文档库 最新最全的文档下载
当前位置:文档库 › 气体压强的微观解释+固液气

气体压强的微观解释+固液气

气体压强的微观解释+固液气
气体压强的微观解释+固液气

气体压强的微观解释

分子热运动、布朗运动、扩散现象 1、做布朗运动实验,得到某个观测记录如图。图中记录的是( D ) A.分子无规则运动的情况 B.某个微粒做布朗运动的轨迹 C.某个微粒做布朗运动的速度——时间图线 D.按等时间间隔依次记录的某个运动微粒位置的连线 E.布朗运动是悬浮在液体中固体颗粒的分子无规则运动的反映 2、布朗运动虽然与温度有关,但布朗运动不能称为热运动(对) 3、空中飞舞的尘埃的运动不是布朗运动 经验之谈:布朗运动凭肉眼观察不到,得在光学显微镜下观察 分子运动在光学显微镜下观察不到,得在电子显微镜下观察。 布郎运动不会停止,而尘埃的飞扬经过一段时间后,会落回地面 4、观察布朗运动时,下列说法正确的是( AB ) A.温度越高,布朗运动越明显 B.大气压强的变化,对布朗运动没有影响 C.悬浮颗粒越大,布朗运动越明显 D.悬浮颗粒的布朗运动,就是构成悬浮颗粒的物质的分子热运动 5.由分子动理论及能的转化和守恒定律可知…( D ) A.扩散现象说明分子间存在斥力 B.布朗运动是液体分子的运动,故分子在永不停息地做无规则运动 C.理想气体做等温变化时,因与外界存在热交换,故内能改变 D.温度高的物体的内能不一定大,但分子的平均动能一定大 6.下列关于热运动的说法,正确的是( D ) A.热运动是物体受热后所做的运动 B.温度高的物体中的分子的无规则运动 C.单个分子的永不停息的无规则运动 D.大量分子的永不停息的无规则运动 物质的量

(1)m M v V N A ==即:分子质量摩尔质量=分子体积摩尔体积阿佛加德罗常数= (2)分子的个数 = 摩尔数 ×阿伏加德罗常数 (3)摩尔质量摩尔体积=密度 1.从下列哪一组数据可以算出阿伏加德罗常数( C ) A.水的密度和水的摩尔质量 B.水的 摩尔质量和水分子的体积 C.水的摩尔质量和水分子的质量 D.水分子的体积 和水分子的质量 2.已知铜的摩尔质量为M (kg/mol ),铜的密度为ρ(kg/m 3),阿伏加德罗常数为 N A (mol - 1).下列说法不正确的是( B ) A.1 kg 铜所含的原子数为 M N A B.1 m 3铜所含的原子数为ρA MN 个铜原子的质量为A N M kg 个铜原子所占的体积为A N M ρ m 3 3. 利用单分子油膜法可以粗测分子的大小和阿伏加德罗常数.如果已知体积为V 的一滴油 在 水面上散开形成的单分子油膜的面积为S ,这种油的密度为ρ,摩尔质量为M ,则阿伏 加德罗常数的表达式为( )答案:33 6V MS πρ 4.已知铜的密度为×103 kg/m3,相对原子质量为64,通过估算可知铜中每个铜原子所占 的体积为(B ) ×10-6 m 3 ×10-29 m 3 ×10-26 m 3 ×10-24 m 5.某物质的摩尔质量为M ,密度为ρ,设阿伏加德罗常数为N A ,则每个分子的质量和单位 体积所含的分子数分别是(D ) A.M N A M N ρ?A B.A N M ρM N A C. M N A ρ?A N M D. A N M M N ρ?A 6 .一热水瓶水的质量约为m=2.2 kg,它所包含的水分子数目为_________.(取两位有效数 字, 阿伏加德罗常数取×1023 mol -1) ×1025个) 7.某同学采用了油膜法来粗略测定分子的大小:将1 cm 3油酸溶于酒精,制成1 000 cm 3

气体压强的计算专题

气体压强的计算专题 1、在一端封闭的玻璃管中,装入一段长10cm的水银,如果大气压强为75cm水银柱高,如图所示的三种放置情况下,管中封闭气体的压强:甲是cm汞柱高,乙是cm汞柱高,丙是cm汞柱高. 2、求甲、乙、丙中封闭封闭气体的压强(外界大气压P0=76cmHg,h=10cm,液体均为水银) P甲=P乙=P丙= . 3、如图所示,玻璃管中都灌有水银,分别求出几种情况下被封闭的气体的压强(设大气压强为76厘米汞柱). (1)P A= .(2)P A= . (3)P A= . (4)P A= P B= . 4、如图所示,玻璃管粗细均匀,图中所示液体都是水银,已知h1=10cm,h2=5cm,大气压强P0=76cmHg,纸面表示竖直平面,求下列各图中被封闭气体的压强. 5、如图所示,M为重物质量,F是外力,p0为大气压,S 为活塞面积,活塞重忽略不计,求气缸内封闭气体的压强. 6、粗细均匀的细玻璃管中有一段水银柱,当时的大气压强为76cmHg柱,如图中所示各种情况下被封闭气体A 的压强分别为: (1)p1= ;(2)p2= ; (3)p3= ;(4)p4= . 7、如图玻璃管中被水银封闭的气体压强分别为P2、P3,己知大气压为76cmHg,h1=2cm,h2=3cm, 则P2= cmHg、P3= cmHg. 8、如图所示,右端封闭的U形管内有A、B两段被水银柱封闭的空气柱.若大气压强为p0,各段水银柱高如图所示,则空气柱A、B的压强分别为p A= ,p B= . 9、如图所示的容器A里封闭有气体,粗细均匀的玻璃管里有水银柱,若测得h1=10cm,h2=20cm,大气压强为1标准大气压,则可知A中气体的压强是Pa.(水银的密度为:13.6×103kg/m3) 10、如图所示,竖直放置的弯曲管A端开口,C端封闭,密度为ρ的液体将B、C两段空气封闭在管内,管内液面高度差分别为h1、h2和h3,已知大气压强为p0,则B段气体的压强为,C段气体的压强为.

