文档库 最新最全的文档下载
当前位置:文档库 › 哈工大组合导航作业1

哈工大组合导航作业1

哈工大组合导航作业1
哈工大组合导航作业1

运动载体随机线性定常系统稳定性变化

αβγ

--滤波方法的研究与分析

摘要:本文以目标跟踪为研究背景,对--

αβγ滤波方法的原理及其应用进行阐述。滤波作为目标跟踪问题中的关键技术,已有很多种滤波方法,--

αβγ滤波方法通过预先设定系数,大大减少滤波算法的计算量,工程可实现性强,该方法被广泛地应用于实际工程中。

关键词:目标跟踪;--

αβγ滤波方法;

中图分类号:V448.22 文献标识码:A 文章编号:

Research on the stability analysis of moving-vehicle’s stochastic linear systems

via αβγ

--Filter

Nie Tao

(Harbin Institute of Technology, Harbin 150080)

Abstract:This paper investigates the αβγ

--filter method on target tracking problem. As the target tracking problem’s key technology, many filter method has been used. The αβγ

--filter reduces the computation via predetermined coefficient, which has been widely used in practical engineering.

Keywords:Target Tracking ; αβγ

--Filter;

0 引言

目标跟踪问题作为科学技术发展的一个方面,可以追溯到第二次世界大战前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。之后,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。目标跟踪是利用探测器(雷达、声纳、红外等)所获得的运动目标(飞机、坦克、舰艇等)量测,对目标的运动状态(位置、速度、加速度等)进行估计和跟踪的方法。由于量测数据中含有大量的干扰成分,有必要对量测信息进行处理,因此目标跟踪过程也是一个消除误差的处理过程。在军事和民用领域中,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。

机动目标跟踪理论需要综合运用随机统计决策、估值理论、最优化算法等现代信息处理技术跟踪目标运动轨迹。所涉及的问题是控制、指挥、通讯和情报学科发展的前沿问题,是当今国际上研究的热门方向。同时机动目标跟踪也是一个典型的不确定性问题,随着军事环境的不断发展,特别是跟踪环境和目标机动性能发生变化,使得目标跟踪问题的不确定性更加严重。其不确定性主要表现为目标运动状态的不确定性和探测器量测起源的不确定性,这就要求机动目标跟踪系统必须适应机动和环境的变化,运用适当的方法跟踪运动状态时刻变化的目标。

目标跟踪的核心问题是滤波。自从卡尔曼滤波理论提出,并在以雷达为探测器的跟踪系统中成功应用以来,特别是由于卡尔曼滤波非常适合计算机处理,从而使目标跟踪得到了迅速的发展,也使精确有效的跟踪机动目标成为可能[1-3]。由于机动出现的复杂性、随机性和多样性,对机动目标进行跟踪一直是一个具有挑战性的问题,不管在理论上和实践上都有较高的技术难度。随着现代航空航天技术的飞速发展,各种飞行器的飞行速度和机动性越来越高,比如现在的卫星运行速度能达到5000m/s。在此背景下,如何提高机动目标的跟踪性能成为一个越来越重要的问题,因此迫切需要研究性能更为优越的跟踪滤波方法[4]。

1现阶段目标跟踪算法研究现状

外几十年的研究,已经得到了一系列的目标跟踪模型和算法,归纳起来主要有以下这些:时常系统下的针对匀速(CV)运动目标的α-β模型和针对匀加速度(CA)运动目标的α?β?γ模型,其主要特点是计算简单。1969年,R.A. Singer提出了机动目

