文档库 最新最全的文档下载
当前位置:文档库 › (完整版)高等代数多项式习题解答

(完整版)高等代数多项式习题解答

(完整版)高等代数多项式习题解答
(完整版)高等代数多项式习题解答

第一章 多项式习题解答

1.用)(x g 除)(x f ,求商)(x q 与余式)(x r .

1)123)(,13)(223+-=---=x x x g x x x x f

9731929269

791437134373

132131232223232

----+----+----+-x x x x x x x x x x x x x x 9

2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f

1

752

5

422225200222223232

342342-++--+-+--+---+-+-+++-x x x x x x x x

x x x x x x x x x x x x x x

75)(,1)(2+-=-+=x x r x x x q .

2.q p m ,,适合什么条件时,有

1)q px x mx x ++-+32|1

m x m q x p m m

x m x m q

x p mx x mx x q px x x mx x --++++--+++--++++-+)

()1()1(01

222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.

本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有

q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323.

因此有m q p m ==++,012.

2)q px x mx x ++++242|1

由带余除法可得

)1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即

???=--+=--0

10)2(22m p q m p m ,即???=+=,1,0p q m 或???==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有

)1)((2224++++=++mx x q ax x q px x

.)()1()(234q x mq a x q ma x a m x ++++++++=

比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得

???=+=,1,0p q m 或???==+.

1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r .

1);3)(,852)(35+=--=x x g x x x x f

解:运用综合除法可得

327

1093913623271170

83918605023---------

商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r

2)i x x g x x x x f 21)(,)(23+-=--=.

解:运用综合除法得:

i

i i

i i i i 8925218924210

11121+----+-------

商为)25(22i ix x +--,余式为i 89+-. 4.把)(x f 表成0x x -的方幂和,即表示成Λ+-+-+202010)()(x x c x x c c 的形式.

1)1,)(05==x x x f ;

2);2,32)(024-=+-=x x x x f

3).1,73)1(2)(0234-=++-+-+=x i x x i ix x x f

分析:假设)(x f 为n 次多项式,令

])()()[()()()()(10021000202010--++-+-+=-++-+-+=n n n

n x x c x x c c x x c x x c x x c x x c c x f ΛΛ

0c 即为0x x -除)(x f 所得的余式,

商为10021)()()(--++-+=n n x x c x x c c x q Λ.类似可得1c 为0x x -除商)(x q 所得的余式,依次继续即可求得展开式的各项系数.

解:1)解法一:应用综合除法得.

5

110

1

41110

4

163115

6

31432111

4

3211111111

11110

000011

5)(x x f =1)1(5)1(10)1(10)1(5)1(2345+-+-+-+-+-=x x x x x .

解法二:把x 表示成1)1(+-x ,然后用二项式展开

1)1(5)1(10)1(10)1(5)1(]1)1[(234555+-+-+-+-+-=+-=x x x x x x x

2)仿上可得

8

122

2

61224

12

21041211

20

82422128

4423

02012-----------------

432)2()2(8)2(22)2(2411)(+++-+++-=x x x x x f . 3)因为

i i

i

i i i i i i i i i i i

i i

i i i 21115

1

01571041

41173121-----------+-------+---- .

)()(2))(1()(5)57(73)1(2)(432234i x i x i i x i i x i i

x x i ix x x f +++-++-+-+=++-+-+=

5.求)(x f 与)(x g 的最大公因式

1)1)(,143)(23234--+=---+=x x x x g x x x x x f

解法一:利用因式分解

),13)(1(143)(3234--+=---+=x x x x x x x x f

).1()1(1)(223-+=--+=x x x x x x g

因此最大公因式为1+x .

解法二:运用辗转相除法得

)(3438)(01122132)(1434

343)(41432112321212314121)(3122123423422223232x q x x q x x x x x x x x r x x x x x x x x x x r x x x x x x x x x x x x q =+=---------=--+---+--=------++--++-= 因此最大公因式为1+x .

2)13)(,14)(2334+-=+-=x x x g x x x f .

解:运用辗转相除法得(注意缺项系数补零)

2564411627)(1256

27)(256

5391649216491633323)(10310031004911916)(920910310132310323110391031)(13221232323423422223232--=--=+-+-+-+--=-++-+-+-++-+++--=+--++--+++-+-=x x q x x r x x x x x x x r x x x x x x x x x x x x x x x x r x x x x x x x x x x x x q .1))(),((=x g x f

3).124624)(,110)(23424+++-=+-=x x x x x g x x x f

)()()22(24)()(123x r x f x x x x f x g +=---=,

),()22)((2

41)122()22)(22()(21223x r x x r x x x x x x x f ++-=---+--= ,)()122(22)(2

4122231x x r x x x x x x x r -=--=--=- 因此.122))(),((2--=x x x g x f

6.求)(),(x v x u 使:))(),(()()()()(x g x f x g x v x f x u =+

1);22)(,242)(234234---+=---+=x x x x x g x x x x x f

解:运用辗转相除法得:

)()

(10

22)(2

22422

)(222221)(3133123423422323242342x q x x q x x x

x x r x x x x x x x x x x r x

x x x x x x x x x x x x q ==--=---+---+-=--+----++= 因此2)())(),((22-==x x r x g x f .且有 )()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =

于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=

)()]()(1[)()(212x g x q x q x f x q ++-=.