物态变化的微观解释

物态变化的微观解释 一、基本的规则 1.所有的分子都在运动,所以具有动能 2.分子之间存在引力与斥力,所以当分子要摆脱其他分子的约束,克服引力做功,所以需要比较大的动能。 3.分子热运动的能力中势能部分使分子趋于团聚,动能部分使它们趋于飞散。大体来说平均动能胜过势能时,物体处于气态;势能胜于平均动能时,物体处于固态;当势能与平均动能势均力敌时,物质处于液态。 二、为什么沸腾在一定温度下发生 由于分子不停的运动,也就会与周边的分子相撞。在这随机碰撞的过程,有的分子得到比较大的能量,若这分子在液体内部,它也可以挣脱另的分子对它的约束。但在大多数情况下它们逃不出液体。因为它们和邻近的分子会碰撞,把能量传给邻近的分子,自身的能量会减少,自己又再次处于束缚态。但若是液体表面的分子就可以挣脱周边分子对它的束缚,离开液体,成为气态。这也就是为什么蒸发只发生在液体表面。因为能离开液体的分子的动能较大,所以当它离开后,液体的平均动能当然就减少了,所以液体的温度会下降。而在液体表面的分子也会在随机飞行中,有可能飞回到水的表面。这就是在一个封闭的系统,我们看到液体好像没有发生蒸发。其实每一时刻都有分子从液体表面飞出,也有分子飞入,是一个动态的平衡。 从上述的分析我们可以得知,温度越高,分子的平均动能就越大,摆脱束缚的可能性就越大。 随着温度的升高,有越来越多的分子力图挣脱,如果偶然有几个挣脱其邻居的分子彼此很靠近,它们就有可能在液体内部为自己找到一个安身之地:生成一个气泡。气泡内是饱和蒸气。如果泡内蒸气的压强小于外部压强,外部压强会压缩气泡,使之重新消失在液体中。当液体内部生成的气泡内的饱和蒸气压达到外部压强时,就开始沸腾。在沸腾过程中,越来越多的分子加入气泡,使气泡的体积猛然增大。密度比水小的气泡上升到水面破裂,在那里让内部积累起来的高能分子飞走。也就说液体内部的分子能否挣脱束缚离开液面,就取决于饱和蒸气压

封闭气体压强计算方法总结85579

ps p 0s N 81cmHg 10 P= 30 (4) 10 N ps p 0s P= 37 (5) 70cmHg 76cmHg 10 (2) ps p 0s mg N 10 P= (1) p 0s ps mg 10cm 66cmHg mg ps p 0s (3) P= 规律方法 一、气体压强的计算 1.气体压强的特点 (1)气体自重产生的压强一般很小,可以忽略.但大气压强P 0却是一个较大的数值(大气层重力产生),不能忽略. (2)密闭气体对外加压强的传递遵守帕斯卡定律,即外加压强由气体按照原来的大小向各个方向传递. 2.静止或匀速运动系统中封闭气体压强的确定 (1)液体封闭的气体的压强 ① 平衡法:选与气体接触的液柱为研究对象,进行受力分析,利用它的受力平衡,求出气体的压强. ② 例1、如图,玻璃管中灌有水银,管壁摩擦不计,设p 0=76cmHg,求封闭气体的压强(单位:cm 解析:本题可用静力平衡解决.以图(2)为例求解 取水银柱 为研究对 象,进行受力分析,列平衡方程得Ps= P 0S +mg ;所以p= P 0S 十ρghS ,所以P =P 0十ρgh (Pa )或P =P 0+h (cmHg ) 答案:P =P 0十ρgh (Pa )或P =P 0+ h (cmHg ) 解(4):对水银柱受力分析(如右图) 沿试管方向由平衡条件可得: pS=p 0S+mgSin30° P=S ghS S P 0030sin ρ+=p 0+ρhgSin30°=76+10Sin30°(cmHg) =76+5 (cmHg) =81 (cmHg) 点评:此题虽为热学问题,但典型地体现了力学方法,即:选研究对象,进行受力分析,列方程. 拓展: 10 300 N mg PS P 0S h 1Δh h 2 B A

气体的微观意义

气体的微观意义 【教学设计】 第八章第4节 一、教材分析 用微观解释宏观,离不开统计规律。本节教材有意识地渗透统计观点,提出什么是统计规律。教学时可以举出学生比较熟悉的生活中的事例,帮助学生理解统计规律的意义,并理解压强以及气体实验定律的微观解释。通过分析气体分子运动的特点,去学习压强的产生原因。 二、教学目标 知识与技能 能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。 过程与方法 通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。 情感态度价值观 通过对宏观物理现象与微观粒子运动规律的分析,对学

