文档库 最新最全的文档下载
当前位置:文档库 › 流量系数的计算

流量系数的计算

流量系数的计算
流量系数的计算

1 流量系数KV的来历

调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们把调节阀模拟成孔板节流形式,见图2-1。对不可压流体,代入伯努利方程为:

(1)

解出

命图2-1 调节阀节流模拟

再根据连续方程Q= AV,与上面公式连解可得:

(2)

这就是调节阀的流量方程,推导中代号及单位为:

V1 、V2 ——节流前后速度;

V ——平均流速;

P1 、P2 ——节流前后压力,100KPa;

A ——节流面积,cm;

Q ——流量,cm/S;

ξ——阻力系数;

r ——重度,Kgf/cm;

g ——加速度,g = 981cm/s;

如果将上述Q、P1、P2 、r采用工程单位,即:Q ——m3/ h;P1 、P2 ——100KPa;r——gf/cm3。于是公式(2)变为:

(3)

再令流量Q的系数为Kv,即:Kv =

或(4)

这就是流量系数Kv的来历。

从流量系数Kv的来历及含义中,我们可以推论出:

(1)Kv值有两个表达式:Kv = 和

(2)用Kv公式可求阀的阻力系数ξ = (5.04A/Kv)×(5.04A/Kv);

(3),可见阀阻力越大Kv值越小;

(4);所以,口径越大Kv越大。

2 流量系数定义

在前面不可压流体的流量方程(3)中,令流量Q的系数为Kv,故Kv 称流量系数;另一方面,从公式(4)中知道:Kv∝Q ,即Kv 的大小反映调节阀流量Q 的大小。流量系数Kv国内习惯称为流通能力,现新国际已改称为流量系数。

2.1 流量系数定义

对不可压流体,Kv是Q、△P的函数。不同△P、r时Kv值不同。为反映不同调节阀结构,不同口径流量系数的大小,需要跟调节阀统一一个试验条件,在相同试验条件下,Kv的大小就反映了该调节阀的流量系数的大小。于是调节阀流量系数Kv的定义为:当

调节阀全开,阀两端压差△P为100KPa,流体重度r为lgf/cm(即常温水)时,每小时

流经调节阀的流量数(因为此时),以m/h 或t/h计。例如:有一台Kv =50的调节阀,则表示当阀两端压差为100KPa时,每小时的水量是50m/h。

Kv=0.1,阀两端压差为167-(-83)=2.50,气体重度约为1

.0×E(-6),每小时流量大约为158 m/h。=43L/s=4.3/0.1s

Kv=0.1,阀两端压差为1.67,气体重度约为1

2.2 Kv与Cv值的换算

国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差△P为1磅/英寸2,介质为60°F清水时每分钟流经调节阀的流量数,以加仑/分计。

由于Kv与Cv定义不同,试验所测得的数值不同,它们之间的换算关系:Cv =

1.167Kv (5)

2.3 推论

从定义中我们可以明确在应用中需要注意的两个问题:

(1)流量系数Kv不完全表示为阀的流量,唯一在当介质为常温水,压差为100KPa时,Kv才为流量Q;同样Kv 值下,r、△P不同,通过阀的流量不同。

(2)Kv是流量系数,故没单位。但是许多资料、说明书都错误地带上单位,值得改正。

3 原流量系数Kv计算公式

3.1 不可压流体的流量系数公式

公式(4)是以不可压流体来推导的,此公式即为不可压流体的流量系数公式。

3.2 可压流体的流量系数公式

可压流体由于考虑的角度不同,有不同的计算公式,主要采用的是压缩系数法和平均重度法两种。

压缩系数法是在不可压流体流量系数公式(4)基础上乘上一个压缩系数ε而来,即

并将r换算成标准状态(0℃、760mmHg)的气体重度:

于是得出

(6)

式中,ε——压缩系数,由试验确定为ε= 1-0.46△P/P1,

饱和状态时,△P/P1 = 0.5,此时流量不

再随△P的

增加而增加,即产生了阻塞流(阻塞流的定义

为:

流体通过调节阀时,所达到的最大极限流量状

态),

见图2-2。ε=1-0.46×0.5 = 0.76;

t——介质温度,℃;

N——在标准状态下的参数。

用于蒸气计算时,计算公式略有不同,见表2

-1。

3.3 平均重度法

平均重度法公式推导要复杂得多。在推导中将调节阀相当长度为L、断面为A 的管道来代替,并假定介质为理想流体,当介质稳定地流过管道时,采用可压缩流体流

量方程式:(2-11)

式中, Lf——摩擦功;

g ——加速度。

在上式基础上,再引入三个辅助方程:

理想气体多变热力过程的变化规律方程

P1V1m =常数

状态方程P1V1 = RT1

连续方程 VA/v =常数

以上三式中:v——比容;

m——多变指数;

R——气体常数;

T——绝对温度;

V——流速。

由上述4个方程通过一系列纯数学推导(略),得到其流量方程

为:

为简化公式,把实际流动简化为等温度变化来处理,故取m=1。同时,把物理常数代入,即可整理

得:

(7)

当△P/P1 ≥0.5时,流量饱和,故以△P= 0.5P1 代入上式得:

(8)

同样,蒸气的计算公式也是在公式(7)、(8)基础上推导出来的。

综合上述,把原各种介质的Kv值计算公式汇总在表2-1中。

表2-1 原调节阀流量系数Kv值计算公式

流体压差条件计算公式

液体

-

G——重量流量(t/h)

气体

压缩系数法平均重度法

一般气体

一般气体

蒸气

Gs——重量流量

4 KV值计算新公式

目前,调节阀计算技术国外发展很快,就KV值计算公式而言,早在20世纪70年代初ISA(国际标准协会标准)就规定了新的计算公式,国际电工委员会IEC也正在制定常用介质的计算公式。下面介绍一种在平均重度法公式基础上加以修正的新公式。

4.1 原公式推导中存在的问题

在前节的KV值计算公式推导中,我们可以看出原公式推导中存在如下问题:

(1)把调节阀模拟为简单形式来推导后,未考虑与不同阀结构实际流动之间的修正问题。

(2)在饱和状态下,阻塞流动(即流量不再随压差的增加)的差压条件为△P /P=0.5 ,同样未考虑不同阀结构对该临界点的影响问题。

(3)未考虑低雷诺数和安装条件的影响。

4.2 压力恢复系数 FL

由P1在原公式的推导中,认为调节阀节流处由P1直接下降到P2,见图2-3中虚线所示。但实际上,压力变化曲线如图2-3中实线所示,存在差压力恢复的情况。不同结构的阀,压力恢复的情况不同。阻力越小的阀,恢复越厉害,越偏离原推导公式的压力曲线,原公式计算的结果与实际误差越大。因此,引入一个表示阀压力恢复程度的系数FL来对原公式进行修正。FL称为压力恢复系数(Pressure reecvery factor),其表达式为:

(9)

式中,、表示产生闪蒸时的缩流处压差和阀前后压差。

图2-3 阀内的压力恢复关键是FL的试验问题。用透明阀体试验,将会发现当节流处产生闪蒸,即在节流处产生气泡群时,Q就基本上不随着△P的增加而增加。这个试验说明:产生闪蒸的临界压差就是产生阻塞流的临界压差,故FL又称临界流量系数(Critical flow factor),因此FL既可表示不同阀结构造成的压力恢复,以修正不同阀结构造成的流

量系数计算误差,又可用于对正常流动,阻塞流动的差别,即FL 定义公式(9)中的压差△Pc 就是该试验阀产生阻塞流动的临界压差。这样,当△P<△Pc 时为正常流动,当△P≥△Pc 时为阻塞流动。从(9)公式中我们即可解出液体介质的△Pc

为: △Pc = FL (P1-Pv) (10) 由试验确定的各类阀的FL 值见表2-3。

4.3 梅索尼兰公司的公式——FL 修正法 1)对流体计算公式的修正

当△P<△PC 时,为正常流动,仍采用原公式(4);当△P≥△P c 时,因△P 增加Q 基本不增加,故以△Pc 值而不是△P 值代入公式(4)计算即可。当△Pv≥0.5P1时,意味差有较大的闪蒸,此时△Pc