.2)()(1)(,1)()(212+=+=--=-=x x q x q x v x x q x u

2);452)(,951624)(23234+--=++--=x x x x g x x x x x f

解:运用辗转相除法得:

)(96)(20

9

99966936)(810249516241)(32422324523131)(3122123423422223232x q x x q x x x x

x x x x r x

x x x x x x x x x r x x x x x x x x x x x x q =+=+-+-+-+--=+--++--+-=+--+---++--+-= 因此1)())(),((2-=-=x x r x g x f .且有

)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =

于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=

)()]()(1[)()(212x g x q x q x f x q ++-=.

.13

232)3131(21)()(1)(,3131)()(2212--=+---=--=+-==x x x x x q x q x v x x q x u 3).1)(,144)(2234--=++--=x x x g x x x x x f

解:运用辗转相除法得:

)(32

)(3331431

441)(2

1

211)(121222342342222x q x x x r x x x x x x x x x x x x r x x x

x x x x x q =--=++-++---++--=-----+= 因此.1)())(),((2==x r x g x f 且有

)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =

于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=

)()]()(1[)()(212x g x q x q x f x q ++-=.

.23)1)(3(1)()(1)(,1)()(232212--+=+-+=+=--=-=x x x x x x q x q x v x x q x u

7.设u tx x x g u x x t x x f ++=++++=323)(,22)1()(的最大公因式是一个二次多项式,求u t ,的值.

解:运用带余除法有

),()()2()1(1)(22)1()(12323x r x g u x t x t u tx x u x x t x x f +=+--++?++=++++= 由题意可得,)(1x r 即为)(),(x g x f 的最大公因式.因此有01≠+t .进一步

),(])

1(211)[()(221x r t t x t x r x g ++-++= ])

1(21[)1()2()1()1()(22222t t u x t t t u t t x r +--++-++-+=. 要使)(1x r 为)(),(x g x f 的最大公因式的充要条件是.0)(2=x r 即

???=--+=-++-+,

0)]2()1[(,0)2()1()1(222t t u t t u t t 解得

??

???--=+-=?????+-=--=?????±==???-==.2111,117;2111,117;231,0;4,0i t i u i t i u i t u t u 8.证明:如果),(|)(),(|)(x g x d x f x d 且)(x d 为)(x f 与)(x g 的一个组合,那么

)(x d 是)(x f 与)(x g 的一个最大公因式.

证明:由)(|)(),(|)(x g x d x f x d 可知)(x d 是)(x f 与)(x g 的一个公因式.下证)(x f 与)(x g 的任意一个公因式是)(x d 的因式.

由)(x d 为)(x f 与)(x g 的一个组合可知,存在多项式)(),(x v x u ,使得

)()()()()(x g x v x f x u x d +=.

设)(x ?是)(x f 与)(x g 的任意一个公因式,则)(|)(),(|)(x g x x f x ??.故

)()()()(|)(x g x v x f x u x +?

即).(|)(x d x ?因此)(x d 是)(x f 与)(x g 的一个最大公因式.

9.证明:)()(())(),(())()(),()((x h x h x g x f x h x g x h x f =的首项系数为1). 证明:存在多项式)(),(x v x u ,使得

)()()()())(),((x g x v x f x u x g x f +=.

所以有)()()()()()()())(),((x h x g x v x h x f x u x h x g x f +=.即)())(),((x h x g x f 是 )()(x h x f 与)()(x h x g 的一个组合.显然有

)(|))(),((),(|))(),((x g x g x f x f x g x f .

从而)()(|)())(),((),()(|)())(),((x h x g x h x g x f x h x f x h x g x f .由第8题结果)())(),((x h x g x f 是)()(x h x f 与)()(x h x g 的一个最大公因式.又)(x h 是首项系数为1的,因此).())(),(())()(),()((x h x g x f x h x g x h x f =

10.如果)(x f ,)(x g 不全为零,证明1))

(),(()(,)(),(()((=x g x f x g x g x f x f . 证明:由)(x f ,)(x g 不全为零可得其最大公因式不为零多项式,即

.0))(),((≠x g x f 又存在多项式)(),(x v x u ,使得

)()()()())(),((x g x v x f x u x g x f +=.

于是

))

(),(()()())(),(()()(1x g x f x g x v x g x f x f x u +=. 因此1))

(),(()(,)(),(()((=x g x f x g x g x f x f . 11.如果)(x f ,)(x g 不全为零,且

))(),(()()()()(x g x f x g x v x f x u =+,

那么1))(),((=x v x u .

证明:由)(x f ,)(x g 不全为零可得.0))(),((≠x g x f 由

))(),(()()()()(x g x f x g x v x f x u =+

.1))

(),(()()())(),(()()(=+x g x f x g x v x g x f x f x u 于是1))(),((=x v x u .

12.证明:如果,1))(),((,1))(),((==x h x f x g x f 那么.1))()(),((=x h x g x f 证法一、由条件1))(),((,1))(),((==x h x f x g x f 可得存在多项式)(),(11x v x u ; )(),(22x v x u 使得

1)()()()(11=+x g x v x f x u ,1)()()()(22=+x h x v x f x u .