生渗透“透过现象看本质”的哲学思维方法。 三、教学重点、难点 1.用气体分子动理论来解释气体实验定律是本节课的重点。 2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。 四、学情分析 根据学生的情况教师可以先让学生课前完成“抛币实验”然后进行全班交流家与评价,让学生发表自己的看法,从中领略到自然与社会的奇妙与和谐,增加对科学的求知欲和好奇心。 五、教学方法 讨论、谈话、练习、多媒体辅助 六、课前准备 .学生的学习准备:预习 .教师的教学准备:多媒体制作,课前预习学案,准备实验器材。 七、课时安排:1课时 八、教学过程 预习检查、总结疑惑 检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

情景导入、展示目标。 设问:气体的状态变化规律?从微观方面如何解释? 合作探究、精讲点拨 统计规律 气体分子运动的特点 设问:气体分子运动的特点有哪些? 弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。 碰撞都可看成是完全弹性碰撞。气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。 因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。 多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。

封闭气体压强的计算(附有简单的答案)

封闭气体压强的计算 一、夜体封闭气体压强(一)液柱处于平衡状态 1、计算下图中各种情况下,被封闭气体的压强。(标准大气压强p0=76cmHg,图中液体为水银) 2、如右上图所示,在U型管的封闭端A内有一部分气体,管中标斜线部分均为水银,则A内气体的压强应为下述关系式中的:() A.p=h2B.p=p0-h1-h2C.p=p0-h2 D.p=p0+h1 3.在两端开口的U型管中灌有密度为ρ的液体,左管上端另有一小段同种液体将一部分空气封在管内, 如右图所示,处于平衡状态,设大气压强为p0,则封闭气体的压强为______;左边被封夜柱长度_____。 5、弯曲管子内部注满密度为ρ的水,部分是空气,图中所示的相邻管子液面高度差为h,大气压强为p0,则 图中A点的压强是() A.ρgh B.p0+ρgh C.p0+2ρgh D.p0+3ρgh (二)液柱处于加速状态 6、小车上固定一截面积为S的一端封闭的均匀玻璃管,管内用长为L的水银柱封住一段气体,如图所示,若大气压强为p0,则小车向左以加速度a运动时,管内气体的压强是_______(水银的密度为ρ). (三)水银槽或深水封闭气体压强 8、 已知:大气压强P0=1atm=76cmHg=105Pa,则:甲、P1=__________乙、P2=__________ 丙、P3=__________、丁P4=__________(甲和丁可用厘米汞柱表示压强) 二、活塞封闭气体压强 9、三个长方体容器中被光滑的活塞封闭一定质量的气体。如图3所示,M为重物质量,F是外力,p0为大气压,S为

活塞面积,G 为活塞重,则压强各为: 10、如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住了一定质量的空气,而活塞与缸套间无摩擦,活塞面积为S ,则下列说法正确的是( ) (P0为大气压强) A 、内外空气对缸套的总作用力方向向上,大小为Mg B 、内外空气对缸套的总作用力方向向下,大小为mg C 、气缸内空气压强为P0-Mg/S D 、气缸内空气压强为P0+mg/S 11、如图所示,一圆筒形气缸静置于地面上,气缸筒的质量为M ,活塞(连同手柄)的质量为m ,气缸内部的横截面积为S ,大气压强为P 0。现用手握塞手柄缓慢向上提,不计气缸内气体的重量及活塞与气缸壁间的摩擦,若将气缸刚提离地面时气缸内气体的压强为P 、手对活塞手柄竖直向上的作用力为F ,则( ) A .0,mg P P F mg s =+ = B .00,()mg P P F P S m M g s =+=++ C .0,()Mg P P F m M g s =-=+ D .0,Mg P P F Mg s =-= 12、两个固定不动的圆形气缸a 和b ,横截面积分别为Sa 和Sb (Sa >Sb ),两气缸分别用可在缸内无摩擦滑动的活塞将一定质量的气体封闭在缸内,两个活塞用一钢性杆连接,如图,设两个气缸中的 气体压强分别为p a 和p b ,则( ) A .P a =P b B .a b a b P P S S = C .P a S a =P b S b D .P a S a >P b S b 13、如图所示,两端开口的气缸水平固定,A 、B 是两个厚度不计的活塞,可在气缸内无摩擦滑动。面积分别为S 1=20cm 2,S 2=10cm 2,它们之间用一根细杆连接,B 通过水平细绳绕过光滑的定滑轮与质量为M=2kg 的重物C 连接,静止时气缸中的气体温度T 1=600K ,气缸两部分的气柱长均为L ,已知大气压强p 0=1×105Pa ,取g=10m/s 2,缸内气体可看作理想气体。 活塞静止时,求气缸内气体的压强; 参考答案 1、 (1)76 (2)51 (3) (4)51 (5) 101 2、C 3、gh p ρ+0_;不变 4、B 5、C 6、p 0-ρLa 7(1)84 cmHg (2)80 cmHg 8、甲、P =56cmHg 乙、P =_×105Pa 丙、P =×105Pa 、丁P =86cmHg 9、P 0 , P 0+Mg+G/S , P 0+F-G/S 10、C 11、C 12、D 13、 ×105Pa