还应修正,由试验获得:

(11)

式中:Pc 表示液体热力学临界点压力,见表2-4。 2)对气体计算公式的修正

原产生阻塞流的临界差压条件是△Pc=0.5P1,即固定在△P/P1=0.5处,这和实际情况出入较大。实际上△Pc 仍与FL 有关,由试验得临界压差条件为:△Pc = 0.5 FL P1 (12)

利用FL 概念推得的新公式有好几种,但以在原平均重度法公式基础上修正的新公式最简单、方便,即平均重度修正法,它只需将原阻塞流动下的计算公式除上FL

即可。若要更精确些,则再除上一个系数(y -0.14y ),其中 。蒸

气计算公式的修正同上。为了便于比较、应用,将采用FL 修正的新公式和原公式汇总于表2-2中。归纳起来,有两个不同:一是流动状态差别式不同;二是在阻塞流动的情况下计算公式不同。引入了3个新的参数:FL 、PC 、(y -0.148y ) 介 质 流动

状态 原计算公式

新计算公式

流动状态判

计算式

流动状态判断

计算式

液 体

一般流动

同原计算式

阻 塞 流 动

-

-

气体一般

流动

△P/P1 < 0.5

同原计算式

阻塞

流动

原计算式乘或

蒸气饱

一般

流动

同气体

同气体同原计算式

阻塞

流动

同气体

同气体

原计算式乘或

一般

流动

同气体

同气体同原计算式

阻塞

流动

同气体

同气体

原计算式乘或

Q:液体流量 m/h

QN:气体流量 Nm/h

GS:蒸气流量 kgf/h

r:液体重度 g/cm

rn:气体重度 kg/Nm

P1:阀前压力 100KPa

P2:阀后压力 100KPa

※ Pv:饱和蒸气压100KPa

Pc:临界点压力(见表2-4)

FL:压力恢复系数(见表2-3)

t:摄氏温度℃

tsh:过热温度℃

△Pc:临界压差 100KPa

其中

△P:压差 100KPa

※ 可查GB2624-81或理化数据手册。蒸气、气体压力为绝压。

表2-3 FL值

调节阀形式流向FL值

单座调节阀柱塞形阀芯

流开0.90

流闭0.80 “V”形阀芯任意流向0.90

套筒形阀芯

流开0.90

流闭0.80

双座调节阀柱塞形阀芯任意流向0.85 “V”形阀芯任意流向0.90

角型调节阀柱塞形阀芯

流开0.80

流闭0.90 套筒形阀芯

流开0.85

流闭0.80 文丘里形流闭0.50

球阀“O”型任意流向0.55 “V”型任意流向0.57

蝶阀

60°全开任意流向0.68

90°全开任意流向0.55 偏心旋转阀流开0.85

3)公式计算步骤

第一步:根据已知条件查参数:FL、Pc;

第二步:决定流动状态。

液体:①判别 Pv 是大于还是小于0.5P1;

②由①采用相应的△Pc公式:

③△P<△Pc为一般流动;△P≥△Pc为阻塞流动。

气体:为一般流动,为阻塞流动。

第三步:根据流动状态采用相应Kv值计算公式。

4)计算举例

例1 介质液氨,t=33℃,r=0.59,Q=13t/h,P1=530×100KPa,P2=70×100KPa,△P=460×100KPa,Pv=15×100KPa,选用高压阀,流闭型。

第一步:查表得FL=0.8,Pc=114.5×100KPa

第二步:∵0.5P1=265>Pv

∴△Pc=FL(P1-Pv)=329。

△P>△Pc,为阻塞流动。

第三步:采用阻塞流动公式

例2 介质空气,t=20℃,rN=1,QN=100M/h,P1=2×100KPa(绝压),P2

=1.5×100KPa(绝压),△P=0.5×100KPa,选用单座阀,流开型。

第一步:查表FL=0.9

第二步:= 0.25<0.5FL=0.5×0.92=0.4为一般流动。

第三步:采用一般流动Kv值计算公式

例3 在例2基础上,改P2=1.1×100KPa(绝压),即△P=0.9×100KPa

∵=0.45>0.5FL=0.4

∴为阻塞流动。采用公式为:

若要更准确些时,上式再除以(y-0.148y),即

其中,

y -0.148y=0.93

表2-4 临界压力 Pc

介质名称PC(100KPa 绝压)介质名称PC(100Kpa 绝压)醋酸59 甲烷47.2

丙酮48.4 甲醇81

乙炔63.7 氧51.2

空气38.2 氧化氯73.8

氨114.5 辛烷25.4

氮34.5 氯73

氟25.7 乙烷50.2

氦 2.33 乙醇65

氢13.1 氯化氢84

氩49.4 丙烷43.2

苯49 二氧化硫80

二氧化碳75 水224

一氧化碳36 戊烷34

5 调节阀口径计算

5.1 口径计算原理

在不同的自控系统中,流量、介质、压力、温度等参数千差万别,而调节阀的流量系数又是在100KPa压差下,介质为常温水时测试的,怎样结合实际工作情况决定阀的口径呢?显然,不能以实际流量与阀流量系数比较(因为压差、介质等条件不同),而必须进行Kv值计算。把各种实际参数代入相应的Kv值计算公式中,算出Kv值,即把在不同的工作条件下所需要的流量转化为该条件下所需要的Kv值,于是根据计算出的Kv值与阀具有的Kv值比较,从而决定阀的口径,最后还应进行有关验算,进一步验证所选阀是否能满足工作要求。

5.2 口径计算步骤

从工艺提供有关参数数据到最后口径确定,一般需要以下几个步骤:

(1)计算流量的确定。根据现有的生产能力、设备负荷及介质的状况,决定计算的最大工作流量Qmax和最小工作流量Qmin。

(2)计算压差的决定。根据系统特点选定S值,然后决定计算压差。

(3)Kv值计算。根据已决定的计算流量、计算压差及其它有关参数,求出最大工作流量时的Kvmax。

(4)初步决定调节阀口径,根据已计算的Kvmax,在所选用的产品型式系列中,选取大于Kv-max并与其接近的一档Kv值,得出口径。

(5)开度验算。

(6)实际可调比验算。一般要求实际可调比应大于10。

(7)压差校核(仅从开度、可调比上验算还不行,这样可能造成阀关不死,启不动,故我们增加此项)。

(8)上述验算合格,所选阀口径合格。若不合格,需重定口径(及Kv值),或另选其它阀,再验算至合格。

5.3 口径计算步骤中有关问题说明

1)最大工作流量的决定

为使调节阀满足调节的需要,计算时应考虑工艺生产能力、对象负荷变化、预期扩大生产等因素,但必须防止过多地考虑余量,使阀口径选大;否则,不仅会造成经济损失、系统能耗大,而且阀处小开度工作,使可调比减小,调节性能变坏,严重时还会引起振荡,使阀的寿命缩短,特别是高压调节阀,更要注意这一点。现实中,绝大部分口径选大都是此因素造成的。

2)计算压差的决定——口径计算的最关键因素

压差的确定是调节阀计算中的关键。在阀工作特性讨论中知道:S值越大,越

接近理想特性,调节性能越好;S值越小,畸变越厉害,因而可调比减小,调节性能变坏。但从装置的经济性考虑时,S小,调节阀上压降变小,系统压降相应变小,这样可选较小行程的泵,即从经济性和节约能耗上考虑S值越小越好。综合的结果,一般取S =0.1~0.3(不是原来的0.3~0.6)。对高压系统应取小值,可小至S=0.05。最近,为减小调节阀上的能耗,我们还提出了采用低S值的设计方法(S=0.05~0.1),即选用低S节能调节阀。

压差计算公式,由S定义S=△P/(△P+△P管)得:

再考虑设备压力的波动影响,加(5%~10%)P作为余地,故

+(0.05~0.1)P

式中,△P为调节阀全开时的阀上压降;△P管为调节阀全开时,除调节阀外的系统损失总和,即管道、弯头、节流装置、手动阀门、热交换器等损失之和。

若一个实际投运了的系统,如引进装置,对方提供了已知的最大、最小流量及相应压差,阀门的标准Kv值,即可由下公式求S值:

3)开度验算

由于决定阀口径时Kv值的圆整和S值对全开时最大流量的影响等因素,所以还应进行开度验算,以验证阀实际工作开度是否在正确的开度上。

在过去的有关资料中,在开度验算公式和工作开度允许值方面存在一些问题。针对存在的问题,特推导出相应的验算公式和工作开度允许值,其内容见表2-5。其中开度验算公式应采用以理想流量特性解出的公式,该公式简单,但其Kvi应是对应工作条件计算出的流量系数。

4)可调比验算

调节阀的理想可调比R=30,但在实际运行中,受工作特性的影响,S值越小,最大流量相应减小。同时工作开度也不是从0至全开,而是在10%~90%左右的开度范围内工作,使实际可调比进一步下降,一般能达10左右,因此验算时,以R=10来进行。

验算公式:R实际 = R

把R=10代入上式,得可调比验算公式为:R实际=10

当S≥0.3时,R实际≥3.5,能满足一般生产要求,此时,可以不验算。

若调节阀不能满足工艺上最大流量、最小流量的调节要求时,可采用两个调节

阀进行分程控制,也可选用一台R较大的特殊调节阀来满足使用要求。表2-5 正确的开度验算公式及验算要求

内容原公式及验算要求原公式及验算要

求存在的问题

正确公式及验算要求

验算公式考虑实际

工作情况

(即考虑

对S值的

影响)的

开度验算

公式

直线特性

对数特性

由于原公式是由

液体来推导的,不

能用于气体。用于

气体时公式的根

号内出现负值,无

法计算。

直线特性

对数特性

K = 1+

以理想流

量特性

(即不考

虑S值的

影响)来

验算的近

似公式

实际是相对流量,

只有直线特性时

可近似看成相对

开度,用于对数特

性时,将造成验算

上的错误。

开度验算最大工作

开度验算

希望大工作开度应90%左右,

不管流量特性与

带定位器否,笼统

地规定在90%左

右是不合理的。以

90%计算,当系统

为最大流量,而调

节阀又出现最大

的负流量误差时,

直线特性将有4%

Kv(不带定位器)、

1%Kv(带定位器)

的流量不能通过

调节,选用对数特

性时,使调节阀还

有5%Kv(不带定

位器)、16%Kv(带

定位器)的容量没

有充分利用,造成

选大调节阀的可

能。

因为调节阀的Kv值是理

想值,应考虑其误差。

因此,本方法考虑调节

阀出现最大负全行程偏

差时和负10%Kv的流量

误差时,具有的实际流

量作为全开时的流量,

令此流量为最大工作流

量,得出的条件为;

直线特性:

不带定位器Kmax﹤86%

带定位器Kmax﹤89%

对数特性:

不带定位器Kmax﹤92%

带定位器Kmax﹤96% 最小工作最小工作开度不应小于10%即没考虑高压阀小一般情况Kmin>10%高压

开度验算Kmin>10% 开度冲蚀以及小

开度易振荡问题关阀、阀稳定性差时Kmin>10~30%

式中代号

Qi——某一开度的流量m/h

K——对应Qi的工作开度

r——介质重度,kg/cm

Kvi——对应Qi的计算流量系数

Kv——调节阀的流量系数。

△P——调节阀全开的压差,100KPa S——压差分配比

5.4 计算实例

[例1] 工作条件为:介质液氨,t=33℃,r=0.59g/cm,Pv=15×100KPa,Qmax=15m/h,对应Qmax之P1、P2、△Pmin为530、130、400×100KPa,Qmin =5m/h,△Pmax=500×100KPa,S=0.2,选用高压阀,直线特性,带定位器工作,求口径DN。解:

(1)流量已确定为:Qmax=15m/h;Qmin=5m/h。

(2)压差确定为:△Pmin=400×100KPa,△Pmax=500×100KPa。

(3)Kv值计算:

第一步:查表得FL=0.8

第二步:决定流动状态

∵0.5P1>>Pv

∴△Pc=FL(P1-Pv)=0.82(530-15)=320×100KPa

又∵△Pmin>△Pc

∴均为阻塞流

第三步:采用阻塞流动状态的Kv值计

算公式

(4)根据Kvmax=0.64查高压阀流量系数,得DN=10,dg=7其Kv=1.0。

(5)开度验算

因Kv=1只有直线特性,应采用直线特性验算公式,故有:

Kmax﹤ 89%,Kmin >10%,故Kv=1.0验算合格。

(6)可调比验算:R实际 = 10

R实际≥验算合格

(7)压差校核△P<[△P](因ds>dg),校核通过。

(8)结论:DN=10,dg=7,Kv=1.0,验算合格。

6 国际电工委员会推荐的新公式简介

6.1 公式简介

国际电工委员会(IEC)推荐公式见表2-6,对于液体,与表2-2中公式一样,只是气体计算公式方程有所不同。在考虑压力恢复系数FL的新概念基础上,不是表2-2中用FL对原平均重度法加以修正的形式,而是采用又一种新的修正方法--膨胀系数修正重度法。膨胀系数修正重度法根据流量单位的不同,有体积流量和重量流量之分,前者用于一般气体;后者用于蒸气。对于一般气体,根据已知介质的标准重度rN、气体分子量M或对空气的比重G,有3种相对应的计算公式;对蒸气,根据已知的入口实际重度或分子量,有两个相对应的计算公式供选用。该方法比表2-2中推荐的平均重度修正法要复杂些。从表中可看出,膨胀系数修正重度法共引入了8个新的参数,其中物理参数4个:K、Pc、Tc、M;查图参数1个:Z;计算的参数3个:XT、FK、Y。由于考虑的因素多些,自然精度更高。

6.2 公式比较计算实例

下面,举例看看原平均重度法、平均重度修正法、膨胀系数修正重度法在同样条件下的计算差别。

例已知二氧化碳QN=76000Nm/h,rN=1.977kg/m,P1=40×100K Pa(绝压),P2=22×100KPa,t1=50℃,选用双座阀,求Kv值为多少?解:

(1)按原平均重度法计算:

∴为一般流动,Kv值计算公式为:

= 151.3

(2)按平均重度修正法计算:

查表得FL=0.85

0.5FL=0.5×0.85=0.36

∵=0.45> 0.5FL

∴为阻塞流动,Kv值计算公式为:

= 171.2

(3)按膨胀系数修正重度法计算:

查有关物理参数得:

K=1.3;PC=75.42×100KPa;TC=304.2℃。

根据PC、TC查图得Z=0.827

流动状态差别

∵X T=0.84FL=0.84×0.85=0.61

FK=K/1.4=1.3/1.4

表2-6 国际电工委员会推荐的新公式汇总表

介质流动

状态

计算公式

流动状态Kv值计算公式

液体一般流动同表2-2

推荐公式

同表2-2推荐公式阻塞流动

气体一般流动

阻塞流动

蒸气一般流动

阻塞流动

表中代号及单位已经熟悉

的代号

QN:气体标准状态下的流量Nm/h

Gs:蒸气重量流量kg/h

rN:气体标准状态下的重度kg/Nm

T1:入口绝对温度K

P1:阀前绝压100Kpa

r1:入口蒸气重度kg/m

△P:压差100Kpa (若为过热蒸气时,代入过热条件下的实际重度)

G:对空气的比重

新引入的

代号

Fk:比热比系数FK=K/1.4

Z:压缩系数(由比压力P4/PC和比

K:气体的绝热指数

温度T1/TC查表得PC为临界压力TC为临界温度)

XT:临界压差比系数XT=0.84FL

Y:膨胀系数 Y = (Y的范围0.667~1.0 )

M:气体的分子量

注:Pc、Z、K可进一步查阅GB2624-81或理化数据手册XTFk=0.61×1.3/1.4=0.57

△P/P1=0.45﹤ XTFk

∴为一般流动,采用公式为:

Kv =

计算Kv值:

Kv =

(4)结论:

由以上计算实例可见,采用平均重度修正法与膨胀系数修正重度计算结论基本一致,其Kv值为171.1~171.2之间,而原平均重度法计算出的Kv值为151.3,差(171.2-151.3)/151.3=13%。

这个例子是比较巧合的。平均重度修正法与膨胀系数修正法实际计算结果有差别,而后者精度更高,但是计算复杂,推广应用还比较困难。前者精度低些,同时也考虑了FL的影响。由于它计算简便,需要的物理参数不多,使用起来更加方便。从满足工程应用和简化上看,作者推荐前者。

阀门流量流阻系数

阀门流量流阻系数 Revised by BLUE on the afternoon of December 12,2020.