两式相乘得

1)()()()()()]()()()()()()()()([21211221=+++x h x g x v x v x f x h x v x u x g x v x u x f x u x u . 因此有.1))()(),((=x h x g x f

证法二、反证法证明.显然.0))()(),((≠x h x g x f 若,1))()(),((≠x h x g x f 则存在不可约多项式)(x p ,使得)(x p 为)(x f 与)()(x h x g 的公因式.因此有)(|)(x f x p 且)()(|)(x h x g x p .由)(x p 的不可约性有)(|)(x g x p 或)(|)(x h x p .若)(|)(x g x p ,则)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.若)(|)(x h x p ,则)(x p 为)(x f 与)(x h 的一个公因式,与1))(),((=x h x f 相矛盾.因此

1))()(),((≠x h x g x f 不成立,即有.1))()(),((=x h x g x f

13.设)(),(),(),(,),(),(2121x g x g x g x f x f x f n m ΛΛ都是多项式,而且

).,,2,1;,,2,1(,1))(),((n j m i x g x f j i ΛΛ===

求证:1))()()(),()()((2121=x g x g x g x f x f x f n m ΛΛ.

证明:由),,2,1(1))(),((1n j x g x f j Λ==,反复利用第12题结果可得

1))()()(),((211=x g x g x g x f n Λ.

类似可得

.,,2,1))()()(),((21m i x g x g x g x f n i ΛΛ==

再反复利用12题结果可得1))()()(),()()((2121=x g x g x g x f x f x f n m ΛΛ.

14.证明:如果,1))(),((=x g x f 那么.1))()(),()((=+x g x f x g x f

证明:方法一.由,1))(),((=x g x f 存在多项式)(),(x v x u 使得

1)()()()(=+x g x v x f x u .

从而有

,1)())()(())()()((,1))()()(()())()((111111=+-++=++-x g x v x u x g x f x u x g x f x v x f x v x u 因此有.1))()(),((,1))()(),((=+=+x g x f x g x g x f x f 由12题结果结论成立.

方法二:用反证法.若.1))()(),()((≠+x g x f x g x f 则存在不可约多项式)(x p ,使得)(x p 为)()(x g x f 与)()(x g x f +的公因式.即

)()(|)(x g x f x p 且)()(|)(x g x f x p +.

由)(x p 的不可约性及)()(|)(x g x f x p ,有)(|)(x f x p 或)(|)(x g x p .若)(|)(x f x p ,又)()(|)(x g x f x p +,因此有)]())()([(|)(x f x g x f x p -+,即)(|)(x g x p ,也即)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.类似可得当)(|)(x g x p 时也与已知1))(),((=x g x f 矛盾.所以.1))()(),()((=+x g x f x g x f

15.求下列多项式的公共根:

.12)(;122)(23423++++=+++=x x x x x g x x x x f

解法一:利用因式分解可得

);1)(1(122)(223+++=+++=x x x x x x x f

).1)(1(12)(22234+++=++++=x x x x x x x x g

因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2

321i ±- 解法二:运用辗转相除法求出)(x f 与)(x g 的最大公因式,最大公因式的根即为所求的公共根.

),1(2)1)(()(2++--=x x x x f x g ).1)(1()(2+++=x x x x f

因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2

321i ±- 16.判别下列多项式有无重因式:

1);84275)(2345-+-+-=x x x x x x f

解:,4421205)('234+-+-=x x x x x f

运用辗转相除法可得.)2(44))('),((22-=+-=x x x x f x f 因此2-x 为)(x f 的三重因式.

解法二:试根可得2为)(x f 的根

)1()2()2()2()43)(2()(23232234++-=----=++--=x x x x x x x x x x x x f . 因此2-x 为)(x f 的三重因式.

2).344)(24--+=x x x x f

解:).12(4484)('33-+=-+=x x x x x f 1))('),((=x f x f .故)(x f 无重因式.

17.求t 值使13)(23-+-=tx x x x f 有重根.

解法一:要使)(x f 有重根,则1))('),((≠x f x f ..63)('2t x x x f +-=

),12(3

3)(')3131(13)(23+-+-=-+-=x t x f x tx x x x f .4

15)41523)(12(63)('2++-+=+-=t x x t x x x f 当,03

3=-t 即3=t 时

),(|)(',)1(3363)('22x f x f x x x x f -=+-=2)1())('),((-=x x f x f ,

因此1为)(x f 的三重根.

当0415=+t ,即415-=t 时,2

1))('),((+=x x f x f ,21-为)(x f 的二重根. 解法二:设b a x ab a x b a x b x a x x f 22232)2()2()()()(-+++-=--=.

因此有

??

???==+=+.1,2,3222b a t ab a b a

由第一个方程有a b 26-=,代人第三个方程有,0132,1)23(232=+-=-a a a a 即 0)12()1(2=+-a a .因此有

?????===,3,1,1t b a 或???

????-==-=.415,4,21t b a

即当3=t 时1为)(x f 的三重根;当415-=t 时,2

1-为)(x f 的二重根. 18.求多项式q px x ++3有重根的条件.