(完整版)第三章第2节气体实验定律的图像表示及微观解释

二、气体实验定律的图像表示及微观解释 教学目标 1.会用图像描述气体实验定律,会在p-V,p-T和V-T三种图像中描绘三种等值变化过程。 2.经历“讨论交流”过程,探究图像中所隐含的物理意义。培养学生积极参与,乐于合作、沟通,勇于发表自己见解的精神。 3.能对气体实验定律做微观解释。 重点难点 重点:运用图像分析气体状态变化过程 难点:气体实验定律的微观解释 设计思想 上节课通过实验得出了气体实验定律,本节课利用数学工具――图像进一步研究气体实验定律,使得气体状态变化过程的研究更为直观,相关参量的变化特征一目了然,并通过相关习题的练习培养学生运用数学知识表达物理规律的能力。再引导学生运用分子动理论和统计方法对气体实验定律逐个进行解释,主要围绕压强的微观意义进行解释,帮助学生建立起宏观现象的微观图景,使学生对热学知识有系统的认识。 教学资源《气体实验定律的图像表示及微观解释》多媒体课件 教学设计 【课堂引入】 问题:气体实验定律除用十分简洁的公式表示,还可用什么数学工具更加直观地表示呢? 【课堂学习】 学习活动一:气体实验定律的图象表示 问题1:气体实验定律的图像一般有三种:p-V图像、p-T图像、V-T图像,等温变化、等 容变化和等压变化分别在这三种图像中如何表示? (先由学生根据数学知识作出反映玻意耳定律、查理定律和盖·吕萨克定律的图像) 观察思考:反映等容变化和等压变化的图线有什么特点?其下部为什么要用虚线表示? 讨论交流1:一定质量的某种气体在T1、T2、T3三个温度下发生等温变化,相对应的三条等温线如图所示,则T1、T2、T3的大小关系如何? 讨论交流2:一定质量的某种气体装在容积分别为V1、V2、V3的三个容器中,发生等容变化,相对应的三条等容线如图所示,则V1、V2、V3的大小关系如何?

气体实验定律的微观解释·教案

气体·气体实验定律的微观解释·教案 一、教学目标 1.在物理知识方面的要求: (1)能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。 (2)能用气体分子动理论解释三个气体实验定律。 2.通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。 3.通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。 二、重点、难点分析 1.用气体分子动理论来解释气体实验定律是本节课的重点,它是本节课的核心内容。 2.气体压强的微观意义是本节课的难点,因为它需要学生对微观粒子复杂的运动状态有丰富的想像力。 三、教具 计算机控制的大屏幕显示仪;自制的显示气体压强微观解释的计算机软件。 四、主要教学过程 (一)引入新课 先设问:气体分子运动的特点有哪些? 答案:特点是:(1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。(2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。(3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。(4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。 今天我们就是要从气体分子运动的这些特点和规律来解释气体实验定律。 (二)教学过程设计

高中物理-封闭气体压强的计算

难点突破: 用气体实验定律解题的思路 1基本解题思路 (1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气体和某一部分气体(状态变化时质量必须一定). (2)确定状态参量:找出状态变化前后的p、V、T数值或表达式. ⑶认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定. (4)列出相关方程. 圭寸闭气体压强的计算 1.系统处于平衡状态的气体压强的计算方法 (1)液体圭寸闭的气体压强的确定 ①平衡法:选与气体接触的液柱为研究对象进行受力分 析,利用它的受力平衡,求出气体的压强. ②取等压面法:根据同种液体在同一水平液面处压强相等, 在连通器内灵活选取等压面,由两侧压强相等建立方程求出 压强.液体内部深度为h处的总压强p= p o+ p gh 例如,图中 同一水平液面C、D处压强相等,则P A= p o + p gh (2)固体(活塞或汽缸)封闭的气体压强的确定:由于该固体 必定受到被封闭气体的压力,可通过对该固体进行受力分 析,由平衡条件建立方程来找出气体压强与其他各力的关系.

2?加速运动系统中封闭气体压强的计算方法 一般选与气体接触的液柱或活塞、汽缸为研究对象,进行受力分析,利用牛顿第二定律列方程求出封闭气体的压强. 如图所示,当竖直放置的玻璃管向上加速时,对液柱受力分析有:pS— p o S- m (g + a) mg= ma, S为玻璃管横截面积,得p= p o+ S . 3 ?分析压强时的注意点 (1)气体压强与大气压强不同,大气压强由于重力而产生,随高度增大而减小, 气体压强是由大量气体分子频繁碰撞器壁而产生的,大小不随高度而变化;封闭气体对器壁的压强处处相等. (2)求解液体内部深度为h处的总压强时,不要忘记液面上方气体的压强. 囱口用气体实验定律解题的思路 1 ?基本解题思路 (1)选取研究对象:它可以是由两个或多个物体组成的系统,也可以是全部气 体和某一部分气体(状态变化时质量必须一定). (2)确定状态参量:找出状态变化前后的p、V、T数值或表达式. (3)认识变化过程:除题设条件已指明外,常需通过研究对象跟周围环境的相互关系来确定. (4)列出相关方程. 2.对两部分气体的状态变化问题总结 多个系统相互联系的定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联.若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系. □口变质量气体问题的分析方法 这类问题的关键是巧妙地选择研究对象,把变质量转化为定质量问题.常见变质量