阀门的流量系数与流阻系数 一、阀门的流量系数 流量系数即:CV值(中国工业称为:KV值)是阀门、调节阀等工业阀门的重要工艺参数和技术指标。正确计算和选择CV值是保障管道流量控制系统正常工作的重要步骤。 1、流量系数的定义 是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV值须通过测试和计算确定。 2、阀门流量系数的计算 (1)一般式 C=Q√ρ/Δp 式中C—流量系数; Q—体积流量; ρ—流体密度; Δp—阀门的压力损失 (2)Kv值的计算表 Kv=Q√ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/h); ρ—流体密度(kg/m3);

Δp—阀门的压力损失(bar)。 (3)Cv值的计算表 Cv=Q√G/Δp 式中Cv—流量系数(Usgal/min÷(√1lbf/in2));Q—体积流量(USgal/min); ρ—水的相对密度=1; Δp—阀门的压力损失(lbf/in2)。 (4)Av值的计算表 Kv=Q√ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/s); ρ—流体密度(kg/m3); Δp—阀门的压力损失(Pa)。 (5)流量系数Av、Kv、Cv间的关系 Cv=1.17Kv Cv=10e6/24Av Kv=10e6/28Av 3、单位换算 Kv与Cv值的换算

国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差ΔP为1磅/英寸²,介质为60℉清水时每分钟流经调节阀的流量数,以加仑/分计。由于Kv与Cv定义不同,试验所测得的数值不同,它们之间的换算关系为:Cv=1.167Kv 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降Δp表示。 对于紊流流态的液体: Δp=ζu2ρ/2 式中Δp—被测阀门的压力损失(Mpa); ζ—阀门的流阻系数; ρ—流体密度(kg/mm3); u—流体在管道内的平均流速(mm/s)。

阀门的流量系数,流体阻力系数,压力损失

阀门的流量系数,流体阻力系数,压力损失 阀门的流量系数、流阻系数、压力损失 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。国外工业发达国家的阀门生产厂家大多把不同压力等级、不同类型和不同公称通径阀门的流量系数值列入产品样本,供设计部门和使用单位选用。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1.流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 2.阀门流量系数的计算 3.流量系数的典型数据及影响流量系数的因素 公称通径DN50mm的各种型式阀门的典型流量系数见表。 流量系数值随阀门的尺寸、形式、结构而变。几种典型阀门的流量系数随直径的变化如图1-9所示。 对于同样结构的阀门,流体流过阀门的方向不同。流量系数值也有变化。这种变化一般是由于压力恢复不同而造成的。如果流体流过阀门使阀瓣趋于打开,那么阀瓣和阀体形成的环形扩散通道能使压力有所恢复。当流体流过阀门使阀瓣趋于关闭时,阀座对压力恢复的影响很大。当阀瓣开度为&#+ 或更小时,阀瓣下游的扩散角使得在两个流动方向上都会有一些压力恢复。 对于图1-11所示的高压角阀,当流体的流动使阀门趋于关闭时流量系数较高,因为此时阀座的扩散锥体使流体的压力恢复。阀门内部的几何形状不同,流量系数的曲线也不同。 阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,若阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀瓣、阀座的结构。 二、阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降△p表示。 1. 阀门元件的流体阻力 阀门的流阻系数! 取决于阀门产品的尺寸、结构以及内腔形状等。可以认为,阀门体腔内的每个元件都可以看作为一个产生阻力的元件系统(流体转弯、扩大、缩小、再转弯等)。所以阀门内的压力损失约等于阀门各个元件压力损失的总和。 应该指出,系统中一个元件阻力的变化会引起整个系统中阻力的变化或重新分配,也就是说介质流对各管段是相互影响的。 为了评定各元件对阀门阻力的影响,现引用一些常见的阀门元件的阻力数据,这些数据反映了阀门元件的形状和尺寸与流体阻力间的关系。

(完整版)流量系数的计算

1 流量系数KV的来历 调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们把调节阀模拟成孔板节流形式,见图2-1。对不可压流体,代入伯努利方程为: (1) 解出 命图2-1 调节阀节流模拟 再根据连续方程Q= AV,与上面公式连解可得: (2) 这就是调节阀的流量方程,推导中代号及单位为: V1 、V2 ——节流前后速度; V ——平均流速; P1 、P2 ——节流前后压力,100KPa; A ——节流面积,cm; Q ——流量,cm/S; ξ——阻力系数; r ——重度,Kgf/cm; g ——加速度,g = 981cm/s; 如果将上述Q、P1、P2 、r采用工程单位,即:Q ——m3/ h;P1 、P2 ——100KPa;r——gf/cm3。于是公式(2)变为: (3) 再令流量Q的系数为Kv,即:Kv = 或(4)这就是流量系数Kv的来历。

从流量系数Kv的来历及含义中,我们可以推论出: (1)Kv值有两个表达式:Kv = 和 (2)用Kv公式可求阀的阻力系数ξ = (5.04A/Kv)×(5.04A/Kv); (3),可见阀阻力越大Kv值越小; (4);所以,口径越大Kv越大。 2 流量系数定义 在前面不可压流体的流量方程(3)中,令流量Q的系数为Kv,故Kv 称流量系数;另一方面,从公式(4)中知道:Kv∝Q ,即Kv 的大小反映调节阀流量Q 的大小。流量系数Kv国内习惯称为流通能力,现新国际已改称为流量系数。 2.1 流量系数定义 对不可压流体,Kv是Q、△P的函数。不同△P、r时Kv值不同。为反映不同调节阀结构,不同口径流量系数的大小,需要跟调节阀统一一个试验条件,在相同试验条件下,Kv的大小就反映了该调节阀的流量系数的大小。于是调节阀流量系数Kv的定义为:当 调节阀全开,阀两端压差△P为100KPa,流体重度r为lgf/cm(即常温水)时,每小时 流经调节阀的流量数(因为此时),以m/h 或t/h计。例如:有一台Kv =50的调节阀,则表示当阀两端压差为100KPa时,每小时的水量是50m/h。 Kv=0.1,阀两端压差为167-(-83)=2.50,气体重度约为1 .0×E(-6),每小时流量大约为158 m/h。=43L/s=4.3/0.1s Kv=0.1,阀两端压差为1.67,气体重度约为1 2.2 Kv与Cv值的换算 国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差△P为1磅/英寸2,介质为60°F清水时每分钟流经调节阀的流量数,以加仑/分计。 由于Kv与Cv定义不同,试验所测得的数值不同,它们之间的换算关系:Cv = 1.167Kv (5)

阀门流量系数Kv、Cv

阀门流量系数Kv 、Cv调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们把调节阀模拟成孔板节流形式,见图2-1。对不可压流体,代入伯努利方程为: (1) 解出 命图2-1 调节阀节流模拟 再根据连续方程Q= AV,与上面公式连解可得: (2) 这就是调节阀的流量方程,推导中代号及单位为: V1 、V2 ——节流前后速度; V ——平均流速; P1 、P2 ——节流前后压力,100KPa; A ——节流面积,cm; Q ——流量,cm/S; ξ——阻力系数; r ——重度,Kgf/cm; g ——加速度,g = 981cm/s; 如果将上述Q、P1、P2 、r采用工程单位,即:Q ——m/ h;P1 、P2 —— 100KPa;r——gf/cm。于是公式(2)变为: (3) 再令流量Q的系数为Kv,即:Kv = 或(4)这就是流量系数Kv的来历。 从流量系数Kv的来历及含义中,我们可以推论出: (1)Kv值有两个表达式:Kv = 和 (2)用Kv公式可求阀的阻力系数ξ = (5.04A/Kv)×(5.04A/Kv);