解:令q px x x f ++=3)(.显然当0==q p 时,0为)(x f 的三重根.当0≠p 时, p x x f +=23)(',

q x p x xf q px x x f ++=++=3

2)('31)(3, )427()42729)(32()('2

2

2p q p p q x p q x p x f ++-+=. 要使)(x f 有重根,则1))('),((≠x f x f .即,042722=+p

q p 即.027423=+q p 显然 0==q p 也满足.027423=+q p 因此)(x f 有重根的条件是.027423=+q p

19.如果,1|)1(242++-Bx Ax x 求.,B A

解法一:利用整除判定方法,1|)1(242++-Bx Ax x 的充要条件是用2)1(-x 除

124++Bx Ax ,余式为零.

)31()42()32()1(12224B A x A B A B Ax Ax x Bx Ax --++++++-=++.

因此有0)31()42(=--++B A x A B ,即

?

??-==???=--=+.2,1.031,042B A B A A B 解法二:要使1|)1(242++-Bx Ax x 成立,则1至少是124++Bx Ax 的二重根.因此1既是124++Bx Ax 的根,也是其导数的根.而Bx Ax Bx Ax 24)'1(324+=++.故有

???-==???=+=++.

2,1.024,01B A B A B A 解法三:利用待定系数法.令

D x D C x D C A x A C Ax D Cx Ax x Bx Ax +-++-+-+=++-=++)2()2()2()()1(12342224因此有

???????==-=+-=-.1,02,2,02D D C B D C A A C 解得???????==-==.

1,

2,2,1D C B A 20.证明:!

!212n x x x n

++++Λ不能有重根. 证明:令,!

!21)(2n x x x x f n

++++=Λ则 ,)!

1(!21)('1

2-++++=-n x x x x f n Λ 因此有,!)(')(n x x f x f n +=从而有)!),('())('),((n x x f x f x f n =.!

n x n

因式只有)0(≠c c 及)1,0(n k c cx k ≤≤≠.而)1,0(n k c cx k ≤≤≠显然不是)('x f 的因式.因此有

1)!

),('())('),((==n x x f x f x f n

. 所以)(x f 没有重根.

21.如果a 是)('''x f 的一个k 重根,证明a 是

)()()](')('[2

)(a f x f a f x f a x x g +-+-= 的一个3+k 重根.

证明:

)],(')('[2

1)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++= ).('''2

)(''21)('''2)(''21)(''x f a x x f x f a x x f x g -=--+= 显然有0)(")(')(===a g a g a g .由a 是)('''x f 的一个k 重根可得a 是)(''x g 的一个1+k 重根,设a 是)(x g 的s 重根,则3,12+=+=-k s k s .

本题常见错误证法.错误证法一:由a 是)('''x f 的一个k 重根就得出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根,于是

)(2

)()()()](')('[2)(3

x h a x a f x f a f x f a x x g k +-=+-+-= 从而a 是)(x g 的3+k 重根.事实上,由a 是)('''x f 的一个k 重根推不出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根.

如3)()()()(23+-+-+-=+a x a x a x x f k ,则1)(2))(3()('2+-+-+=+a x a x k x f k , 2))(2)(3()(''1+-++=+k a x k k x f .a 既不是)(x f 的根,也不是)('x f 与)(''x f 的根.

错误证法二:由

)],(')('[2

1)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++= )('''2

)(''21)('''2)(''21)(''x f a x x f x f a x x f x g -=--+= 得出a 是)(''x g 的1+k 重根,直接得出a 是)(x g 的3+k 重根,缺了a 是)(x g 与)('x g 的根验证.

22.证明:0x 是)(x f 的k 重根的充分必要条件是

,0)()(')(0)1(00====-x f x f x f k Λ而.0)(0)(≠x f k

证明:必要性.设0x 是)(x f 的k 重根,从而0x x -是)(x f 的k 重因式,从而是

)('x f 的1-k 重因式,是)(''x f 的2-k 重因式,...,是)()1(x f k -的单因式,而不是)()(x f k 的因式.因此0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.故有,0)()(')(0)1(00====-x f x f x f k Λ而.0)(0)(≠x f k

充分性.由,0)()(')(0)1(00====-x f x f x f k Λ而0)(0)(≠x f k 可知0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.因此0x 是)()1(x f k -的单根,是)()2(x f k -二重根,依此类推,是)(x f 的k 重根.

23.举例说明断语“如果α是)('x f 的m 重根,那么α是)(x f 的1+m 重根”是不对的.

解:例如2)()(1+-=+m x x f α,m x m x f ))(1()('α-+=.α是)('x f 的m 重根,但α不是)(x f 的根.

24.证明:如果),(|)1(n x f x -那么)(|)1(n n x f x -.

证明:由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 因此有 ),()1()(x h x x f -=从而有).()1()(n n n x h x x f -=即)(|)1(n n x f x -.