第2节气体实验定律的微观解释

《8.4气体热现象的微观意义》导学案 班级 _______________ 姓名________________ 小组_________________ 得分________________ 【学习目标】 1. 知道气体分子运动的特点 2.了解气体压强的微观意义 3.掌握气体实验定律的微观解释 【自主学习】 一、气体分子运动的特点 1. 运动的理想性:气体分子间的距离比较大,除相互碰撞或跟器壁碰撞外,不受力而做 _________ 动,可以在空间自由移动,所以气体没有一定的体积和形状。 2. 运动的无序性:分子的运动永不停息,杂乱无章,在某一时刻,向着运动的分子都有,而且向各个方向运动的气体分子数目都________ 。 3. 运动的高速性:常温下大多数气体分子的速率都达到数百米每秒,在数量级上相当于子弹的速率;分 子速率分布图线呈的规律. 4. 气体分子的热运动与温度的关系 跟踪练习1:(多选)气体分子运动的特点是() A. 分子除相互碰撞或跟容器碰撞外,可在空间里自由移动 B. 分子的频繁碰撞致使它做杂乱无章的热运动 C. 分子沿各个方向运动的机会均等. D. 分子的速率分布毫无规律. 二、气体压强的微观意义 1. _________________________________________________________________________ 气体的压强是大量气体分子频繁地_______________________________________________________________________ 而产生的。 2. 影响气体压强的两个因素: 微观:(1)气体分子的;(2)气体分子的 宏观:(1)气体的;(2)气体的_________ . 跟踪练习2 :对于密封在大型气罐内的氧气对器壁的压强,下列说法正确的是() A. 由于分子向上运动的数目多,因此上部器壁的压强大.. B. 气体分子向水平方向运动的数目少,则侧壁的压强小. C. 由于氧气的重力会对下部器壁产生一个向下的压力,因此下部器壁的压强大. D. 气体分子向各个方向运动的可能性相同,撞击情况相同,器壁各处的压强相等. 三、对气体实验定律的微观解释 1. 玻意耳定律:一定质量的理想气体,温度保持不变时,分子的_________________ 是一定的,在这种情况下,体积减小时,分子的____________ 增大,气体的 ______ 就增大。 2. 查理定律:一定质量的理想气体,体积保持不变时,分子的保持不变,在这种情况下,温度升高 时,分子的平均动能—, 气体的压强就__________________ . 3. 盖吕萨克定律:一定质量的理想气体,温度升高时,分子的平均动能—,—只有气体的体积同 时_________ .,使分子的密集程度 ___________ ,才能保持压强 ______________ . 跟踪练习3 :(多选)一定质量的理想气体,在等温变化过程中,下列物理量中发生改变的有() A. 分子的平均速率 B.单位体积内的分子数 C.气体的压强D?分子总数 【课堂练习】 4. 对于一定质量的气体,下列四个论述中正确的是() A. 当分子热运动变剧烈时,压强必变大 B. 当分子热运动变剧烈时,压强可以不变 C. 当分子间的平均距离变大时,压强必变小 D. 当分子间的平均距离变大时,压强必变大 5. 下列关于气体的说法中,正确的是() A、由于气体分子运动的无规则性,所以密闭容器的器壁在各个方向上的压强可能会不相等 B、气体的温度升高时,所有的气体分子的速率都增大 C、一定量的气体,体积一定,气体分子的平均动能越大,气体的压强就越大 D、气体的分子数越多,气体的压强就越大 6、(多选)对于一定质量的气体,如果保持气体的体积不变,温度升高,那么 下列说法中正确的是( A. 气体的压强增大. B. 单位时间内气体分子对器壁碰撞的次数增多 C. 每个分子的速率都增大 D. 气体分子的密集程度增大 7. 如图所示,一定质量的理想气体由状态A沿平行纵轴的直线变化到状态 A. 气体的温度不变 B. 气体的内能增加 C. 气体的分子平均速率减少 D. 气体分子在单位时间内与器壁单位面积上碰撞的次数不变 8、有关气体的压强,下列说法正确的是() 9、(多选)关于气体分子运动的特点,以下说法正确的有:() A. 气体分子间的距离较大,除了相互碰撞或者跟器壁碰撞外,气体分子几乎不受力的作用而做匀速直线运动。 B. 分子的运动杂乱无章,在某一时刻,向各个方向运动的气体分子数目都相等。 C. 温度越高,分子热运动越剧烈。所以每个氧气分子在100 C时的运动速率都比0 C时的运动速率大。 D. 随着温度的升高,氧气分子中速率小的分子所占的比例减少 10、(多选)对一定质量的理想气体,下列说法正确的是() A. 体积不变,压强增大时,气体分子的平均动能一定增大 B. 温度不变,压强减小时,气体的密度一定减小 C. 压强不变,温度降低时,气体的密度一定减小 D. 温度升高,压强和体积都可能不变 11、(多 选)一定质量的理想气体,体积变大的同时,温度也升高了,那么下面判断正确的是() A ?气体分子平均动能增大B.单位体积内分子数目增多 C.气体的压强一定保持不变 D.气体的压强可能变大 12、一 定质量的理想气体,经等温压缩,气体的压强增大,用分子动理论的观点分析,这是因为() A. 气体分子每次碰撞器壁的作用力增大 B,则它的状态变化过程是( A.气体分子的平均速率增大,则气体的压强一定增大 B.气体分子的密集程度增大,则气体的压强一定增大 C.气体分子的平均动能增大,则气体的压强一定增大 D.气体分子的平均动能增大,气体的压强有可能减小