(3),可见阀阻力越大Kv值越小; (4);所以,口径越大Kv越大。 在前面不可压流体的流量方程(3)中,令流量Q的系数为Kv,故Kv 称流量系数;另一方面,从公式(4)中知道:Kv∝Q ,即Kv 的大小反映调节阀流量Q的大小。流量系数Kv 国内习惯称为流通能力,现新国际已改称为流量系数。 2.1 流量系数定义 对不可压流体,Kv是Q、△P的函数。不同△P、r时Kv值不同。为反映不同调节阀结构,不同口径流量系数的大小,需要跟调节阀统一一个试验条件,在相同试验条件下,Kv的大小就反映了该调节阀的流量系数的大小。于是调节阀流量系数Kv的定义为:当调节阀全开,阀两端压差△P为 100KPa,流体重度r为lgf/cm (即常温水)时,每小时流经调节阀的流量数(因为此时 ),以m/h 或 t/h计。例如:有一台Kv =50的调节阀,则表示当 阀两端压差为100KPa时,每小时的水量是50m/h。 2.2 Kv与Cv值的换算 国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差△P为1磅/英寸2,介质为60°F清水时每分钟流经调节阀的流量数,以加仑/分计。 由于Kv与Cv定义不同,试验所测得的数值不同。 它们之间的换算关系:Cv = 1.167Kv (5) 2.3 推论 从定义中我们可以明确在应用中需要注意的两个问题: (1)流量系数Kv不完全表示为阀的流量,唯一在当介质为常温水,压差为100KPa 时,Kv才为流量Q;同样Kv 值下,r、△P不同,通过阀的流量不同。 (2)Kv是流量系数,故没单位。但是许多资料、说明书都错误地带上单位,值得改正。 --------------------------------------------------------------------------------- 根据以上定义,该阀体在同种流体条件不同压差下,可以根据Kv来计算流量Q (Q正比于压差△P的平方根) Q=Kv/sqrt(△P) △P单位为bar,Q单位为立方米/小时

流量系数的计算

1流量系数KV 的来历 调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的 移动来改变,因此 是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们 把调节阀模拟成孔板节流形式,见图 2- 1。对不可压流体,代入伯努利方程为: 再根据连续方程 Q = AV ,与上面公式连解可得: 这就是调节阀的流量方程,推导中代号及单位为: V1、V2 ――节流前后速度; V ――平均流速; P1、P2 ――节流前后压力,lOOKPa A ------ 节流面积,cm ; Q ――流量,cm / S; E ――阻力系数; r ------- 重度,Kgf / cm ; g------- 加速度,g = 981cm/s ; 3 如果将上述 Q 、P1、P2、r 采用工程单位,即:Q ――m/ h ; P1、P2 —— lOOKPa ; r ------- g f/cm 3。于是公式(2)变为: c A L / lOOrLP 3600 ,心 e __J 2.931x —.-^ = 5.04 这就是流量系数Kv 的来历。 2g r 2g (1) 2严 解出 r 命 (2) 再令流量 Q 的系数 为Kv ,即: Kv = (3) 图2-1调节阀节流模拟

从流量系数Kv 的来历及含义中,我们可以推论出: (2) 用Kv 公式可求阀的阻力系数 E = (5.04A/KV ) X( 5.04A/KV ); ,可见阀阻力越大 Kv 值越小; 4 ;所以,口径越大Kv 越大 2流量系数定义 在前面不可压流体的流量方程 (3)中,令流量Q 的系数 流量系数;另一方面,从公式(4)中知道:Kv *Q ,即Kv 的大小反映调节阀流量 Q 的大小。流量系数 Kv 国内习惯称为流通能力,现新国际已改称为流量系数。 2.1流量系数定义 对不可压流体,Kv 是Q >△ P 的函数。不同△ P 、r 时Kv 值不同。为反映不同调节阀 结构,不同口径流量系数的大小, 需要跟调节阀统一一个试验条件, 在相同试验条件下, Kv 的大小就反映了该调节阀的流量系数的大小。 于是调节阀流量系数 Kv 的定义为:当 调节阀全开,阀两端压差△ P 为lOOKPa ,流体重度r 为lgf/cm (即常温水)时,每小时 流经调节阀的流量 数(因为此时 ),以 m/h 或t /h 计。 例如:有一台Kv = 50的调节阀,则表示当阀两端压差为 lOOKPa 时,每小时的水量 是 50m /h o Kv = 0.1 ,阀两端压差为167—(— 83)= 2.50,气体重度约为1 .0X E (— 6),每小时流量大约为 158 /h o= 43L/s=4.3/0.1s Kv = 0.1,阀两端压差为1.6 7,气体重度约为1 2.2 Kv 与Cv 值的换算 国外,流量系数常以 Cv 表示,其定义的条件与国内不同。 Cv 的定义为:当调 节阀全开,阀两端压差△ P 为1磅/英寸2,介质为60°F 清水时每分钟流经调节 阀的流量数,以加仑/分计。 由于Kv 与Cv 定义不同,试验所测得的数值不同,它们之间的换算关系 :Cv = 1.167Kv (5) (1) Kv 值有两个表达式:Kv = 和 为Kv ,故Kv 称

流量系数与流阻系数

阀门的流量系数与流阻系数 (一)阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。流量系数值随阀门的尺寸、型式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该种阀门的流量系数值。 1、流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时的流体的流量。由于单位不同,流量系数有几种不同的代号和量值。 2、阀门流量系数的计算 (1)一般式 C=Q √ρ/Δp 式中C—流量系数; Q—体积流量;ρ—流体密度; Δp—阀门的压力损失 (2)Kv值的计算表 Kv= Q √ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/h);ρ—流体密度(kg/ m3); Δp—阀门的压力损失(bar)。 (3)Cv值的计算表 Cv= Q √G/Δp 式中Cv—流量系数( Usgal/min÷(√1lbf/in2));Q—体积流量(USgal/min);ρ—水的相对密度=1; Δp—阀门的压力损失(lbf/ in2)。

(4)Av值的计算表 Kv= Q √ρ/Δp 式中Kv—流量系数(m2); Q—体积流量(m3/s);ρ—流体密度(kg/ m3);Δp—阀门的压力损失(Pa)。 (5)流量系数Av、Kv、Cv间的关系 Cv=1.17Kv Cv=10e6/24Av Kv=10e6/28Av 3、流量系数的典型数据及影响流量系数的因素 流量系数值随阀门的尺寸、型式、结构而变。对于同样结构的阀门,流体流过阀门的方向不同,流量系数值也有变化。阀门内部的几何形状不同,流量系数的曲线也不同。 阀门内部压力恢复的机理,与文丘里管的收缩和扩散造成的压力损失机理一样。当阀门内部的压降相同时,如阀门内压可以恢复,流量系数值就会较大,流量也就会大些。压力恢复与阀门内腔的几何形状有关,但更主要的是取决于阀塞、阀座的结构。 (二)阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降Δp表示。对于紊流流态的液体: Δp=ζu2ρ/2 式中Δp—被测阀门的压力损失(Mpa); ζ—阀门的流阻系数;ρ—流体密度(kg/mm3); u—流体在管道内的平均流速(mm/s)。

各种流量计计算公式

V锥流量计计算公式为: 其中: K为仪表系数; Y为测量介质压缩系数;对于瓦斯气Y=0.998; ΔP为差压,单位pa; ρ为介质工况密度,单位kg/m3。取0.96335 涡街流量计计算公式:

一、孔板流量计 1.1 工作原理 流体流经管道内的孔板,流速将在孔板处形成局部收缩因而流速增加,静压力降低,于是在孔板上、下游两侧产生静压力差。流体流量愈大,产生的压差愈大,通过压差来衡量流量的大小。它是以流动连续性方程(质量守恒定律)和伯努利方程(能量守恒定律)为基础,在已知有关参数的条件下,根据流动连续性原理和伯努利方程可以推导出差压与流量之间的关系而求得流量。其流量计算公式如下: 上式中:ε——被测介质可膨胀性系数,对于液体ε=1;对气体等可压缩流体ε<1(0.99192)Q工——流体的体积流量(单位:m3/min) d ——孔径(单位:m ) △P——差压(单位:Pa) ρ1——工作状况下,节流件(前)上游处流体的密度,[㎏/m3]; C ——流出系数 β——直径比 1.2 安装 孔板流量计的安装要求:对直管段的要求一般是前10D后5D,因此在安装孔板流量计时一定要满足这个直管段距离要求,否则测量的流量误差大。

