠的优点,但精度不高。 压力式温度计 压力式温度计是利用密闭容积内工作介质随温度升高而压力升高的性质,通过对工作介质的压力测量来判断温度值的一种机械式仪表。压力式温度计的工作介质可以是气体、液体或蒸汽。 压力式温度计简单可靠、抗震性能好,具有良好的防爆性,故常用在飞机、汽车、拖拉机上,也可用它做温度控制信号;这类温度计动态性能差,示值的滞后大,不能用于测量迅速变化的温度。 热电偶温度计

热电偶温度计是在工业生产中应用较为广泛的测温装置。两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的。 根据热电偶的材质和结构不同,可分为标准化热电偶和非标准化热电偶。 热电阻温度计 随着温度的升高,导体或半导体的电阻会发生变化,温度和电阻间具有单一的函数关系,利用这一函数关系来测量温度的方法,即为热电阻测温法,用于测温的导体或半导体被称为热电阻。 图:三线制热电阻温度计 测温用的热电阻主要有金属电阻和半导体两大类。热电阻引线有两线制、三线制和四线制3种。

测量不确定度的要求

CNAS-CL01-G003 测量不确定度的要求Requirements for Measurement Uncertainty 中国合格评定国家认可委员会

前言 中国合格评定国家认可委员会(CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,为满足合格评定机构、消费者和其他各相关方的期望和需求,CNAS制定本文件,以确保相关认可活动遵循国际规范的相关要求,并与国际认可合作组织(ILAC)等相关国际组织的要求保持一致。 本文件代替CNAS-CL01-G003:2018《测量不确定度的要求》。 本次修订主要为与CNAS-CL01:2018《检测和校准实验室能力认可准则》在表述上相协调,对相关条款作了编辑性修改。

测量不确定度的要求 1适用范围 本文件适用于检测实验室、校准实验室(含医学参考测量实验室)、能力验证提供者(PTP)和标准物质/标准样品生产者(RMP)等(以下简称为实验室)的认可。 2规范性引用文件 下列文件中的条款通过引用而成为本文件的条款。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 CNAS-CL01 检测和校准实验室能力认可准则(idt ISO/IEC 17025) CNAS-CL04 标准物质/标准样品生产者能力认可准则(idt ISO 17034) CNAS-CL07 医学参考测量实验室认可准则(idt ISO 15195) CNAS-GL015 声明检测和校准结果及与规范符合性的指南 CNAS-GL017 标准物质/标准样品定值的一般原则和统计方法(idt ISO指南35) GB/T 27418 测量不确定度评定和表示(mod ISO/IEC指南98-3,GUM)GB/T 8170 数值修约规则与极限数值的表示和判定 ISO/IEC指南98-4 测量不确定度在合格评定中的应用 ISO/IEC指南99 国际计量学词汇基础和通用概念及相关术语(VIM) ISO 80000-1 量和单位-第1部分:总则 ILAC-P14 ILAC对校准领域测量不确定度的政策 3术语和定义 ISO/IEC指南99(VIM)界定的以及下列术语和定义适用于本文件。 3.1校准和测量能力(Calibration and Measurement Capability,CMC) 按照国际计量委员会(CIPM)和ILAC的联合声明,对CMC采用以下定义:校准和测量能力(CMC)是校准实验室在常规条件下能够提供给客户的校准和测量的能力。 a) CMC公布在签署ILAC互认协议的认可机构认可的校准实验室的认可范围中; b) 签署CIPM互认协议的各国家计量院(NMIs)的CMC公布在国际计量

相关文档
相关文档 最新文档