(完整版)封闭气体压强计算方法总结

ps p 0s N 81cmHg 10 P= 300 (4) 10 N ps p 0s P= 370 (5) 70cmHg 76cmHg 10 (2) ps p 0s mg N 10 P= (1) p 0s ps mg 10cm 66cmHg mg ps p 0s (3) P= 规律方法 一、气体压强的计算 1.气体压强的特点 (1)气体自重产生的压强一般很小,可以忽略.但大气压强P 0却是一个较大的数值(大气层重力产生),不能忽略. (2)密闭气体对外加压强的传递遵守帕斯卡定律,即外加压强由气体按照原来的大小向各个方向传递. 2.静止或匀速运动系统中封闭气体压强的确定 (1)液体封闭的气体的压强 ① 平衡法:选与气体接触的液柱为研究对象,进行受力分析,利用它的受力平衡,求出气体的压强. ② 例1、如图,玻璃管中灌有水银,管壁摩擦不计,设p 0=76cmHg,求封闭气体的压强(单位:cm 解析:本题可用静力平衡解决.以图(2)为例求解 取水银柱为研究对象,进行受力分 析,列平衡方程得Ps= P 0S +mg ;所以p= P 0S 十ρghS ,所以P =P 0十ρgh (Pa )或P =P 0+h (cmHg ) 答案:P =P 0十ρgh (Pa )或P =P 0+ h (cmHg ) 解(4):对水银柱受力分析(如右图) 沿试管方向由平衡条件可得: pS=p 0S+mgSin30° P=S ghS S P 0030sin ρ+=p 0+ρhgSin30°=76+10Sin30°(cmHg) =76+5 (cmHg) =81 (cmHg) 点评:此题虽为热学问题,但典型地体现了力学方法,即:选研究对象,进行受力分析,列方程. 拓展: 【例2】在竖直放置的U 形管内由密度为ρ的两部分液体封闭着两段空气柱.大气压强为P 0,各部尺寸如图所示.求A 、B 气体的压强. 求p A :取液柱h 1为研究对象,设管截面积为S ,大气压力和液柱重力向下,A 气体压力向上,液柱h 1静止,则 P 0S +ρgh 1S=P A S 所以 P A =P 0+ρgh 1 求 p B :取液柱h 2为研究对象,由于h 2的下端以下液体的对称性,下端液体自重产生的任强可不考虑,A 气体压强由液体传递后对h 2的压力向上,B 气体压力、液柱h 2重力向下,液往平衡,则P B S +ρgh 2S=P A S 所以 P B =P 0+ρgh 1一ρgh 2 熟练后,可直接由压强平衡关系写出待测压强,不一定非要从力的平衡方程式找起. 小结:受力分析:对液柱或固体进行受力分析,当物体平衡时: 利用F 合=0,求p 气 10 300 N mg PS P 0S h 1Δh h 2 B A

8年高考热学试题分类训练(4):气体压强的微观解释

八年高考热学试题分类训练【2002-2009】 (4)气体压强的微观解释 17.(04江苏)甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容器中气体的压强分别为p甲、p乙,且p甲

A.100℃ B.112℃C.122℃D.124℃ 21.(07天津)A、B两装置,均由一支一端封闭、一端开口且带有玻璃泡的管状容器和水银槽组成,除玻璃泡在管上的位置不同外,其他条件都相同。将两管抽成真空后,开口向下竖直插人水银槽中(插入过程没有空气进入管内),水银柱上升至图示位置停止。假设这一过程水银与外界没有热交换,则下列说法正确的是 A.A中水银的内能增量大于B中水银的内能增量 B.B中水银的内能增量大于A中水银的内能增量 C.A和B中水银体积保持不变,故内能增量相同 D.A和B中水银温度始终相同,故内能增量相同 22.(07全国1卷)如图所示,质量为m的活塞将一定质量的气体封闭在气缸内,活塞与气缸之间无摩擦。a态是气缸放在冰水混合物中气体达到的平衡状态,b态是气缸从容器中移出后,在室温(270C)中达到的平衡状态。气体从a态变化到b态的过程中大气压强保持不变。若忽略气体分子之间的势能,下列说法正确的是 A.与b态相比,a态的气体分子在单位时间内撞击活塞的个数较多 B.与a态相比,b态的气体分子在单位时间内对活塞的冲量较大 C.在相同时间内,a、b两态的气体分子对活塞的冲量相等 D.从a态到b态,气体的内能增加,外界对气体做功,气体对外界释放了热量 23.(08全国1)已知地球半径约为6.4×106 m,空气的摩尔质量约为29×10-3 kg/mol,一个标准大气压