1.3 测量误差分析 1.3.1 基本误差 孔板在使用过程中,会由于煤气的侵蚀而产生变形,从而引起流量系数增大而产生测量误差;而且流量计工作时间越长,流体对节流件的冲刷越严重,也会引起流量系数增大而产生测量误差。 1.3.2 附件误差 孔板节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。

阀门流量系数的速算方法

流量系数的速算方法 在我们的设计工作中经常要进行各式各样的计算,流量系数正是其中之一。阀门的流量系数Cv和Kv值是衡量阀门流动能力的重要参数之一,流量系数的大与小,说明了流体通过阀门时其压力损失的大与小,流量系数越大则压力损失越小阀门的流通能力也就越好。国外的阀门厂通常都把不同类型、不同口径的阀门Cv值列入产品样本中。在我国,许多用户都要求制造方在样图中例明产品的流量系数Cv值或Kv值。在新的API规范6D《管线阀门》第22版明确规定:“制造厂(商)应为买方提供流量系数Kv值”。显然流量系数对管道和阀门设计过程来说是一个非常重要的参数。 阀门的流量系数Cv值最早是由美国流体控制协会在1952年提出的,它的定义是:在通过阀门的压力降每平方英寸1磅(1bf/in2)的标准条件下,温度为15.6℃的水,每分钟流过的美制加仑数(Usgal/min)。 阀门的流量系数Cv随阀门的尺寸、形式、结构而变化,这些变化最终与阀门的压力降有关。 Cv值的计算公式为: Cv=Q(G/ΔP)0.5(1) 式中Cv——流量系数 Q——体积流量(Usgal/min) ΔP——阀门的压力降(1bf/in2) G——水的密度G=1 阀门的流量系数Cv值取决于阀门的结构,而且必须由自身的实际试 验来确定。

DN50阀门的典型流量系数 (表一) 流量系数Cv 值是“英制”的计量单位,人们依据Cv 值的技术定义制定了“米制”计量单位的阀门流量系数Kv 值。Kv 值的定义是:在通过阀门的压力降为1巴(bar )的标准条件下,温度为5-40℃的水每小时流过阀门的立方米体积流量(m 3/h ) Kv 值的计算公式: 形式Cv 截止阀40-60角式截止阀 47Y 形阀门 阀杆与管道中心线夹角为45°72阀杆与管道中心线夹角为60° 65V 形孔旋塞阀 60-80蝶阀 蝶板厚度为通道直径的7%333蝶板厚度为通道直径的35% 154常规闸阀300-310夹管阀360旋启式止回阀76隐蔽式止回阀123球阀(缩径)131球阀(全径) 440

最新调节阀流量系数计算公式和选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F(15.6℃)的水,在IIb/in(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判别式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用

雷诺数修正系数修正,修正后的流量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 对于只有一个流路的调节阀,如单座阀、 套筒阀,球阀等: 对于有五个平行流路调节阀,如双座阀、 蝶阀、偏心施转阀等 文字符号说明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa; Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临界压力比系 数, F R--雷诺数系数,根据ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判别式(气体、蒸气)表1-2 文字符号说明: X-压差与入口绝对压力之比(△P/P1);X T-压差比系数; K-比热比;Qg-体积流量,Nm3/h Wg-质量流量,Kg/h;P1-密度(P1,T1条件), Kg/m3

阀门流量计算方法介绍

阀门流量计算方法 如何使用流量系数 How to use Cv 阀门流量系数(Cv)是表示阀门通过流体能力的数值。Cv越大,在给定压降下阀门能够通过的流体就越多。Cv值1表示当通过压降为1 PSI时,阀门每分钟流过1加仑15o C的水。Cv值350表示当通过压降为1 PSI时,阀门每分钟流过350加仑15o C的水。 Valve coefficient (Cv) is a number which represents a valve's ability to pass flow. The bigger the Cv, the more flow a valve can pass with a given pressure drop. A Cv of 1 means a valve will pass 1 gallon per minute (gpm) of 60o F water with a pressure drop (dp) of 1 PSI across the valve. A Cv of 350 means a valve will pass 350 gpm of 60o F water with a dp of 1 PSI. 公式1 FORMULA 1 流速:磅/小时(蒸汽或水) FLOW RATE LBS/HR (Steam or Water) 在此: Where:

dp = 压降,单位:PSI dp = pressure drop in PSI F = 流速,单位:磅/小时 F = flow rate in lbs./hr. = 比容积的平方根,单位:立方英尺/磅 (阀门下游) = square root of a specific volume in ft3/lb. (downstream of valve) 公式2 FORMULA 2 流速:加伦/分钟(水或其它液体) FLOW RATE GPM (Water or other liquids) 在此: Where: dp = 压降,单位:PSI dp = pressure drop in PSI Sg = 比重 Sg = specific gravity Q = 流速,单位:加伦/分钟 Q = flow rate in GPM 局限性 LIMITATIONS 上列公式在下列条件下无效: Above formulas are not valid under the following conditions: a.对于可压缩性流体,如果压降超过进口压力的一半。 For compressible fluids, where pressure drop exceeds half the inlet pressure.

流量计算公式大全

流量计算公式大全 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计仪表中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,qf为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d 为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;FG 为相对密度系数,ε为可膨胀系数;FZ为超压缩因子;FT为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。流量计算器。 (2)速度式流量计 速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有: ①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变化,产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体的体积流量成正比。涡轮流量计的理论流量方程为: 式中n为涡轮转速;qv为体积流量;A为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关的参数;B为与涡轮顶隙、流体流速分布有关的系数;C为与摩擦力矩有关的系数。 ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则的交替排列的旋涡涡街。在一定的流量(雷诺数)范围内,旋涡的分离频率与流经涡街流量传感器处流体的体积流量成正比。涡街流量计的理论流量方程为: 式中,qf为工况下的体积流量,m3/s;D为表体通径,mm;M为旋涡发生体两侧弓形面积与管道横截面积之比;d为旋涡发生体迎流面宽度,mm;f为旋涡的发生频率,Hz;Sr为斯特劳哈尔数,无量纲。 ③旋进涡轮流量计:当流体通过螺旋形导流叶片组成的起旋器后,流体被强迫围绕

蝶阀的流量系数的计算

蝶阀的力矩计算公式如下: M=X0.0654X△PXD3 式中:M 蝶阀的驱动力矩 kg·m △P 阀前后差压 mmH2O D 蝶阀直径 m K 系数 2-4倍 可压缩流体流经蝶阀的流量系数的计算 一、前言 蝶阀不仅可以用于控制管路的通断,而且也可以用于流量的调节,在蝶板开度在15°~60°范围内,具有良好的线性调节特性。由于蝶阀结构简单,所需安装空间小,操作便捷,可以实现快速启闭以及流阻损失小等优点,故广泛应用于工业及民用各个领域,近年来由于金属密封蝶阀在技术上日趋成熟,进一步扩大了蝶阀适用的压力和温度范围。 由于蝶阀具有流量调节的功能,因而不同开度下的流量系数是蝶阀的重要性能指标,它的数值大小反映蝶阀在不同开度下介质的流通能力。对于水或其他不可压缩的流体,流量系数可以比较容易地通过试验测试来确定,许多企业、研究所和高等学校都有相应的试验装置,在专业手册中也已有比较完整的数据可供借鉴。而对于空气、水蒸气等可压缩性流体,由于通过蝶阀后其压力、温度、容积等状态参数都将产生变化,所以相关的测试技术和试验装置比较复杂,蝶阀的制造企业大多不具备这样的试验条件,因而如何确定用于可压缩性流体时的蝶阀流量系数值,是一个设计、制造和使用单位都亟待解决的问题。 通过流体力学和热力学分析,提出一种用蝶阀的不可压缩流体的流量系数近似计算其可压缩流体流量系数的方法,可供用户参考应用。 二、确定流f系数的方法 1. 阀门的流量系数 流量系数是衡量阀门流通能力的指标,在数值上相当于流体流经阀门产生单位压力损失时流体的体积流量,如果蝶阀在1 lbf/in2 (1 lbf/in2= 6894.76Pa)的压降下能通过1 gal/min(1 gal/min = 0.68L/s)的水,它的流量系数C v=1.0。由于单位的不同,流量系数有几种不同的代号和量值。 (1)A v值计算式 (1) 式中Av—流量系数; Q—体积流量,单位为m3/s;