标的零均值、一阶时间相关机动加速度模型(即Singer模型),他将目标的机动加速度表示为随机状态噪声驱动的结果,并由此建立起机动目标运动的统计模型,它用有色噪声而不是用白色噪声描述机动加速度更为切合实际,但一阶时间相关模型只适用于等速和等加速范围内的目标运动,对于强烈的机动,即超过等加速度范围的目标运动,采用这中模型将引起较大的模型误差;1979年,R. L. Moose 等人提出了具有随机开关均值的半马尔可夫机动目标统计模型,该模型在Singer模型的基础上进了一步,该模型把机动看作为相应于马尔可夫过程描述的一系列有限指令,该指令由马尔可夫过程的转移概率来确定,转移时间为随机变量;1982年Bar-Shalom和Birmiwal提出的变维滤波算法,该方法采用平均新息法,一但检测到机动,滤波器就要使用不同的、较高维的状态量测,新的状态分量被附加上,再由非机动检测器检测机动消除并转换到原来的模型;1983年,周宏仁博士提出了机动目标的“当前”统计模型,该模型在Singer模型的基础上引进了加速度的均值项,并采用修正的瑞利-马尔科夫过程描述目标机动加速度的统计特性;1984-1989年Blom和Bar-Shalom在广义伪贝叶斯算法基础上,提出的一种具有Markov转移概率的交互式多模型(IMM)算法,这种算法在多模型算法的基础上考虑多个模型的交互作用,以此得出目标的状态估计;1996年,冯新喜等人提出了一种二级滤波模型,模型借鉴了输入估计算法的思想,将加速度的增量看作一个自回归过程(与目标状态分开),用Kalman 滤波方法进行滤波;1997年,K.Mehrotra和P.R.Mahapatra提出了机动目标的Jerk模型,在这种模型中,状态向量包括目标的位置、速度、加速度和加速度变化率,后者亦被称为Jerk,并假设目标Jerk 服从零均值、平稳的一阶时间相关过程,其时间相关函数为指数衰减形式;近年来,国内外还提出了一些基于粒子滤波等非线性滤波的机动目标跟踪算法,这些方法不受线性误差或高斯噪声假定的限制,但计算量过大;此外还有一些改进的αβ

-、αβγ

--滤波算法[5]以及一些多种方法的组合算法,它们均是为了克服单一模型的不足而作的一些有益的改进。

2卡尔曼滤波与αβγ

--滤波

2.1卡尔曼滤波器

卡尔曼滤波器是目标状态估计算法中常用的滤波器,通过建立目标的状态模型并估计目标的运动速度及加速度,可以对目标质心的未来点进行预测,从而缩小搜索区域,克服由于目标被局部遮挡时造成的跟踪丢失问题。卡尔曼滤波器是一个对动态系统的状态序列进行线性最小误差估计的算法,它能利用测量值修正估计的状态,提供可靠的状态估计,通过状态方程和观测方程来描述一个动态系统。其数学模型为[6]:

状态方程:

(1)(1,)()()

X k A k k X k W k

+=++(1) 观测方程:

()()()()

Z k H k X k V k

=+(2) 式中:()

X k为状态向量;()

Z k为观测向量;(1,)

A k k

+

为状态转移矩阵;()

H k为观测矩阵;;()

V k为观测噪声向量。()

W k,()

V k通常假设为互不相关的0均值高斯白噪声向量。利用卡尔曼滤波理论,可以很容易得到如下预测方程组和更新方程组。

预测方程组:

'(1|)(1,)'(|)

X k k A k k X k k

+=+(3) (1|)(1,)(|)(1,)()

T

P k k A k k P k k A k k Q k

+=+++

(4)

更新方程组:

1 (1)(1|)(1)[(1)(1|)(1)(1)]

T T

K k P k k H k H k P k k H k R k-+=+++++++

(5)

'(1|1)'(1|)

(1)[(1)(1)'(1|)]

X k k X k k

K k Z k H k X k k

++=+

+++-++

(6) (1|1)[(1)(1)](1|)