高中物理_气体热现象的微观意义教学设计学情分析教材分析课后反思

《气体热现象的微观意义》教学设计 ★新课标要求 (一)知识与技能 1.知道气体分子运动的特点。 2.能用气体分子动理论解释气体压强的微观意义,并能知道气体的压强、温度、体积与所对应的微观物理量间的相关联系。 3.能用气体分子动理论解释三个气体实验定律。 (二)过程与方法 通过让学生用气体分子动理论解释有关的宏观物理现象,培养学生的微观想像能力和逻辑推理能力,并渗透“统计物理”的思维方法。 (三)情感、态度与价值观 通过对宏观物理现象与微观粒子运动规律的分析,对学生渗透“透过现象看本质”的哲学思维方法。 ★教学重点 气体分子运动的特点和气体压强的微观意义。 ★教学难点 气体压强的微观意义。 ★教学方法

讲授法、阅读法、电教法 ★教学用具: 课件;硬币若干。电子秤滚珠实验演示视频。 ★教学过程 (一)引入新课 教师:从一个笑话引入随机事件、统计规律的定义。播放伽尔顿实验的视频。 (二)进行新课 1.投掷硬币实验 教师:通过对分子动理论的学习,我们知道,由于物体是由数量极多的分子组成的,这些分子单独来看,运动是不规则的,带有偶然性的,但从总体上看,大量分子的运动遵守一定的规律,这种规律叫做统计规律。 将数据输入Excel表格进行分析。 教师:实验表明:个别事物的出现具有偶然的因素,但大量事物出现的机会,却遵从一定的统计规律。 教师:请大家列举生活中你所观察到的符合统计规律的现象。 列举实例。如考试时,得高分的人数和低分的人数占总人数的比例相对较少,接近平均分的人数相对较多。全班同学的身高分布,也有类似的规律。 2.气体分子运动的特点 展示分子运动的动画。

教师:气体分子运动的特点有哪些? 师生总结:气体分子运动的特点是: (1)气体间的距离较大,分子间的相互作用力十分微弱,可以认为气体分子除相互碰撞及与器壁碰撞外不受其他力作用,每个分子都可以在空间自由移动,一定质量的气体的分子可以充满整个容器空间。 (2)分子间的碰撞频繁,这些碰撞及气体分子与器壁的碰撞都可看成是完全弹性碰撞。气体通过这种碰撞可传递能量,其中任何一个分子运动方向和速率大小都是不断变化的,这就是杂乱无章的气体分子热运动。 (3)从总体上看气体分子沿各个方向运动的机会均等,因此对大量分子而言,在任一时刻向容器各个方向运动的分子数是均等的。 (4)大量气体分子的速率是按一定规律分布,呈“中间多,两头少”的分布规律,且这个分布状态与温度有关,温度升高时,平均速率会增大。 E成正比,即 (5)理想气体的热力学温度T与分子的平均动能 k E T =a k 式中a是比例常数。此式说明,温度是分子平均动能的标志。 教师:知道了气体分子运动的这些特点和规律,我们就可以来解释气体压强的产生和气体实验定律了。 3.气体压强的微观意义 教师:从微观的角度看,气体的压强是大量气体分子频繁撞击器壁而产生的。 类比:雨滴打在伞面上使伞面受到冲击力,雨滴动能越大,雨滴越密集,产生的压力就越大。 【视频演示】雨滴撞击伞面 【实验演示】滚珠撞击电子秤实验 或观看滚珠撞击电子秤的视频演示,增强学生的感性认识。 得出结论:从微观角度来看,气体压强的大小与两个因素有关,一是气体分子的平均动能,二是分子的密集程度。前者决定温度,后者决定体积。所以:气体压强与温度和体积有

计算气体压强的常用方法

计算气体压强得常用方法 压强、体积与温度就是描述气体状态得三个重要参量。要确定气体得状态,就要知道气体得压强、体积与温度。其中气体压强计算就是这部分知识得重点也就是难点。往往也就是解决问题得关键。下面介绍几种常见气体压强得计算方法。 一、液体封闭得气体得压强计算常用参考液片分析法 计算得方法步骤就是 ①选取假想得一个液体薄片(其自重不计)为研究对象; ②分析液片两侧受力情况,建立力得平衡方法,消去横截面积,得到液片两侧得压强平衡方程; ③解方程,求得气体压强。 例1、如下图所示,粗细均匀得竖直倒置得U形管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1与2,已知,外界大气压强,求空气柱1与2得压强。 解析:设空气柱1与2得压强分别为,选水银柱与下端管内与水银槽内水银面相平得液片a为研究对象,根据帕斯卡定律,气柱1得压强通过水银柱传递到液片a上,同时水银柱由于自重在a处产生得压强为,从而知液片a受到向下得压力为,S为液片a得面积。液片a很薄,自重不计,液片a受到向上得压强就是大气压强通过水银槽中得水银传递到液片a得,故液片a受到向上得压力为。因整个水银柱处于静止状态,故液片a所受上、下压力相等,即,故气柱1得压强为。

通过气柱2上端画等高线AB,则由连通器原理可知:。 再以水银柱得下端面得液片b为研究对象,可求得空气柱2得压强为(与求同理) 。 点评:求静止液体封闭气体得压强时,一般选取最低液面与与气体相关联得液柱为研究对象,进行受力分析,列平衡方程较简单。 二、固体(活塞或汽缸)封闭气体得压强计算常用平衡条件法 对于用固体(如活塞等)封闭在静止容器内得气体,要求气体内得压强,可对固体(如活塞等)进行受力分析,然后根据平衡条件求解。 例2、汽缸截面积为S,质量为m得梯形活塞上面就是水平得,下面与水平方向得夹角为,如下图所示,当活塞上放质量为M得重物而处于静止。设外部大气压为,若活塞与缸壁之间无摩擦。求汽缸中气体得压强。 解析:取活塞与重物为研究对象,进行受力分析:受重力,活塞受到大气竖直向下得压力,同时也受到封闭气体对活塞得推力,方向跟活塞斜面垂直,如下图所示。同时右缸壁对活塞有弹力N作用,方向水平向左,它们处于平衡状态,符合共点力平衡得条件,即合力等于零。