水流量计算公式

水管网流量简单算法如下: 自来水供水压力为市政压力大概平均为0.28mpa。 如果计算流量大概可以按照以下公式进行推算,仅作为推算公式, 管径面积×经济流速(DN300以下管选1.2m/s、DN300以上管选1.5m/s)=流量如果需要准确数据应按照下文进行计算。 水力学教学辅导 第五章有压管道恒定流 【教学基本要求】 1、了解有压管流的基本特点,掌握管流分为长管流动和短管流动的条件。 2、掌握简单管道的水力计算和测压管水头线、总水头线的绘制,并能确定管道内的压强分布。 3、了解复杂管道的特点和计算方法。 【内容提要和学习指导】 前面几章我们讨论了液体运动的基本理论,从这一章开始将进入工程水力学部分,就是运用水力学的基本方程(恒定总流的连续性方程、能量方程和动量方程)和水头损失的计算公式,来解决实际工程中的水力学问题。本章理论部分内容不多,主要掌握方程的简化和解题的方法,重点掌握简单管道的水力计算。 有压管流水力计算的主要任务是:确定管路中通过的流量Q;设计管道通过的流量Q所需的作用水头H和管径d;通过绘制沿管线的测压管水头线,确定压强p沿管线的分布。5.1 有压管道流动的基本概念 (1)简单管道和复杂管道 根据管道的组成情况我们把它分为简单管道和复杂管道。直径单一没有分支而且糙率

不变的管道称为简单管道;复杂管道是指由两根以上管道组成管道系统。复杂管道又可以分为串联管道、并联管道、分叉管道、沿程泄流管和管网。

(2) 短管和长管 在有压管道水力计算中,为了简化计算,常将压力管道分为短管和长管: 短管是指管路中水流的流速水头和局部水头损失都不能忽略不计的管道; 长管是指流速水头与局部水头损失之和远小于沿程水头损失,在计算中可以忽略的管 道为,一般认为( )<(5~10)h f %可以按长管计算。 需要注意的是:长管和长管不是完全按管道的长短来区分的。将有压管道按长管计算,可以简化计算过程。但在不能判断流速水头与局部水头损失之和远小于沿程水头损失之前,按短管计算不会产生较大的误差。 5.2简单管道短管的水力计算 (1)短管自由出流计算公式 (5—1) 式中:H 0是作用总水头,当行近流速较小时,可以近似取H 0 = H 。 μ称为短管自由出流的流量系数。 (5—2) (2)短管淹没出流计算公式 (5—3) 式中:z 为上下游水位差,μc 为短管淹没出流的流量系数 (5—4) 请特别注意:短管自由出流和淹没出流的计算关键在于正确计算流量系数。我们比较短管自由出流和淹没出流的流量系数(5—2)和(5—4)式,可以看到(5—2)式比(5—4)式在分母中多一项“1”,但是计算淹没出流的流量系数μc 时,局部水头损失系数中比自由出流多一项管道出口突然扩大的局部水头损失系数“1”,在计算中不要遗忘。 (3)简单管道短管水力计算的类型 简单管道短管水力计算主要有下列几种类型: 1)求输水能力Q:可以直接用公式(5—1)和(5—3)计算。 2)已知管道尺寸和管线布置,求保证输水流量Q 的作用水头H 。 这类问题实际是求通过流量Q 时管道内的水头损失,可以用公式直接计算,但需要计算管内流速,以判别管内是否属于紊流阻力平方区,否则需要进行修正。j h g v ∑+22 02gH A c Q μ=ζλμ∑++= d l 11 z g A c Q 2μ=ζλμ∑+=d l c 1

[精品]阀门的流量系数和气蚀系数是阀的主要参数

[精品]阀门的流量系数和气蚀系数是阀的主要参数, 阀门的流量系数和气蚀系数是阀的重要参数 , 评论:0 浏览:2473 发布时间:2006/11/20 , ,,,,,阀门的流量系数和气蚀系数是阀的重要参数,这在先进工业国家生产的阀门资料中一般均能提供,甚至在样本里也印出。我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。 ,,,,,阀门的流量系数 ,,,,,阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。 {TodayHot} ,,,,,按KV值计算式,,,,, ,,,,,式中:KV—流量系数 ,,,,,Q—体积流量m3/h ,,,,,ΔP—阀门的压力损失bar ,,,,,P—流体密度kg/m3 ,,,,,阀门的气蚀系数 ,,,,,用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。 ,,,,,式中:H1—阀后(出口)压力m ,,,,,H2—大气压与其温度相对应的饱和蒸气压力之差m ,,,,,ΔP—阀门前后的压差m

,,,,,各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。如图所示。如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。如蝶阀容许气蚀系数为2.5,则: {HotTag} ,,,,,如δ,2.5,则不会发生气蚀。 ,,,,,当2.5,δ,1.5时,会发生轻微气蚀。 ,,,,,δ,1.5时,产生振动。 ,,,,,δ,0.5的情况继续使用时,则会损伤阀门和下游配管。 ,,,,,阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。通过上述计算则一目了然。所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三: ,,,,,(1)发生噪声 ,,,,,(2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂) ,,,,,(3)对材料的破坏(对阀体和管道产生侵蚀) ,,,,,再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法: ,,,,,a.把阀门安装在管道较低点。 ,,,,,b.在阀门后管道上装孔板增加阻力。 ,,,,,c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。 ,,,,,综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。 ,,,,,阀门标准必须重视 ,,,,,现在国务院成立了标准化管理委员会和标准局,标准化问题受到了国家的高度重视,是提高我国产品的重要手段,更是WTO进入的重要的应对措施。

阀门流量系数Cv值

阀门流量系数Cv 值 阀门流量系数Cv 值字体大小:大| 中| 小2014-08-03 12:53 阅读(839) 评论(0) 分类:流量系数即:C 值(欧美 标准称为Cv 值,国际标准称为:KV 值)是阀门、调节阀等值是保障管道流量控制系统正常工作的重要步骤。是指单位时间内、在测试条件中管道保持恒定的压力,管道介质流经阀门的体积流量,或是质量流量。即阀门的最大流通能力。 工业阀门的重要工艺参数和技术指标。正确计算和选择CV 流量系数值越大说明流体流过阀门时的压力损失越小。阀门的CV 值须通过测试和计算确定。阀门是流量系数是衡量阀门流通能力的指标,流量系数值越大说流体流过阀门时的压 力损失越小.上海申弘阀门有限公司主营阀门有:减压阀(气体减压阀,可调式减压阀,波纹管减压阀,活塞式减压阀,蒸汽 减压阀,先导式减压阀,空气减压阀,氮气减压阀,水用减压阀, 自力式减压阀,比例减压阀)、安全阀、保温阀、低温阀、球 阀、截止阀、闸阀、止回阀、蝶阀、过滤器、放料阀、隔膜阀、旋塞阀、柱塞阀、平衡阀、调节阀、疏水阀、管夹阀、排污阀、排气阀、排泥阀、气动阀门、电动阀门、高压阀门、中压阀门、低压阀门、水力控制阀、真空阀门、衬胶阀门、衬氟阀门。阀门系数的定义:流量系数表示流体流经阀门产生单位压力损失时流体的流量,由于单位的不同,流量系数

