文档库 最新最全的文档下载
当前位置:文档库 › 推挽式开关电源变压器参数的计算

推挽式开关电源变压器参数的计算

推挽式开关电源变压器参数的计算
推挽式开关电源变压器参数的计算

0.4.推挽式开关电源变压器参数的计算

推挽式开关电源使用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算

由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。

推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁

感应强度的变化范围选择有区别。对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。

关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。

根据(1-95)式:

(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = T on,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以

直接用工作频率来计算变压器初级线圈N1绕组的匝数;F 和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。

1-8-1-4-2.推挽式开关电源变压器初、次级线圈匝数比的计算

A)交流输出推挽式开关电源变压器初、次级线圈匝数比的计算

推挽式开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流输出,或把交流整流成直流后再逆变成交流输出,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。

用于逆变的推挽式开关电源一般输出电压都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得推挽式开关电源变压器初、次级线圈匝数比。根据前面分析,推挽式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。因此,根据(1-128)、(1-129)、(1-131)其中

一式就可以出推挽式变压器开关电源的输出电压的半波平均值。由此求得逆变式推挽开关电源变压器初、次级线圈匝数比:

n=N3/N1 =Uo/Ui =Upa/Ui ——变压比,D为0.5时(1-152)(1-152)式就是计算逆变式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为开关变压器初级线圈两个绕组其中一个的匝数,N3为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。

(1-152)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-152)式的右边乘以一个略大于1的系数。

B)直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比的计算

直流输出电压非调整式推挽开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。这种直流输出电压非调整式推挽开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比可直接利用(1-152)式来计算。即:

n=N3/N1 =Uo/Ui =Upa/Ui ——次/初级变压比,D为0.5时(1-152)

不过,在低电压、大电流输出时,一定要考虑整流二极管的电压降。

C)直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的计算

直流输出电压可调整式推挽开关电源的功能就要求输出电压可调,因此,推挽式变压器开关电源的两个控制开关K1、K2的占空比必须要小于0.5;因为推挽式变压器开关电源正反激两种状态都有电压输出,所以在同样输出电压(平均值)的情况下,两个控制开关K1、K2的占空比相当于要小一倍。当要求输出电压可调范围为最大时,占空比最好取值为0.25。根据(1-140)和(1-145)式可求得:

(1-153)和(1-154)式就是计算直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为变压器初级线圈N1或N2绕组的匝数,N3为变压器次级线圈的匝数,Uo直流输出电压,Ui为直流输入电压。

EE型变压器参数及高频变压器计算Word版

我们知道,与一般的电流电压测量不同,磁场强度和磁感应强度的测量都是间接测量。磁场强度通过测量励磁电流后计算得到,磁感应强度是通过测量感应磁通后计算得到,参与计算的样品有效参数Le和Ae将直接与测量结果相关。 磁场强度的计算公式:H = N xI / Le 式中:H为磁场强度,单位为A/m;N为励磁线圈的匝数;I为励磁电流(测量值),单位位A;Le为测试样品的有效磁路长度,单位为m。 磁感应强度计算公式:B = Φ / (N xAe) 式中:B为磁感应强度,单位为Wb/m^2;Φ为感应磁通(测量值),单位为Wb;N为感应线圈的匝数;Ae为测试样品的有效截面积,单位为m^2。 根据样品尺寸计算样品的有效参数Le和Ae,在不同的行业中,计算方法往往不统一,这可能使测试结果缺乏可比性。 在SMTest软磁测量软件中,样品有效参数的计算依照行业标准SJ/T10281。下面以环形样品为例,讲述样品有效磁路长度Le和有效截面积Ae的计算方法。 第一种情况:指定叠片系数Sx,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,这是严格按照标准执行的计算方法。

第二种情况:指定材料密度De和样品质量W,指定样品的外径A、内径B和高度C。 根据SJ/T10281标准,先计算样品的磁芯常数C1和C2,然后根据磁芯常数计算Le和 Ae,并可推算叠片系数Sx,这是另外一种计算方法,与标准有点差别,但计算结果与标准比较接近。 第三种情况:指定材料密度De和样品质量W,指定样品的外径A和内径B,不指定样品的高度。 不按SJ/T10281标准求磁芯常数,而是按平常的数学公式来求Le和Ae。这种计算方法与标准相差较大,只有环形样品才有这种计算方法。