P k k I K k H k P k k

++=-+++(7) 在定义了状态方程和观测方程各个参数后,就可以运用卡尔曼滤波器实现运动目标的跟踪。通过递推的方法,可以不断预测运动目标在下一帧的位置。

图1 卡尔曼算法流程

Fig.1 The flow chart of Kalman filter method

2.2 αβγ--滤波器

αβγ--滤波器实质上是卡尔曼滤波的稳态解形式,是简单并且易于工程实现的常增益滤波方法,

已被广泛应用于跟踪滤波器的设计过程中[7]。

--αβγ

滤波器是一种递推滤波,它在非平稳时变信号处理过程中实现预测估计。由于采用了递归技术,因此无需考虑多个过去的输入信号,在每次递归运算时,只考虑前一个输入信号就行了,不需要将过去的测量值都存储起来,因此便于计算机处理。--αβγ滤波器可实现增益矩阵的离线计算,而且计算量相对于卡尔曼滤波器来说非常小。这是--αβγ滤波器预测估计的主要特点。它的增益形式就是αβγ、、这3个常数,由于系数固定,计算格式十分简单,不涉及矩阵运算,数据存储量小,运算量比Kalman 滤波器成级数减少,只要αβγ、、这3个常数取适当的值,实现的功能却能与Kalman 相同,可以对机动目标实现良好跟踪,因此是一种适合快速跟踪的滤波器。滤波器状态方程与量测方程与卡尔曼滤波器相同,滤波方程为: '(|)'(|1)()(()()'(|1))X k k X k k K k Z k H k X k k =-+--

(8)

'(|1)(|1)'(1|1)X k k k k X k k -=Φ--- (9)

2()K k T T βγα?

?=++???

? (10)

滤波增益系数确定如下:

α=

(11)

2(2)βα=-- (12)

2

βγα

=

(13) αβγ、、这3个常数滤波器用于对匀加速运动目标进行跟踪,目标的状态向量包含位置、速度和加速度三项分项。

2.3卡尔曼滤波器与αβγ--的对比

表1 卡尔曼滤波器与αβγ--滤波器的比较

Table 1 The comparison of Kalman Filter and αβγ--

Filter

其中,n 为状态矢量维数,r 为测量矢量维数,s 为输入噪声维数。存储量的单位根据滤波器中的数据类型来确定。不同的数据类型占用不同的存储空间。由表可知,--αβγ滤波器在占用系统存储量及计算量方面与卡尔曼滤波器相比有很大优势。 在跟踪性能方面,卡尔曼滤波效果要优于--αβγ滤波器。卡尔曼滤波有较好的跟踪精度,但是在目标发生机动时,滤波误差增大。--αβγ滤波器在目标是否发生机动时,滤波误差没有显著变化,但是其跟踪误差较大。

3

αβγ

--滤波器存在的问题及改进

由于--αβγ滤波器的系数比较固定,不适合跟踪

机动性多变的目标。而且,针对目标某一机动性,选取的系数值还存在滤波精度与收敛速度之间的矛盾。研究表明,跟踪滤波器的精度和收敛速度取决于Q 和R 的选择,而Q 和R 的取值与αβγ、、的选取必须折中考虑噪声特性与动态性能之间的平衡。最优参数满足:

2

2(2)/U T V U T ?=--??=??

(14)

在最优情况下,可以利用平滑系数来确定

αβγ、、的值。平滑系数的取值定了滤波器的收敛速度和滤波器的跟踪精度,但收敛速度和跟踪精度是一组矛盾,如果要求收敛速度较高,则跟踪误差较大,精度较差,反之亦然。

由于--αβγ滤波器的系数是必须预先设定好的

固定值,这样相对于卡尔曼滤波计算量大大减小,但是也带来了问题。由于系数预先设定,导致跟踪前对目标必须的机动性要有先验知识,如果目标改变机动性,就要改变αβγ、、值。这样通过仿真验证非常繁琐,在时变的系统中根本无法使用。因此,系数固定成了--αβγ滤波器的缺点。

针对--αβγ滤波器的局限性,文献[7]提出了多级组合的--αβγ滤波跟踪算法,利用多组αβγ、、值作为多个机动状态的参数,针对目标不同的机动性切换到相应的状态参数,得到相应的αβγ、、值。这种算法可以解决一些机动目标的跟踪问题,但能够切换的αβγ、、值必须固定,且级数毕竟有限,因此能够完成机动目标跟踪的任务有限,精度也不够高。文献[8]提出了一种自适应的--αβγ滤波跟踪算法,可以根据时变目标的机动性,在保证精度的前提下,利用模糊系统自动调整得到最好的平滑系数a 值,也即能够得到最好的αβγ、、值。