有几种不同的代号和量值.一般式C=QVp/PC---流量系数 Q---体积流量p---流体密度P---阀门压力损失概述:流量特性是调节阀的一种重要技术指标和参数。在调节阀应用过程中做出正确的选型具有 非常重要的意义。固有特性(流量特 性):在经过阀门的压力降恒定时,随着截流元件(阀板)从关 闭位置运动到额定行程的过程中流量系数与截流元件(阀板) 行程之间的关系。典型地,这些特性可以绘制在曲线图上, 其水平轴用百分比行程表示,而垂直轴用百分比流量(或Cv 值)表示。由于阀门流量是阀门行程和通过阀门的压力降的函数,在恒定的压力降下进行流量特性测试提供了一种比较阀门特性类型的系统方法。用这种方法测得的典型的阀门特性 有线性、等百分比和快开(图2)。等百分比特性:一种固有流 量特性,额定行程的等量增加会理想地产生流量系数(Cv)的等百分比的改变(图2)。线性特性:一种固有流量特性,可以用一条直线在流量系数(Cv 值)相对于额定行程的长方形 图上表示出来。因此,行程的等量增加提供流量系数(Cv)的 等量增加。图2 快开特性:一种固有流量特性:在截流元件 很小的行程下可以获得很大的流量系数(图2)。额定流量下的 压力降:也是表示气动元件的流量特性之一。气动元件常常在额定流量下工作,故测定额定流量下气动元件上下游的压力降,作为该元件的流量特性指标。显然,此指标也只反映不可压缩流态下的浏览特性。阀门流量系数流量系数

阀门的流量系数

阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大说明流体流过阀门时的压力损失越小。流量系数值随阀门的尺寸、形式、结构而变化,不同类型和不同规格的阀门都要分别进行试验,才能确定该阀门的流量系数值。 1. 流量系数的定义 流量系数表示流体流经阀门产生单位压力损失时流体的流量。由于单位的不同,流量系数有几种不同的代号和量值。 阀门流量系数的计算 1)一般式 p C q V Δ/ρ= 式中 C —流量系数; V q —体积流量; ρ—流体密度; p Δ —阀门的压力损失。 2)V A 值的计算式 p q A V V Δρ= 式中 C —流量系数(2m ); V q —体积流量(s m /3 ); p Δ—阀门的压力损失(Pa ); ρ—流体密度(3/m kg )。 3)V K 值的计算式 p q K V V Δρ= 式中 V K —流量系数(2m ); V q —体积流量(h m /3 ); p Δ—阀门的压力损失(bar ); ρ—流体密度(3/m kg ) 。

4) V C 值的计算式 p G q C V V Δ= 式中 V C —流量系数2/12)/(min /in lbf USgal ; V q —体积流量(Usgal/min ); p Δ—阀门的压力损失(lbf/in 2); G —水的相对密度=1。 5) 流量系数V A 、V K 、V C 间的关系: V C =1.17V K V C v A 24106 = V K =28 106 V A 2.阀门的流阻系数 流体通过阀门时,其流体阻力损失以阀门前后的流体压力降p Δ表示。 对于紊流流态的液体: 2 ρ ζΔ2u p = 式中 p Δ—被测阀门的压力损失(MPa ); ζ—阀门的流阻系数; ρ—流体密度(kg/mm 3); u —流体在管道内的平均流速(mm/s )。

阀门的流量系数以及气蚀系数详解

阀门的流量系数以及气蚀系数详解 阀门的重要参数是阀门的流量系数和气蚀系数,这在先进工业国家生产的阀门资料中一般均能提供,甚至在样本里也印出。我国生产的阀门基本上没有这方面资料,因为取得这方面的资料需要做实验才能提出,这是我国和世界先进水平的阀门差距的重要表现之一。 一、阀门的流量系数 阀门的流量系数是衡量阀门流通能力的指标,流量系数值越大,说明流体流过阀门时的压力损失越小。 按KV值计算式 式中:KV—流量系数Q—体积流量m3/hΔP—阀门的压力损失barP—流体密度kg/m3 二、、阀门的气蚀系数 用气蚀系数δ值,来选定用作控制流量时,选择什么样的阀门结构型式。 式中:H1—阀后(出口)压力mH2—大气压与其温度相对应的饱和蒸气压力之差mΔP—阀门前后的压差m 各种阀门由于构造不同,因此,允许的气蚀系数δ也不同。如图所示。如计算的气蚀系数大于容许气蚀系数,则说明可用,不会发生气蚀。如蝶阀容许气蚀系数为2.5,则:

如δ>2.5,则不会发生气蚀。 当2.5>δ>1.5时,会发生轻微气蚀。 δ<1.5时,产生振动。 δ<0.5的情况继续使用时,则会损伤阀门和下游配管。 阀门的基本特性曲线和操作特性曲线,对阀门在什么时候发生气蚀是看不出来的,更指不出来在那个点上达到操作极限。通过上述计算则一目了然。所以产生气蚀,是因为液体加速流动过程中通过一段渐缩断面时,部分液体气化,产生的气泡随后在阀后开阔断面炸裂,其表现有三: (1)发生噪声 (2)振动(严重时可造成基础和相关构筑物的破坏,产生疲劳断裂) (3)对材料的破坏(对阀体和管道产生侵蚀) 再从上述计算中,不难看出产生气蚀和阀后压强H1有极大关系,加大H1显然会使情况改变,改善方法: a.把阀门安装在管道较低点。 b.在阀门后管道上装孔板增加阻力。 c.阀门出口开放,直接蓄水池,使气泡炸裂的空间增大,气蚀减小。 综合上述四个方面的分析、探讨,归纳起来对闸阀、蝶阀主要特点和参数列表便于选用。两个重要参数在阀门运用中起到举足轻重的作用。

流量系数CV值的来历与计算方法

调节阀流量系数CV值的来历与计算方法 液流: 在此:Q = 液流量(每分钟加仑数) △P = 通过的压降(psi) S = 介质的具体重 这个方程式适用于湍流和粘性接近于水的液体。 (Cv是指介质温度为60 o F的水,通过阀门产生1.0 psi压降时的每分钟流量。)(这时水的具体重力是1。) 1915 年美国的 FISHER GOVERNER 公司按设计条件积累了图表,按图表先定口径。由于用这个方法调节阀的费用减少了,电动调节阀的寿命延长了,因此当时得到了好评。但是按选定的口径比现在计算出来的还大些。后来按选定法对液体,气体,蒸汽及各种形式的气动调节阀进行了进一步的算法研究。 直到 1930 年美国的 FOXBORO 公司 ROLPHRJOKWELL 和 DR.@.E.MASON 对以下的V 型 ( 等百分比 ) 球阀 , 最初使用CV值 , 并发表了CV 计算公式。 1944年美国的 MASON —NELLAN REGULATOR 公司把 ROKWELL 和 MAXON 合并为 MASON —NEILAN ,发表了 @ V 计算公式。 1945 年美国的 SONALD EKMAN 公司发表了和 MASON — NELLAN 差不多的公式,但对流通面积和流量系数相对关系展开研究工作。 1962 年美国的 F@I ( FLUID @ONTROLS INSTITUTE )发表了 FCI 58-2 流量测定方法,并发表了调节阀口径计算。迄今还在使用的CV 计算式,但同 FCI 62-1 。 1960 年西德的 VDI/VDE 也发表了 KV 计算式,但同 FCI62-1 相同,仅仅是单位改为公制。 1966~1969 年日本机械学会关于调节阀基础调查分会对定义瘩的口径计算,规格书,使用方法进行调查研究。但到现在还未结束。 1977 年美国的 ISA ( INSTRUMENT SOCIETY OF AMERICA )发表了标准 S39 。 1 “关于压缩流体的计算”公式。 1977~1978 美国的ANSI/ISA 标准 ,S75.01 于 1979 年 5 月 15 日发表了 NO\\0046-79, 为工程服务的报告。 调节并流通能力的计算,各仪表厂目前采用FCI推荐的C V 值计算公式如表 1 公式压力条件计算式 △P < 2 1> △P≥P 1 /2 液体同左 气体常温( 0~60 C) 温度修正(>60°C) 蒸汽饱和 过热 表中各式对一般的使用场合可以满足。但对于高压差,高粘度接近饱和状态的液体等场合,尤其是蝶阀,球阀等低压力恢复系数的阀,误差就很大了,必须进行修正。 80 年日本个别公司已开始用下列系数进行修正。空化系数:当液体通过调节阀时,在缩流部压力低于阀入口温度下的饱和蒸汽压力 P V 时,一部分液体迅速气化使通过调节阀的液体成为气液两相流的现象学称为闪蒸。缩流部后液体的压力表逐渐恢复,混杂在液体中的气泡破碎,

相关文档