反激变压器的详细公式的计算

单端反激开关电源变压器设计 单端反激开关电源的变压器实质上是一个耦合电感,它要承担着储能、变压、传递能量等工作。下面对工作于连续模式和断续模式的单端反激变换器的变压器设计进行了总结。 1、已知的参数 这些参数由设计人员根据用户的需求和电路的特点确定,包括:输入电压V in、输出电压V out、每路输出的功率P out、效率η、开关频率f s(或周期T)、线路主开关管的耐压V mos。 2、计算 在反激变换器中,副边反射电压即反激电压V f与输入电压之和不能高过主开关管的耐压,同时还要留有一定的裕量(此处假设为150V)。反激电压由下式确定: V f=V Mos-V inDCMax-150V 反激电压和输出电压的关系由原、副边的匝比确定。所以确定了反激电压之后,就可以确定原、副边的匝比了。 N p/N s=V f/V out 另外,反激电源的最大占空比出现在最低输入电压、最大输出功率的状态,根据在稳态下,变压器的磁平衡,可以有下式: V inDCMin?D Max=V f?(1-D Max) 设在最大占空比时,当开关管开通时,原边电流为I p1,当开关管关断时,原边电流上升到I p2。若I p1为0,则说明变换器工作于断续模式,否则工作于连续模式。由能量守恒,我们有下式: 1/2?(I p1+I p2)?D Max?V inDCMin=P out/η 一般连续模式设计,我们令I p2=3I p1 这样就可以求出变换器的原边电流,由此可以得到原边电感量: L p= D Max?V inDCMin/f s?ΔI p 对于连续模式,ΔI p=I p2-I p1=2I p1;对于断续模式,ΔI p=I p2 。 可由A w A e法求出所要铁芯: A w A e=(L p?I p22?104/ B w?K0?K j)1.14 在上式中,A w为磁芯窗口面积,单位为cm2 A e为磁芯截面积,单位为cm2 L p为原边电感量,单位为H I p2为原边峰值电流,单位为A B w为磁芯工作磁感应强度,单位为T K0为窗口有效使用系数,根据安规的要求和输出路数决定,一般为0.2~0.4 K j为电流密度系数,一般取395A/cm2 根据求得的A w A e值选择合适的磁芯,一般尽量选择窗口长宽之比比较大的磁芯,这样磁芯

推挽式变压器设计

推挽式变压器设计 前言 推挽式变压器的设计分为AP法和KG法两种设计方法,这两种设计方法都是以几何参数进行设计,主要区别在于,KG 法是AP的基础上考虑了电压调整率,即加入电压调整率参数。下面是两种方法设计流程: 第一:计算视在功率: PT=Po(1+1/G)1.414 式中的PT 是视在功率,Po是输出功率,G是变压器的能量传递效率, 第二:计算KE: KE=0.145Kf^2Fs^2Bw^2 x 10^-4 式中Kf是波形因素,方波为4,正弦波为4.44,Fs是开关频率,Bw磁通密度。 第三:计算KG: KG=PT/2aKe 式中a 是电压调整率 磁环KG用以下公式进行计算: KG=Ae^2AwKo/MLT 式中的Ae是芯的有限面积,Aw 是芯环的有限面积,MLT

是每匝线圈的长度。 第四:根据KG值选择磁环的大小。 第五:计算AP:如果是KG法设计变压器,不用这一步。 AP=(PT x 10^4/KoKfFsBWKj)^1/1+x 式中Ko是变压器窗口使用系数。Kj是电流密度比例系数,X 是磁芯类型常数 第六:根据AP值选技磁环的大小,如果是使用KG法,不用这一步。 第七:计算原边线圈数: NP=Vs x 10^4/KfFsBWAe 式中的NP为原边线圈数,Vs是最小输入电压。 第八:计算原边峰值电流 Ip=Po/VsG 第九:计算电流密度: J=PT x 10 ^4/KoKfFsBwAp 第十:计算原边线圈的线经: Axp=Ip/J 如果是全波整流Ip需要按0.707进行折算。公式如下: Axp=0.707Ip/J 第十一:根据Axp值选择导线规格: 第十二:计算原边线圈阻值:

开关电源设计中的主要参数名称

开关电源设计中的主要参数名称 P O额定输出功率 η整机效率 Is 次级绕组电流 I PRI 初级绕组电流 I R初级绕组脉动电流I R=I p*K RP(比值关系) K RP初级绕组电流比例因素K RP=I R/I p Ip 初级绕组峰值电流 Ip=I R/K RP(比值关系) Ip=I AVG/(1-0.5K RP)*Dmax(数值) I RMS初级绕组有效值电流 Dmax 最大占空比 Dmax=U OR/U OR+U Imin-U DS(on)*100% U Imin最低直流电压(一般取90V) C XT初级绕组的分布电容 C D次级绕组的分布电容 C OSS输出电容值 U DS漏-源峰值脉冲 U OR初级绕组感应电压 L PO初级绕组漏感 L SO次级绕组漏感 I AVG输入电流平均值I AVG=P o/η*U Imin B M最大磁通密度B M=100*I P*L P/N P*S J δ磁芯气隙宽度δ=40ΠS J(N P2/1000L P-1/1000A L) M 铜线安全边距,三重绝缘线 M=0 I SP次级峰值电流I SP=I P*N P/N S I SRMS次级有效值电流 I RI输出滤波电容上的纹波电流 Dsm 次级导线最小直径(裸线) DSM 次级导线最大外径(带绝缘层) DSM=b-2M/Ns J 初级绕组的电流密度(一般值为4-10A/mm2) U(BR)S次级整流管最大反向峰值电压U(BR)S=Uo+Umax*Ns/Np U(BR)FB反馈级整流管最大反向峰值电压U(BR)FB=U FB+Umax*N F/N P Uo 输出额定电压 U FB反馈额定电压 N S输出次级绕组匝数 Ns=(Uo+U D)*N P*(1-Dam)/V in(min)*Dmax N F反馈绕组匝数N F=Ns*U FB+U F2/Uo+U F1 N P初级绕组匝数N P=Ns*U OR/Uo+U F1 ;N P=L P*I P/Ae*B U RI 输出纹波电压U RI=I SP*ro I RMS整流桥输入有效值电流I RMS=Po/η*umin*Cosφ I OM最大输出电流 ro 输出电容的等效串联电阻值(可查电容规格)

高频变压器的计算

高频变压器参数计算 2009-08-28 11:26 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算

开关电源占空比的选择与开关变压器初次级线圈匝数比的计算 作者:陶显芳发布时间:2011-07-04文章来源:华强北·电子市场价格指数浏览量:50466 下面是开关电源设计务必掌握的知识 1、开关电源占空比的选择与计算 2、开关变压器初次级线圈匝数比的计算 希望从事开关电源设计的工程师对此感兴趣 概述:占空比是脉冲宽度调制(PWM)开关电源的调制度,开关电源的稳压功能就是通过自动改变占空比来实现的,开关电源的输出电压与占空比成正比,开关电源输出电压的变化范围基本上就是占空比的变化范围。由于开关电源输出电压的变化范围受到电源开关管击穿电压的限制,因此,正确选择占空比的变化范围是决定开关电源是否可靠工作的重要因素;而占空比的选择主要与开关电源变压器初、次级线圈的匝数比有关,因此,正确选择开关电源变压器初、次级线圈的匝数比也是一个非常重要的因素。 开关电源占空比和开关电源变压器初、次级线圈的匝数比的正确选择涉及到对开关电源变压器初、次级线圈感应电动势的计算。因此,下面我们先从分析开关电源变压器初、次级线圈感应电动势开始。 1.1占空比的定义 占空比一般是指,在开关电源中,开关管导通的时间与工作周期之比,即: (1)式中:D为占空比,Ton为开关管导通的时间,Toff为开关管关断的时间,T为开关电源的工作周期。 对于一个脉冲波形也可以用占空比来表示,如图1所示。 在反激式开关电源中,开关管导通的时候,变压器次级线圈是没有功率输出的,如果把(1)中的D记为D1,(2)式中的D记为D2,则D1、D2有下面关系: 1.2开关变压器初次级线圈的输出波形