热学中气体压强的计算方法

热学中气体压强的计算方法 压强是描述气体的状态参量之一。确定气体的压强,往往是解决问题的关键。气体压强的求解,是气体性质这一章的难点,特别是结合力学知识求解气体压强是历年来高考的热点内容。下面不妨介绍三种依据力学规律计算气体压强的方法。 一、参考液片法 1。计算的依据是流体静力学知识 ①液面下h深处由液重产生的压强p=ρgh。这里要注意h为液柱的竖直高度,不一定等于液柱长度。 ②若液面与大气相接触,则液面下h深处的压强为p=p0+ρgh,其中p0为外界大气压。 ③帕斯卡定律(液体传递外加压强的规律):加在密闭静止液体上的压强,能够大小不变地被液体向各个方向传递。此定律也适用于气体。 ④连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强是相等的。 2。计算的方法和步骤 选取一个假想的液体薄片(自重不计)为研究对象,分析液片两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两侧的压强平衡方程,解方程,求得气体压强。 例1:如图1所示,左端封闭右端开口的U型管中灌有水银,外界大气压为p0,试求封闭气体A、B的压强。 解:选B部分气体下面的水银面液片a为研究对象。据帕斯卡定律及连通器原理,右端水银柱由于自重产生的压强为ρgh2,压力为ρgh2S,(S为液片面积)经水银传递,到液片a处压力方向向上。同理,外界大气产生压力,经水银传递,到液片a处压力方向也向上,大小为p0S,B部分气体在a处产生的压力方向向下,大小为PBS,由于a液片静止,由平衡原理,有:pBS=ρgh2+p0S,即pB=ρgh2+p0。又取液柱h1下端水银面液片b为研究对象,则有平衡方程为pAS+gh1S=pBS,则pA=pB-ρgh1=p0+ρg(h2-h1)。 二、平衡法 如果要求用固体(如活塞等)封闭在静止容器中的气体压强,应对固体(如活塞等)进行受力分析,然后根据力的平衡条件求解。 例2:一圆形气缸静置在地面上,如图2所示。气缸筒的质量为M,活塞(连同手柄)的质量为m,气缸内部横截面积为S,大气压强为p0,现将活塞缓慢上提,求气缸刚离地面时,气缸内气体的压强p。 解法一:先用整体法,选活塞和气缸整体为研究对象。受到向上的拉力F和总重力(M+m)g。由平衡条件:F=(M+m)g ⑴ 再选活塞为研究对象,受力如图3所示:向下重力mg,向下大气压力p0S,向上拉力F,向上气缸内气体

参考资料:如何理解大气压强的宏观意义和微观实质

如何理解大气压强的宏观意义和微观实质 在中学物理课本中对大气压强的定义是:地球对空气也有吸引作用,因此空气也受重力。所以象液体对浸在它里面的物体要产生压强一样,空气对浸在它里面的物体也要产生压强,这个压强就叫大气压。 根据气体动理论,气体的压强是由大量作无规则运动的分子跟器壁碰撞产生的。从本质上讲,大气压也是空气分子在不停地作无规则运动产生的,但它与空气重量有密切关系。下面我们就讨论这个问题。 地球周围的大气层里,空气分子的无规则运动将使它们均匀分布于所能达到的空间,而受到重力作用而将使空气分子聚集在地面上,在这两种作用达到平衡时,空气分子在大气层内的分布是非均匀的。在地面附近空气分子的密度大,大气层顶部分子密度小。根据玻尔兹曼分布律可以导出重力场中空气分子的数密度n 按高度分布规律: 10m gh kT n n e -= 式中m 1为分子质量、n 0为地面附近(h=0)的气体分子数密度、n 为距地面高度为h 处分子的数密度。 由止式和p nkT =,得: 100m gh Mgh kT RT p n kTe p e --== (1) 式中00p n kT =表示h=0处气体的压强。 111/A A m m m N M k R N R R ===,其中M 为气体的摩尔质量。 在大气中取一竖直气柱。为使讨论简单,假设气柱中各处温度相同,对(1)式微分: 0Mgh RT Mg pM dp p e dh gdh RT RT -=-=- 由m pV RT M =,得m pM V RT ρ==,代入上式,所以: dp gdh ρ=- 式中ρ表示空气的密度。设大气层的高为H ,大气层顶部的气体压强为零。则: 000 H p dp gdh ρ=-?? 00 H p gdh ρ=? 式中等号左边是地面(h=0)处大气压强P 0的值;右边是地面(h=0)处到大气层顶部的单位截面积上气柱的重量。上式表明,地面处的大气压强在数值上等于地面到大气层顶部的单位面积上气柱的重量。因此,大气层某高度处的大气压强在数值上也等于该处到大气层顶部的单位面积上气柱的重量。

相关文档
相关文档 最新文档