模糊集的基本思想是把普通集合中的绝对隶属关系灵活化,使元素对集合的隶属度从原来只能取0、1值扩充到可以取[0,1]区间中任一数值,因此很适合处理--αβγ滤波跟踪算法中系数的不确定性问题。模糊推理系统的输入和输出可以划分为若干个模糊子集,输出值的精度取决于模糊子集的数目。一般说,模糊子集越多,输出精度越高,但相应的计算量也会增加。在实际应用中,需要根据需要,选择合适的模糊规则库的大小。

--αβγ滤波器的目标状态中只包含位置、速度或加速度分量,随着目标机动性的增强和对跟踪高机动目标时的实时能力与状态估计精度要求的提高,这类滤波器的跟踪性能有所下降。针对这些情

况,文献[9]

提出了一种针对匀加加速度运动目标的包含位置、速度、加速度和加加速度分量的常增益滤波模型——---αβγδ滤波模型。文献给出了关于此四个参数的方程:

2

22222221224121224096448488120

TI δαγβδ

γαγαδβδγβαδααβδβ?=?-??=?

?++--=??++----=? (15)

其中,3v

w

T TI σσ=

,称为跟踪指标(tracking

index )。联立方程可对四个参数进行数值求解。研

究表明,

---αβγδ滤波算法比--αβγ滤波算法误差要小,在跟踪性能上也有显著提高。

4 结 语

本文以目标跟踪为背景,对卡尔曼滤波以及

--αβγ滤波方法进行介绍,在跟踪性能方面,卡尔曼滤波方法的跟踪性能更好,而--αβγ滤波方法因其计算量小的特点而被广泛应用,最后针对--αβγ滤波方法的改进方法的基本原理进行概述。

参 考 文 献

[1] 秦永元, 张洪钺, 汪叔华. 卡尔曼滤波与组合导航原理

[M]. 西北工业大学出版社, 1998.

[2] 穆荣军,崔乃刚. 飞行器动态导航与滤波[M]. 哈尔滨

工业大学出版社, 2014.

[3] 付梦印, 邓志红, 张继伟. Kalman 滤波理论及其在导

航系统中的应用[M]. 科学出版社, 2003.

[4] 郑鸿, 杨晨阳. 机械扫描雷达和相控阵雷达中的 TWS

技术[J]. 系统工程与电子技术, 1998, 20(9): 1-6. [5] 易令. 高速高机动目标跟踪算法研究 [D][D]. 电子科

技大学, 2006.

[6] 王建东, 王亚飞, 张晶. 基于卡尔曼滤波器的运动目标

跟踪算法[J]. 数字通信, 2009, 36(6): 53-57.

[7] 黄鹤, 张会生, 许家栋, 等. 一种改进的 α-β-γ 滤波跟

踪算法[J]. 西北工业大学学报, 2008, 26(2): 146-151. [8] 赵兴录. 机动目标跟踪算法研究[J]. 现代雷达, 1993,

15(6): 44-50.

[9] 王国庆. 自适应跟踪滤波算法研究及其工程实现[D].

西安电子科技大学, 2007.