图2a是输出电压为交流的开关电源工作原理图。为了便于分析,我们假说变压器初次级线圈的变压比为1:1(即N1=N2,L1=L2),当开关K又导通转断开时,变压器初级、次 级线圈产生感应电动势为: (6)式中:为变压器初级线圈的励磁电流,由此可知,变压器初、次级线圈产生 的反电动势主要是由励磁电流产生的。我们从(5)可以看出,当变压器初、次级线圈的负载电阻R很大或者开路的情况下,变压器初、次级线圈产生的感应电动势峰值是非常高的,如果这个电压直接加到电源开关管两端,电源开关管一定会被击穿。 为了便于分析,我们引进一个半波平均值的概念,我们把Upa、Upa-分别定义为变压器初、次级线圈感应电动势正、负半周的半波平均值。半波平均值就是把反电动势等效成一 个幅度等于Upa或Upa-的方波,如图2b中的Upa-所示。

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

开关电源技术规格书

开关电源技术规格书 Switching Power Supply Specification 型号Model: 1305AC 拟制(Editor) :段家贵 审核(Verifier) : 批准(Approver) : 版本(Edition) :1305 1、总则Introduction 该款电源参考intel提出的ATX12V V2.31标准设计制造,额定输出功率90W。 。 The Power Supply was designed reference Intel Power Supply Design Guide ATX12V 2.31. Rated output total power is90W. 2、电气特性Electrical 2.1、 2.2、直流精度 [鍵入文字]

注:当+12V处于峰值电流负载时,输出电压范围为±10%。 Note: At +12VDC peak loading, regulation at the +12V outputs can go to ±10%. 2.3、直流功率分布Typical Power Distribution 2.4、 注意:1、噪声与纹波的测试带宽为10Hz~20MHz; 2、在测试噪音与纹波期间,用一个0.1UF瓷片电容和10UF的电解电容并接在输出端上。 Note: 1、Ripple and noise are defined as periodic or random signals over a frequency band of 10Hz to 20 MHz. 2、Measurements shall be made with an oscilloscope with 20 MHz of bandwidth. Outputs should be bypassed at the connector with a 0.1μF ceramic disk capacitor and a 10 μF electrolytic capacitor to simulate system loading. 2.5、电源效率Efficiency 在25℃下,直流输入11.4V-12.6V 、Intel规定的满负载条件下,电源效率不小于80%。 The efficiency of the power supply should be greater than or equal to 80%, at nominal input voltage of DC 11.4V-12.6V input, under the load conditions defined in the form factor specific sections of intel PSDG, at 25℃。

反激电源高频变压器参数计算方法

四、设计开关电源主要在变压器计算与画板 高频变压器参数计算方法 1﹚、磁通量与磁通密度相关公式: Ф = B * S⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳)

I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数 比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D))⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二.根据上面公式计算变压器参数: 1.高频变压器输入输出要求: 输入直流电压:200--- 340 V 输出直流电压:23.5V 输出电流: 2.5A * 2 输出总功率:117.5W 2.确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高;匝数比小则功率管反低,这样就有下式:N1/N2 = VIN(max) / (VRRM * k / 2)⑾N1 ----- 初级匝数VIN(max) ------ 最大输入电压k ----- 安全系数N2 ----- 次级匝数Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌7.6 3.计算功率场效应管的最高反峰电压: Vmax = Vin(max) + (Vo+Vd)/ N2/ N1⑿ Vin(max) ----- 输入电压最大值Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌525.36(V) 4.计算PWM占空比: 由⑽式变形可得: D = (N1/N2)*E2/(E1+(N1 /N2*E2) D=(N1/N2)*(Vo+Vd)/Vin(min)+N1/N2*(Vo+Vd)⒀ D=7.6*(23.5+0.89)/200+7.6*(23.5+0.89) 由些可计算得到占空比D≌0.481 5.算变压器初级电感量: 为计算方便假定变压器初级电流为锯齿波,也就是电流变化量等于电流的峰值,也就是理想的认为输出管在导通期间储存的能量在截止期间全部消耗完。那么计算初级电感量就可以只以PWM的一个周期来分析,这时可由⑼式可以有如下推 导过程:

开关电源-高频-变压器计算设计

要制造好高频变压器要注意两点: 一是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便是高频交流电只沿导线的表面走,而导线内部是不走电流的实习是越挨近导线中轴电流越弱,越挨近导线表面电流越强。选用多股细铜线并在一同绕,实习便是为了增大导线的表面积,然后更有效地运用导线。 二是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的是削减高频漏感和降低分布电容。 1、次级绕组:初级绕组绕完,要加绕(3~5 层绝缘垫衬再绕制次级绕组。这样可减小初级绕组和次级绕组之间分布电容的电容量,也增大了初级和次级之间的绝缘强度,契合绝缘耐压的需求。减小变压器初级和次级之间的电容有利于减小开关电源输出端的共模打扰。若是开关电源的次级有多路输出,而且输出之间是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。 若是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。其他次级绕组严密的绕在这个次级绕组的上面。当开关电源多路输出选用共地技能时,处置方法简略一些。次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。 2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。初级绕组放在最里边,使初级绕组得到其他绕组的屏蔽,有助于减小变压器初级绕组和附近器材之间电磁噪声的相互耦合。初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其他有些电磁打扰的耦合。 3、偏压绕组:偏压绕组绕在初级和次级之间,仍是绕在最外层,和开关电源的调整是依据次级电压仍是初级电压进行有关。若是电压调整是依据次级来进行的则偏压绕组应放在初级和次级之间,这样有助于削减电源发生的传导打扰发射。若是电压调整是依据初级来进行的则偏压绕组应绕在变压器的最外层,这可使偏压绕组和次级绕组之间坚持最大的耦合,而与初级绕组之间的耦合减至最小。 初级偏压绕组最佳能布满完好的一层,若是偏压绕组的匝数很少,则能够采用加粗偏压绕组的线径,或许用多根导线并联绕制,改善偏压绕组的填充状况。这一改善方法实际上也改善了选用次级电压来调理电源的屏蔽才干,相同也改善了选用初级电压来调理电源时,次级绕组对偏压绕组的耦合状况。 高频变压器匝数如何计算?很多设计高频变压器的人都会有对于匝数的计算问题,那么我们应该

变压器经典计算

1. 反激式开关电源电路 2. 开关变压器功能 a. 磁能转换(能量储存) b. 绝缘 c. 电压转换 3. 工作流程 a. 根据PWM(脉宽调制法)控制,当晶体管(例功率MOSFET)打开时电流流过变压器初级绕组,这时变压器储存能量(在磁心GAP),与此同时,因为初级绕组和次级绕组极性不同,整流二极管断开时电流流过次级绕组; b. 因为次级绕组极性是不同于初级绕组,当晶体管关闭(例功率MOSFET)时存储的能量将被释放(从磁心GAP). 同时整流管也打开.所以,电流将流过开关电源变压器的次级绕组; c. 反馈绕组提供PWM工作电压(控制), 所以反馈绕组的圈数是依照PWM 的工作电压来计算;例如, UC3842B(PWM)工作电压是10-16Vdc ,你必须是依照这个电压计算反馈圈数,否则UC3842B(PWM)将不能正常工作!一般, UC3842B(PWM)损坏时,反馈电压是超过30Vdc. 4. 主要参数对整个路的影响 a. 电感:如果初级电感太低,变压器将储存的能量少,使输出电压不连续;如果次级电感也低,变压器的能量将不能完全释放,所以,输出电压将是非常低;这时PWM将不能正常工作.此时反馈绕组的电感也是过低或过高, b. 漏电感: 如果漏电感太高,它将产生一个高的尖峰电压在初级绕组. 它是非常的危险.因为高的尖峰电压可以损坏晶体管!另一方面,漏电感将影响开关电源变压器对电磁干扰的测试,它对整个电流将产生更多的噪音;所以开关变压器要求低漏电感. c. 绝缘强度:因为初级地是不同次级地;它有一个高电压在初级与次级之间,所以,它有很好的绝缘! 一。基本设计条件 1. 输入85-264V ac /输出5Vdc 2A 2. 最大工作比40% (晶体管关闭和打开的时间比率) 3. 工作频率75kHz 4. 温度等级: class B 二。基本的设计步骤 1.变压器尺寸 Ae*Ap=PB*102/2f*B*j*?*K Ae---- 有效截面积 Ap---- 磁芯绕线面积 PB ---- 输出功率 f ----- 工作频率 B ----- 有效饱和磁通 j ----- 电流密度 ? ----- 变压器效率 K ----- 骨架绕线系数 Ae*Ap=2(5.0+0.7)*102/2*75*103*0.17*2.5*0.8*0.2