证法二:要证)(|)1(n n x f x -,只要证1-n x 在复数域上的各个根都是)(n x f 的根.1-n x 的根为.1,,2,1,0,2sin 2cos -=+=n k n

k i n k x k Λππ由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 从而0)1()(==f x f n k .即,2sin 2cos n

k i n k x k ππ+= 1,,2,1,0-=n k Λ都是)(n x f 的根.因此有)(|)1(n n x f x -.

25.证明:如果)()(|)1(32312x xf x f x x +++,那么

).(|)1(),(|)1(21x f x x f x --

证明:要证)(|)1(),(|)1(21x f x x f x --成立,只要证1是)(1x f 和)(2x f 的根. 12++x x 的两个根为2

31,23121i i --=+-=εε.由)()(|)1(32312x xf x f x x +++可得)()1()()(23231x g x x x xf x f ++=+.于是

,0)()1()()(,0)()1()()(2223222321112312131121=++=+=++=+εεεεεεεεεεεεg f f g f f 即0)1(2

31)1(,0)1(231)1(2121=+-=--f i f f i f .故有.0)1()1(21==f f 所以 )(|)1(),(|)1(21x f x x f x --.

26.求多项式1-n x 在复数范围内和在实数范围内的因式分解.

解:1-n x 的根为.1,,2,1,0,2sin 2cos

-=+=n k n

k i n k k Λππε故在复数范围内的分解式为

)())()(1(112-----=-n n x x x x x εεεΛ. 在实数范围内,因k n k -=εε,)0(n k <<.

当n 为奇数时,1-n x 的根中一个为实根,其余为虚根,其分解式为

]1)([]1)(][1)()[1(121

21222212++-++-++--=-+---x x x x x x x x n n n n n εεεεεεΛ.

当n 为偶数时,1-n x 的根中二个为实根,即,1±其余为虚根,其分解式为 ].1)([]1)(][1)()[1)(1(11212222212++-++-++-+-=-+---x x x x x x x x x n n n n n εεεεεεΛ

27.求下列多项式的有理根.

1);1415623-+-x x x

解:多项式可能的有理根为.14,7,2,1±±±±由系数取值可知,x 取负数时,多项式的值均为负的,故该多项式没有负根.检验得2为其根,进一步运用综合除法可得

07411482

1415

612-----

即)74)(2(14156223+--=-+-x x x x x x ,显然742+-x x 没有有理根.因此1415623-+-x x x 仅有一个有理根2,且为单根.

2);157424---x x x

解:多项式可能的有理根为.4

1,21,1±±±

4442

2202624211

3121

570421------------ 因此有

)1()12()444()2

1(1574222224--+=--+=---x x x x x x x x x , 显然12--x x 没有有理根.因此2

1-为157424---x x x 的二重根. 3).3111462345----+x x x x x

解:多项式可能的有理根为.3,1±±检验得1-为其根,进一步运用综合除法可得

0121363

0351

133511

03860

113860*********

1--------------

故)3()1()12)(3()1(3111464222345-+=++-+=----+x x x x x x x x x x x .即1-为其四重跟,3为单根.

28.下列多项式在有理数域上是否可约?

1);12+x

解:显然12+x 无有理根,又为二次的,故在有理数域上不可约. 2);2128234++-x x x

解:取素数2=p ,满足艾森斯坦判别法的条件,因此在有理数域上不可约. 3);136++x x

解:令,1+=y x

).(3918211561)1()1(1)(234563636y g y y y y y y y y x x x f =++++++=++++=++=

取素数,3=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.

4)p px x p ,1++为奇素数;

解:令1-=y x ,由p 为奇数可得

1)1()1(1)(+-+-=++=y p y px x x f p p

).()(1222211y g p y p C y C y C y

C y p p p p p p p p p =-++--+-=----Λ 由组合数定义)11(-≤≤p k C k p 均为整数,且1

2)1()1()1(?-+--=ΛΛk k k p p p C k p ,分子中有因子p ,分母个各数均小于p ,又p 为素数,因此约分时p 不会被约去,因此有

k p

C p |,取素数为p ,)(y g 满足艾森斯坦判别式条件,因此)(y g 在有理数域上不可约,从而)(x f 在有理数域上不可约.

5)k kx x ,144++为整数.

解:令,1+=y x 则有

).(2)1(4641)1(4)1(1423444y g y k y y y y k y kx x =+++++=++++=++ 取素数,2=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.

(完整版)高等代数多项式习题解答.doc

第一章多项式习题解答1.用g( x)除f ( x),求商q( x)与余式r ( x) . 1)f ( x) x3 3x2 x 1, g (x) 3x2 2x 1 3x 2 2x 1 x3 3x 2 x 1 1 x 7 x3 2 x2 1 x 3 9 3 3 7 x2 4 x 1 3 3 7 x2 14 x 7 3 9 9 26 x 2 9 9 1 x 7 , r ( x) 26 x 2 q( x) 9 9 . 3 9 2)f ( x) x4 2x 5, g(x) x2 x 2 x2 x 2 x 4 0x3 0 x2 2 x 5 x2 x 1 x4 x3 2x2 x3 2x2 2x x3 x2 2x x2 4x 5 x2 x 2 5x 7 q( x) x2 x 1, r ( x) 5x 7 . 2.m, p, q 适合什么条件时,有 1)x2 mx 1| x3 px q x 2 mx 1 x3 0 x2 px q x m x3 mx2 x mx2 ( p 1) x q m x2 m2 x m (m2 p 1) x ( q m) 当且仅当 m2 m 时x2 1| x3 px q .