哈工大卫星定位导航原理实验满分报告

卫星定位导航原理实验 班级:1105103班 学号:1110510304 姓名: 同组人: 2014年11月12日

实验一实时卫星位置解算及结果分析 一、实验原理 实时卫星位置解算在整个GPS接收机导航解算过程中占有重要的位置。卫星位置的解算是接收机导航解算(即解出本地接收机的纬度、经度、高度的三维位置)的基础。需要同时解算出至少四颗卫星的实时位置,才能最终确定接收机的三维位置。 对某一颗卫星进行实时位置的解算需要已知这颗卫星的星历和GPS时间。而星历和GPS 时间包含在速率为50比特/秒的导航电文中。导航电文与测距码(C/A码)共同调制L1载频后,由卫星发出。本地接收机相关接收到卫星发送的数据后,将导航电文解码得到导航数据。后续导航解算单元根据导航数据中提供的相应参数进行卫星位置解算、各种实时误差的消除、本地接收机位置解算以及定位精度因子(DOP)的计算等工作。关于各种实时误差的消除、本地接收机位置解算以及定位精度因子(DOP)的计算将在后续实验中陆续接触,这里不再赘述。 卫星的额定轨道周期是半个恒星日,或者说11小时58分钟2.05秒;各轨道接近于圆形,轨道半径(即从地球质心到卫星的额定距离)大约为26560km。由此可得卫星的平均角速度ω和平均的切向速度v s为: ω=2π/(11*3600+58*60+2.05)≈0.0001458rad/s (1.1) v s=rs*ω≈26560km*0.0001458≈3874m/s (1.2) 因此,卫星是在高速运动中的,根据GPS时间的不同以及卫星星历的不同(每颗卫星的星历两小时更新一次)可以解算出卫星的实时位置。本实验同时给出了根据当前星历推算出的卫星在11小时58分钟后的预测位置,以此来验证卫星的额定轨道周期。 本实验另一个重要的实验内容是对卫星进行相隔时间为1s的多点测量(本实验给出了三点),根据多个点的测量值,可以估计Doppler频移。 由于卫星与接收机有相对的径向运动,因此会产生Doppler效应,而出现频率偏移。Doppler频移的直接表现是接收机接收到的卫星信号不恰好在L1(1575.42MHz)频率点上,而是在L1频率上叠加了一个最大值为±5KHz左右的频率偏移,这就给前端相关器进行频域搜索,捕获卫星信号带来了困难。如果能够事先估计出大概的Doppler频偏,就会大大减小相关器捕获卫星信号的难度,缩短捕获卫星信号的时间,进而缩短接收机的启动时间。GPS 接收机的启动时间是衡量接收机性能好坏的重要参数之一,而卫星信号的快速捕获,缩短接收机的启动时间也是目前GNSS业界的热点问题。 本实验中Doppler频移的预测与后续《可视卫星位置预测》实验是紧密联系的,可视卫星位置预测中也包括对Doppler频移的预测。本实验将给出根据卫星位置和本地接收机的初始位置预测Doppler频移的方法。 有了卫星位置和本地接收机的初始位置,就可以根据空间两点间的距离公式,得出卫星距接收机的距离d。记录同一卫星在短时间t内经过的两点的空间坐标S1和S2,就可以分别得到这两点距接收机的距离d1和d2。只要相隔时间t取的较小(本实验取t=1s),|d1-d2|/t 就可以近似认为是卫星与接收机在t时间内的平均相对径向运动速度,再将此速度转换为频率的形式就可以得到大致的Doppler频移。 设本地接收机的初始位置为R(x r,y r,z r),记录的卫星两点空间坐标为S1(x1,y1,z1)、S2(x2,y2,z2),相隔时间为t,卫星与接收机平均相对径向运动速度为v d,光速为c,Doppler 频移为f d,则Doppler频移预测的具体公式如下所示: d1=[(x1-x r)2+(y1-yr)2+(z1-z r)2]1/2 (1.3) d2=[(x2-x r)2+(y2-y r)2+(z2-z r)2]1/2(1.4)

哈工大机械设计大作业V带传动设计完美版

哈工大机械设计大作业V带传动设计完美版

————————————————————————————————作者:————————————————————————————————日期: ?

Harbin Instituteof Technology 机械设计大作业说明书 大作业名称:机械设计大作业 设计题目:V带传动设计 班级: 设计者: 学号: 指导教师: 设计时间: 2014.10.25 哈尔滨工业大学

目录 一、大作业任务书 ........................................................................................................................... 1 二、电动机的选择 ........................................................................................................................... 1 三、确定设计功率d P ..................................................................................................................... 2 四、选择带的型号 ........................................................................................................................... 2 五、确定带轮的基准直径1d d 和2d d ............................................................................................. 2 六、验算带的速度 ........................................................................................................................... 2 七、确定中心距a 和V 带基准长度d L ......................................................................................... 2 八、计算小轮包角 ........................................................................................................................... 3 九、确定V 带根数Z ........................................................................................................................ 3 十、确定初拉力0F ......................................................................................................................... 3 十一、计算作用在轴上的压力 ....................................................................................................... 4 十二、小V 带轮设计 .. (4) 1、带轮材料选择 ............................................................................................................. 4 2、带轮结构形式 . (4) 十二、参考文献 ............................................................................................................................... 6 ?