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

高频变压器计算步骤精编版

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

各种开关电源变压器各种高频变压器参数EEEEEEEIEI等等的参数

功率铁氧体磁芯 常用功率铁氧体材料牌号技术参数 EI型磁芯规格及参数

PQ型磁芯规格及参数 EE型磁芯规格及参数 EC、EER型磁芯规格及参数

1,磁芯向有效截面积:Ae 2,磁芯向有效磁路长度:le 3,相对幅值磁导率:μa 4,饱和磁通密度:Bs 1磁芯损耗:正弦波与矩形波比较 一般情况下,磁芯损耗曲线是按正弦波+/-交流(AC)激励绘制的,在标准的和正常的时候,是不提供极大值曲线的。涉及到开关电源电路设计的一个共同问题是正弦波和矩形波激励的磁芯损耗的关系。对于高电阻率的磁性材料如类似铁氧体,正弦波和矩形波产生的损耗几乎是相等的,但矩形波的损耗稍微小一些。材料中存在高的涡流损耗(如大 一般情况下,具有矩形波的磁芯损耗比具有正弦波的磁芯损耗低一些。但在元件存在铜损的情况下,这是不正确的。在变压器中,用矩形波激励时的铜损远远大于用正弦波激励时的铜损。高频元件的损耗在铜损方面显得更多,集肤效应损耗比矩形波激励磁芯的损耗给人们的印象更深刻。举个例子,在 20kHz、用17#美国线规导线的绕组时,矩形波激励的磁芯损耗几乎是正弦波激

励磁芯损耗的两倍。例如,对于许多开关电源来说,具有矩形波激励磁芯的 5V、20A和30A输出的电源,必须采用多股绞线或利兹(Litz)线绕制线圈,不能使用粗的单股导线。 2Q值曲线 所有磁性材料制造厂商公布的Q值曲线都是低损耗滤波器用材料的典型曲线。这些测试参数通常是用置于磁芯上的最适用的绕组完成的。对于罐形磁芯,Q值曲线指出了用作生成曲线时的绕组匝数和导线尺寸,导线是常用的利兹线,并且绕满在线圈骨架上。 对于钼坡莫合金磁粉芯同样是正确的。用最适合的绕组,并且导线绕满了磁芯窗口时测试,则Q值曲线是标准的。Q值曲线是在典型值为5高斯或更低的低交流(AC)激励电平下测量得出的。由于在磁通密度越高时磁芯的损耗越大,故人们警告,在滤波电感器工作在高磁通密度时,磁芯的Q值是较低的。3电感量、AL系数和磁导率 在正常情况下,磁芯制造厂商会发布电感器和滤波器磁芯的AL系数、电感量和磁导率等参数。这些AL的极限值建立在初始磁导率范围或者低磁通密度的基础上。对于测试AL系数,这是很重要的,测试AL系数是在低磁通密度下实施的。 某些质量管理引入检验部门,希望由他们用几匝绕组检查磁芯,并用不能控制频率或激励电压的数字电桥测试磁芯。几乎毫不例外,以几百高斯、若干