本题也可用待定系数法求解.当x2 mx 1| x3 px q 时,用 x2 mx 1 去除x3 px q ,余式为零,比较首项系数及常数项可得其商为x q .于是有x3 px q ( x q)( x2 mx 1) x3 (m q)x2 (mq 1) x q . 因此有 m2 p 1 0, q m . 2)x2 mx 1| x4 px2 q 由带余除法可得 x4 px2 q ( x2 mx 1)( x2 mx p 1 m2 ) m(2 p m2 ) x (q 1 p m2 ) 当且仅当 r ( x) m(2 p m2 ) x (q 1 p m2 ) 0 时 x2 mx 1 | x4 px2 q .即 m(2 p m2 ) 0 ,即m 0, 或 p m2 2, q 1 p m2 0 q 1 p, q 1. 本题也可用待定系数法求解 .当x2 mx 1| x4 px2 q 时,用 x2 mx 1 去除x4 px2 q ,余式为零,比较首项系数及常数项可得其商可设为x2 ax q .于是有 x4 px2 q (x 2 ax q)( x2 mx 1) x4 (m a) x3 (ma q 1) x2 (a mq) x q. 比较系数可得 m a 0, ma q 1 p, a mq 0. 消去 a 可得 m 0, 或p m2 2, q 1 q 1. p, 3.求g( x)除f ( x)的商q( x)与余式r ( x) . 1)f ( x) 2x5 5x3 8x , g (x) x 3; 解:运用综合除法可得 3 2 0 5 0 8 0 6 18 39 11 7 327 2 6 1 3 39 109 327 商为 q(x) 2x4 6x3 13x2 39 x 109 ,余式为 r (x) 327.

高等代数第6章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==I U 。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M I ∈α即证M N M ∈I 。又因 ,M N M ?I 故M N M =I 。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N Y ?所以M N N =U 。 2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。 证 ),(L N M x Y I ∈?则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。反之,若 )()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得 ),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ? 于是)()()(L M N M L N M I Y I Y I =。 若x M N L M N L ∈∈∈U I I (),则x ,x 。 在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L ) 。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高数一试题(卷)与答案解析

《 高等数学(一) 》复习资料 一、选择题 1. 若23lim 53 x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6- 2. 若21lim 21 x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.4 3. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+ 4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.1 32 y x =-+ 5. 211 lim sin x x x →-=( ) A.0 B.3 C.4 D.5 6.设函数0()(1)(2)x f x t t dt =+-?,则(3)f '=( ) A 1 B 2 C 3 D 4 7. 求函数43242y x x =-+的拐点有( )个。 A 1 B 2 C 4 D 0

8. 当x →∞时,下列函数中有极限的是( )。 A. sin x B. 1x e C. 21 1x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3) lim 2h f h f h →--=( ) 。 A. 32 B. 3 2 - C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。 A. 极小值 B. 极大值 C. 最小值 D. 最大值 11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( ) A.至少有两个零点 B. 有且只有一个零点 C. 没有零点 D. 零点个数不能确定 12. [()'()]f x xf x dx +=? ( ). A.()f x C + B. '()f x C + C. ()xf x C + D. 2()f x C + 13. 已知2 2 (ln )y f x =,则y '=( C ) 2222(ln )(ln )f x f x x '. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 22 2(ln )() f x f x x ' 14. ()d f x ? =( B) A.'()f x C + B.()f x C.()f x ' D.()f x C + 15. 2ln x dx x =?( D ) A.2ln x x C + B. ln x C x + C.2ln x C + D.()2ln x C +

高等代数多项式习题解答

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9731929269 791437134373 132131232223232 ----+----+----+-x x x x x x x x x x x x x x 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f 1 752 5 422225200222223232 342342-++--+-+--+---+-+-+++-x x x x x x x x x x x x x x x x x x x x x x 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 m x m q x p m m x m x m q x p mx x mx x q px x x mx x --++++--+++--++++-+) ()1()1(01 222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.

本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 )1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--0 10)2(22m p q m p m ,即???=+=,1,0p q m 或???==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 )1)((2224++++=++mx x q ax x q px x .)()1()(234q x mq a x q ma x a m x ++++++++= 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r . 1);3)(,852)(35+=--=x x g x x x x f 解:运用综合除法可得 327 1093913623271170 83918605023--------- 商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r