线性系统大作业1

研 究 生 课 程 论 文 (2014-2015学年第一学期) 线性系统的基本特性 研究生:

线性系统理论的研究对象为线性系统。线性系统是最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中研究最为充分、发展最为成熟和应用最为广泛的一个分支。线性系统理论中的很多概念和方法,对于研究系统控制理论的其他分支,如非线性系统理论、最优控制理论、自适应控制理论、鲁棒控制理论、随机控制理论等,同样也是不可缺少的基础。 线性系统的一个基本特征是其模型方程具有线性属性即满足叠加原理。叠加原理是指,若表系统的数学描述为L ,则对任意两个输入变量u 1和u 2以及任意两个非零有限常数c 1和c 2必成立关系式: 11221122()()()L c u c u c L u c L u +=+ 对于线性系统,通常还可进一步细分为线性时不变系统(linear time-invariant systems)和线性时变系统(linear time-varying systems)两类。 线性时不变系统也称为线性定常系统或线性常系数系统。其特点是,描述系统动态过程的线性微分方程或差分方程中,每个系数都是不随时间变化的函数。从实际的观点而言,线性时不变系统也是实际系统的一种理想化模型,实质上是对实际系统经过近似化和工程化处理后所导出的一类理想化系统。但是,由于线性时不变系统在研究上的简便性和基础性,并且为数很多的实际系统都可以在一定范围内足够精确地用线性时不变系统来代表,因此自然地成为线性系统理论中的主要研究对象。 线性时变系统也称为线性变系数系统。其特点是,表征系统动态过程的线性微分方程或差分方程中,至少包含一个卷数为随时间变化的函数。在视实世界中,由于系统外部和内部的原因,参数的变化是不可避免的,因此严格地说几乎所有系统都属于时变系统的范畴。但是,从研究的角度,只要参数随时间

哈工大导航原理大作业

《导航原理》作业 (惯性导航部分)

一、题目要求 A fighter equipped with SINS is initially at the position of ?35 NL ?122X G Y G Z G ,and three accelerometers, X A ,Y A ,Z A are installed along the axes b X ,b Y ,b Z of the body frame respectively. Case 1:stationary onboard test The body frame of the fighter initially coincides with the geographical frame, as shown in the figure, with its pitching axis b X pointing to the east,rolling axis b Y to the north, and azimuth axis b Z upward. Then the body of the fighter is made to rotate step by step relative to the geographical frame. (1) ?10around b X (2) ?30around b Y (3) ?50-around b Z After that, the body of the fighter stops rotating. You are required to compute the final output of the three accelerometers on the fighter, using both DCM and quaternion respectively,and ignoring the device errors. It is known that the magnitude of gravity acceleration is 2/8.9g s m =. Case 2:flight navigation Initially, the fighter is stationary on the motionless carrier with its board 25m above the sea level. Its pitching and rolling axes are both in the local horizon, and its rolling axis is ?45on the north by east, parallel with the runway onboard. Then the fighter accelerate along the runway and take off from the carrier. The output of the gyros and accelerometers are both pulse numbers,Each gyro pulse is an angular increment of sec arc 1.0-,and each accelerometer pulse is g 6e 1-,with 2/8.9g s m =.The gyro output frequency is 10 Hz,and

哈工大自动控制原理 大作业

自动控制原理 大作业 (设计任务书) 姓名: 院系: 班级: 学号: 5. 参考图5 所示的系统。试设计一个滞后-超前校正装置,使得稳态速度误差常数为20 秒-1,相位裕度为60

度,幅值裕度不小于8 分贝。利用MATLAB 画出 已校正系统的单位阶跃和单位斜坡响应曲线。 + 一.人工设计过程 1.计算数据确定校正装置传递函数 为满足设计要求,这里将超前滞后装置的形式选为 ) 1)(() 1)(1()(2 12 1T s T s T s T s K s G c c ββ++++= 于是,校正后系统的开环传递函数为)()(s G s G c 。这样就有 )5)(1()(lim )()(lim 00++==→→s s s K s sG s G s sG K c c s c s v 205 ==c K 所以 100=c K 这里我们令100=K ,1=c K ,则为校正系统开环传函) 5)(1(100 )(++= s s s s G