推挽式开关电源的变压器参数计算

推挽式开关电源的变压器参数计算 用的开关变压器有两个初级线圈,它们都属于励磁线圈,但流过两个线圈的电流所产生的磁力线方向正好相反,因此,推挽式开关电源变压器属于双激式开关电源变压器;另外,推挽式开关电源变压器的次级线圈会同时被两个初级线圈所产生的磁场感应,因此,变压器的次级线圈同时存在正、反激电压输出;推挽式开关电源有多种工作模式,如:交流输出、整流输出、直流稳压输出,等工作模式,各种工作模式对变压器的参数要求会有不同的要求。 1-8-1-4-1.推挽式开关电源变压器初级线圈匝数的计算 由于推挽式变压器的铁心分别被流过变压器初级线圈N1绕组和N2两个绕组的电流轮流进行交替励磁,变压器铁心的磁感应强度B,可从负的最大值-Bm,变化到正的最大值+Bm,因此,推挽式变压器铁心磁感应强度的变化范围比单激式变压器铁心磁感应强度的变化范围大好几倍,并且不容易出现磁通饱和现象。 推挽式变压器的铁心一般都可以不用留气隙,因此,变压器铁心的导磁率比单激式变压器铁心的导磁率高出很多,这样,推挽式变压器各线圈绕组的匝数就可以大大的减少,使变压器的铁心体积以及变压器的总体积都可以相对减小。 推挽式开关电源变压器的计算方法与前面正激式或反激式开关电源变压器的计算方法大体相同,只是对变压器铁心磁感应强度的变化范围选择有区别。对于具有双向磁极化的变压器铁心,其磁感应强度B的取值范围,可从负的最大值-Bm变化到正的最大值+Bm。 关于开关电源变压器的计算方法,请参考前面“1-6-3.正激式变压器开关电源电路参数计算”中的“2.1 变压器初级线圈匝数的计算”章节中的内容。 根据(1-95)式:

(1-150)式和(1-151)式就是计算双激式开关电源变压器初级线圈N1绕组匝数的公式。式中,N1为变压器初级线圈N1或N2绕组的最少匝数,S为变压器铁心的导磁面积(单位:平方厘米),Bm为变压器铁心的最大磁感应强度(单位:高斯);Ui为加到变压器初级线圈N1绕组两端的电压,单位为伏;τ = Ton,为控制开关的接通时间,简称脉冲宽度,或电源开关管导通时间的宽度(单位:秒);F为工作频率,单位为赫芝,一般双激式开关电源变压器工作于正、反激输出的情况下,其伏秒容量必须相等,因此,可以直接用工作频率来计算变压器初级线圈N1绕组的匝数;F和τ取值要预留20%左右的余量。式中的指数是统一单位用的,选用不同单位,指数的值也不一样,这里选用CGS单位制,即:长度为厘米(cm),磁感应强度为高斯(Gs),磁通单位为麦克斯韦(Mx)。 1-8-1-4-2.推挽式开关电源变压器初、次级线圈匝数比的计算 A)交流输出推挽式开关电源变压器初、次级线圈匝数比的计算 推挽式开关电源如果用于DC/AC或AC/AC逆变电源,即把直流逆变成交流输出,或把交流整流成直流后再逆变成交流输出,这种逆变电源一般输出电压都不需要调整,因此电路相对比较简单,工作效率很高。 用于逆变的推挽式开关电源一般输出电压都是占空比等于0.5的方波,由于方波的波形系数(有效值与半波平均值之比)等于1,因此,方波的有效值Uo与半波平均值Upa相等,并且方波的幅值Up与半波平均值Upa也相等。所以,只要知道输出电压的半波平均值就可以知道有效值,再根据半波平均值,就可以求得推挽式开关电源变压器初、次级线圈匝数比。 根据前面分析,推挽式变压器开关电源的输出电压uo,主要由开关电源变压器次级线圈N3绕组输出的正激电压来决定。因此,根据(1-128)、(1-129)、(1-131)其中一式就可以出推挽式变压器开关电源的输出电压的半波平均值。由此求得逆变式推挽开关电源变压器初、次级线圈匝数比: n=N3/N1 =Uo/Ui =Upa/Ui ——变压比,D为0.5时(1-152) (1-152)式就是计算逆变式推挽开关电源变压器初、次级线圈匝数比的公式。式中,N1为开关变压器初级线圈两个绕组其中一个的匝数,N3为变压器次级线圈的匝数,Uo输出电压的有效值,Ui为直流输入电压,Upa输出电压的半波平均值。 (1-152)式还没有考虑变压器的工作效率,当把变压器的工作效率也考虑进去时,最好在(1-152)式的右边乘以一个略大于1的系数。 B)直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比的计算 直流输出电压非调整式推挽开关电源,就是在DC/AC逆变电源的交流输出电路后面再接一级整流滤波电路。这种直流输出电压非调整式推挽开关电源的控制开关K1、K2的占空比与DC/AC逆变电源一样,一般都是0.5,因此,直流输出电压非调整式推挽开关电源变压器初、次级线圈匝数比可直接利用(1-152)式来计算。即: n=N3/N1 =Uo/Ui =Upa/Ui ——次/初级变压比,D为0.5时(1-152) 不过,在低电压、大电流输出时,一定要考虑整流二极管的电压降。 C)直流输出电压可调整式推挽开关电源变压器初、次级线圈匝数比的计算