高等代数第6章习题解

第六章习题解答 习题6.1 1、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+????=∈= ? ?????;(2),()x x y V f y y αα-????=∈= ? ????? ; (3)2,()x y V f y x y αα+????=∈= ? ?+???? ; (4)0,()x V f y αααα??=∈=+ ???,0V α∈是一个固定的非零向量。 (5)0,()x V f y ααα??=∈= ???,0V α∈是一个固定的非零向量。 解:(1)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (2)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (3)不是。因为 而 121211*********()()y y y y f f x y x y x x y y αβ++++??????+=+= ? ? ?+++++?????? 所以()()()f f f αβαβ+≠+ (4)不是。因为0()f k k ααα=+,而000()()kf k k k k ααααααα=+=+≠+ 所以()()f k kf αα≠ (5)不是。因为0()f αβα+=,而00002()()f f αβαααα+=+=≠ 2、设n n V P ?=是数域F 上全体n 阶方阵构成的集合,有§4.5,V 是F 上2 n 维线性空间, 设A V ∈是固定元,对任意M V ∈,定义 ()f M MA AM =+ 证明,f 是V 的一个线性变换。 证明:,,M N V k F ?∈∈,则 所以 f 是V 的一个线性变换。 3、设3 V R =,(,,)x y z V α=∈,定义

高数上试题及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

高等代数试题附答案

高等代数试题附答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( ) 5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。其中 ),,,()(2 4232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( )

高等代数多项式习题解答(供参考)

第一章 多项式习题解答 1.用)(x g 除)(x f ,求商)(x q 与余式)(x r . 1)123)(,13)(223+-=---=x x x g x x x x f 9 2926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f 75)(,1)(2+-=-+=x x r x x x q . 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+32|1 当且仅当m q p m ==++,012时q px x mx x ++-+32|1. 本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有 q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323. 因此有m q p m ==++,012. 2)q px x mx x ++++242|1 由带余除法可得 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即 ???=--+=--010)2(22m p q m p m ,即???=+=,1,0p q m 或? ??==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有 比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得 ???=+=,1,0p q m 或???==+. 1,22q m p

高等代数习题及答案(1)

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、 321321;3,2,1,,,x x x i R x x x x W i 是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换 的属于特征根0 的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换 是对称变换的充要条件为 关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若 n ,,,21 是欧氏空间V 的标准正交基,且 n i i i x 1 ,那么 n i i x 1 2 。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ① n n n x g x f x g x f ,, ; ② n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 ; ③ x g x g x f x g x f ,, ; ④若 1,1, x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0 D ,则D 中必有一行全是零; ④若0 D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

大学高数试卷及答案

浙江农林大学 2016 - 2017 学年第 一 学期期中考试 课程名称: 高等数学I 课程类别: 必修 考试方式: 闭卷 注意事项:1、本试卷满分100分。 2、考试时间 120分钟。 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。每小题3分,共21分) 1.下列各式正确的是: ( ) A. sin lim 1x x x →+∞= B. 0sin lim 0x x x →= C. 1lim 1x x e x →+∞??+=- ??? D. 1lim 1x x e x →+∞ ?? += ??? 2. 当0x +→ ( ) 1 B. ln C. 1- 1-3. 设()f x 在x a =的某邻域有定义,则它在该点处可导的一个充分条件是:( ) A.1lim ()()h h f a f a h →+∞?? +-???? 存在 B. 0(2)()lim h f a h f a h h →+-+存在 C. 0 ()()lim 2h f a h f a h h →+--存在 D. 0()() lim h f a f a h h →--存在 学院: 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题

4. 函数33y x x =-在区间[0,1]上的最小值是: ( ) A. 0 B. 没有 C. 2 D. 29 - 5. 函数21y x =-在区间[1,1]-上应用罗尔定理时,所得到的中值ξ= ( ) A. 0 B. 1 C. 1- D. 2 6.设函数2 ()(1)0 ax e x f x b x x ?≤=?->?处处可导,那么: ( ) A .1a b == B .2,1a b =-=- C .0,1a b == D .1,0a b == 7. 设x a =为函数()y f x =的极值点,则下列论述正确的是 ( ) A .'()0f a = B .()0f a = C .''()0f a = D .以上都不对 二、填空题(每小题3分,共21分) 1. 极限232)sin (1cos lim x x x x x +-+∞→= . 2 .极限lim n →∞ ?? +L =. 3.设函数f (x )=2310 22 2 x x x x a x ?+-≠? -??=?在点x =2处连续,则a = . 4. 函数()sin x f x x = 的间断点为 . 5. 函数22ln y x x =-的单调减区间为 . 6. 设函数ln y =dy = . 7.椭圆曲线cos sin x a t y b t =??=? 在4t π =相应的点处的切线方程为 .

高等代数多项式试题库(精品文档)

§1 数域[达标训练题] 一 填空题 1.数集{0}对 运算封闭. 2.自然数集N 对 运算封闭. 3.数集},{Z b a bi a ∈+对 封闭. 二 判断题 1. 数域必含有无穷多个数. 2. 所有无理数构成的集合是数域. 三 证明 1. 证明},{)(Q b a n b a n Q ∈+=是数域,这里n 不是完全平方数. 2. 证明},2{3 Q b a b a ∈+不是数域. 3. 若21,P P 是数域,证明21P P 也是数域,而21P P 不一定是数域. §1 数域[达标训练题解答] 一 填空题 1.加法、 减法、 乘法;2.加法、乘法 ;3.加法、减法、乘法. 二 判断题 1. ( T); 2. ( F) 三、解答题 1.证明显然n Q ∈1,0. 对任意的)(,2211n Q n b a n b a ∈++, )()(2211n b a n b a +±+=)(21a a ±+n b b )(21±)(n Q ∈; )()(2211n b a n b a +?+ n b a b a bn b a a )()(12212121+++=)(n Q ∈. 当011≠+n b a 时, n b a n b a 1122++ ) (21212 12121212121n Q n n b a a b b a n b a n b b a a ∈?--+--= .故},{)(Q b a n b a n Q ∈+=对加法减法乘法除法 封闭.即},{)(Q b a n b a n Q ∈+=是数域. 2.证明 因为 ∈3 2},2{3 Q b a b a ∈+, ?=?333 422},2{3 Q b a b a ∈+. 即} ,2{3Q b a b a ∈+对乘法不封闭.所以 } ,2{3Q b a b a ∈+不是数域. 3.证明 由于任意数域都包含有理数, 故21,P P 也包含有理数域, 从而2 1P P 包含有理数域.令21,P P b a ∈, 则1,P b a ∈, 2,P b a ∈.由于21,P P 是数域,故