开关电源参数(精)

开关电源基本参数的概念及常见术语 一.描述输入电压影响输出电压的几个参数。 1.绝对稳压系数。 A.绝对稳压系数:表示负载不变时,稳压电源输出直流变化量△U0与输入电网变化量△Ui之比。既: K=△U0/△Ui。 B.相对稳压系数:表示负载不变时,稳压电源输出直流电压Uo的相对变化量△Uo与输出电网Ui的相对变化量△Ui之比。急: S=△Uo/Uo / △Ui/Ui 2. 电网调整率。 它表示输入电网电压由额定值变化+-10%时,稳压电源输出电压的相对变化量,有时也以绝对值表示。 3. 电压稳定度。 负载电流保持为额定范围内的任何值,输入电压在规定的范围内变化所引起的输出电压相对变化△Uo/Uo(百分值),称为稳压电源的电压稳定度。 二.负载对输出电压影响的几种指标形式。 1.负载调整率(也称电流调整率)。 在额定电网电压下,负载电流从零变化到最大时,输出电压的最大相对变

化量,常用百分数表示,有时也用绝对变化量表示。 2.输出电阻(也称等效内阻或内阻)。 在额定电网电压下,由于负载电流变化△IL引起输出电压变化△Uo,则输出电阻为 Ro=|△Uo/△I L| 欧。 三.纹波电压。 1.最大纹波电压。 在额定输出电压和负载电流下,输出电压的纹波(包括噪声)的绝对值的大小,通常以峰峰值或有效值表示。 2.纹波系数Y(%)。 在额定负载电流下,输出纹波电压的有效值Urms与输出直流电压Uo之比,既 y=Umrs/Uo x100% 3.纹波电压抑制比。 在规定的纹波频率(例如50HZ)下,输出电压中的纹波电压Ui~与输出电压中的纹波电压Uo~之比,即: 纹波电压抑制比=Ui~/Uo~ 。 注:噪声不同于纹波。纹波是出现在输出端子间的一种与输入频率和开关频率同步的成分,用峰-峰(peak to peak)值表示,一般在输出电压的0.5%以下;噪声是出现在输出端子间的纹波以外的一种高频成分,也用峰-峰(peak to peak)值表示,一般在输出电压的1%左右。纹波噪声是二者的合成,用峰-峰(peak to peak)值表示,一般在输出电压的2%以下。四.冲击电流。 冲击电流是指输入电压按规定时间间隔接通或断开时,输入电流达到稳定

如何计算高频变压器参数

如何计算高频变压器参数 一. 电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N ⑷ EL = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素)

3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二. 根据上面公式计算变压器参数: 1. 高频变压器输入输出要求: 输入直流电压: 200--- 340 V 输出直流电压: 23.5V 输出电流: 2.5A * 2 输出总功率: 117.5W 2. 确定初次级匝数比: 次级整流管选用VRRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式: N1/N2 = VIN(max) / (VRRM * k / 2) ⑾ N1 ----- 初级匝数 VIN(max) ------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.6 3. 计算功率场效应管的最高反峰电压: Vmax = Vin(max) + (Vo+Vd)/ N2/ N1 ⑿ Vin(max) ----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌ 525.36(V)

相关文档
相关文档 最新文档