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

2019高数(下)试题及答案

第二学期期末考试试卷 一、 填空题(每空 3 分,共 15 分) 1. 已知向量()1,1,4r a =-,()3,4,0r b =,则以r a ,r b 为边的平行四边形的面积等于. 2. 曲面sin cos z x y =在点1,,442ππ?? ??? 处 的切平面方程是. 3. 交换积分次序()22 0,x dx f x y dy = ??. 4. 对于级数11 n n a ∞ =∑(a >0),当a 满足条件 时收敛. 5. 函数1 2y x =-展开成x 的幂级数为 . 二、 单项选择题 (每小题3分,共15分) 1. 平面20x z -=的位置是 ( ) (A )通过y 轴 (B )通过x 轴 (C )垂直于y 轴 (D )平行于xoz 平面 2. 函数(),z f x y =在点()00,x y 处具有偏导数 ()00,x f x y ',()00,y f x y ',是函数在该点可微分的 ( ) (A )充要条件 (B )充分但非必要条件 (C )必要但非充分条件 (D )既非充分又非必要条件 3. 设()cos sin x z e y x y =+,则10 x y dz ===( ) (A )e (B )()e dx dy +

(C )1()e dx dy -+ (D )()x e dx dy + 4. 若级数()11n n n a x ∞ =-∑在1x =-处收敛, 则此级数在2x =处( ) (A )敛散性不确定 (B )发散 (C )条件收敛 (D )绝对收敛 5. 微分方程y xy x '-=的通解是( ) (A )212 1x y e =- (B )212 1x y e -=- (C )212 x y Ce -= (D )212 1x y Ce =- 三、(本题满分8分) 设平面通过点()3,1,2-,而且通过直线43521 x y z -+==, 求该平面方程. 四、(本题满分8分) 设(),z f xy x y =+,其中(),f u v 具有二阶连续偏导数, 试求z x ??和2z x y ???. 五、(本题满分8分) 计算三重积分y zdxdydz Ω =???, 其中 (){},,01,11,12x y z x y z ≤≤-≤≤≤≤. 六、(本题满分8分) 计算对弧长的曲线积分L ?,

高等代数例题(全部)

高等代数例题 第一章 多项式 1.44P 2 (1)m 、p 、q 适合什么条件时,有2 3 1x mx x px q +-++ 2.45P 7 设3 2 ()(1)22f x x t x x u =++++,3 ()g x x tx u =++的最大公因式是一个二次多项式,求t 、 u 的值。 3.45P 14 证明:如果((),())1f x g x =,那么(()(),()())1f x g x f x g x += 4.45P 18 求多项式3 x px q ++有重根的条件。 5.46P 24 证明:如果(1)()n x f x -,那么(1)()n n x f x - 6.46P 25 证明:如果233 12(1)()()x x f x xf x +++,那么1(1)()x f x -,2(1)()x f x - 7.46P 26 求多项式1n x -在复数域内和实数域内的因式分解。 8.46P 28 (4)多项式1p x px ++ (p 为奇素数)在有理数域上是否可约? 9.47P 1 设1()()()f x af x bg x =+,1()()()g x cf x dg x =+,且0ad bc -≠。求证: 11((),())((),())f x g x f x g x =。 10.48P 5 多项式()m x 称为多项式()f x ,()g x 的一个最小公倍式,如果(1)()()f x m x ,()()g x m x ; (2)()f x ,()g x 的任意一个公倍式都是()m x 的倍式。我们以[(),()]f x g x 表示首项系数为1的那个最 小公倍式。证明:如果()f x ,()g x 的首项系数都为1,那么()() [(),()]((),()) f x g x f x g x f x g x = 。 11.设 m 、n 为整数,2()1g x x x =++除33()2m n f x x x =+-所得余式为 。 12. 求证:如果()d x |()f x ,()d x |()g x ,且()d x 是()f x 与()g x 的一个组合,那么()d x 是()f x 与 ()g x 的一个最大公因式。 13. 14 3 4141)g( , 21212321)(23423456 -+--=+--+-- =x x x x x x x x x x x x f 求())(),(x g x f 。 14. 设22()(1) 21m n f x x x x =+--- (m ,n 是正整数),2()g x x x =+ 。证:()g x |()f x 。

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

相关文档