首先绘制未校正系统的Bode 图 由图1可知,增益已调整但尚校正的系统的相角裕度为? 23.6504-,这表明系统是不稳定的。超前滞后校正装置设计的下一步是选择一个新的增益穿越频率。由)(ωj G 的相角曲线可知,相角穿越频率为2rad/s ,将新的增益穿越频率仍选为2rad/s ,但要求2=ωrad/s 处的超前相角为? 60。单个超前滞后装置能够轻易提供这一超前角。 一旦选定增益频率为2rad/s ,就可以确定超前滞后校正装置中的相角滞后部分的转角频率。将转角频率2/1T =ω选得低于新的增益穿越频率1个十倍频程,即选择2.0=ωrad/s 。要获得另一个转角频率)/(12T βω=,需要知道β的数值, 对于超前校正,最大的超前相角m φ由下式确定 1 1 sin +-= ββφm 因此选)79.64(20 ==m φβ,那么,对应校正装置相角滞后部分的极点的转角频率为 )/(12T βω=就是01.0=ω,于是,超前滞后校正装置的相角滞后部分的传函为 1 1001 520 01.02.0++=++s s s s 相角超前部分:由图1知dB j G 10|)4.2(|=。因此,如果超前滞后校正装置在2=ωrad/s 处提供-10dB 的增益,新的增益穿越频率就是所期望的增益穿越频率。从这一要求出发,可 以画一条斜率为-20dB 且穿过(2rad/s ,-10dB )的直线。这条直线与0dB 和-26dB 线的交点就确定了转角频率。因此,超前部分的转角频率被确定为s rad s rad /10/5.021==ωω和。 因此,超前校正装置的超前部分传函为 )1 1.01 2(201105.0++=++s s s s 综合校正装置的超前与之后部分的传函,可以得到校正装置的传递函数)(S G c 。 即) 1100)(11.0() 15)(12(01.02.0105.0)(++++=++++= s s s s s s s s s G c 校正后系统的开环传递函数为

惯性导航作业

惯性导航作业

一、数据说明: 1:惯导系统为指北方位的捷连系统。初始经度为116.344695283度、纬度为39.975172度,高度h为30米。初速度 v0=[-9.993908270;0.000000000;0.348994967]。 2:jlfw中为600秒的数据,陀螺仪和加速度计采样周期分别为为1/100秒和1/100秒。 3:初始姿态角为[2 1 90](俯仰,横滚,航向,单位为度),jlfw.mat中保存的为比力信息f_INSc(单位m/s^2)、陀螺仪角速率信息wib_INSc(单位rad/s),排列顺序为一~三行分别为X、Y、Z向信息. 4: 航向角以逆时针为正。 5:地球椭球长半径re=6378245;地球自转角速度wie=7.292115147e-5;重力加速度g=g0*(1+gk1*c33^2)*(1-2*h/re)/sqrt(1-gk2*c33^2); g0=9.7803267714;gk1=0.00193185138639;gk2=0.00669437999013;c33=sin(lat纬度); 二、作业要求: 1:可使用MATLAB语言编程,用MATLAB编程时可使用如下形式的语句读取数据:load D:\...文件路径...\jlfw,便可得到比力信息和陀螺仪角速率信息。用角增量法。 2:(1) 以系统经度为横轴,纬度为纵轴(单位均要转换为:度)做出系统位置曲线图; (2) 做出系统东向速度和北向速度随时间变化曲线图(速度单位:m/s,时间单位:s); (3) 分别做出系统姿态角随时间变化曲线图(俯仰,横滚,航向,单位转换为:度,时间单位:s); 以上结果均要附在作业报告中。 3:在作业报告中要写出“程序流程图、现阶段学习小结”,写明联系方式。

哈工大机械设计大作业轴系

HarbinI n s t i tut e o fTech n o logy 机械设计大作业说明书大作业名称:轴系设计 设计题目: 5.1.5 班级:1208105 设计者: 学号: 指导教师: 张锋 设计时间:2014.12.03 哈尔滨工业大学

哈尔滨工业大学 机械设计作业任务书 题目___轴系部件设计____ 设计原始数据: 方案电动机 工作功 率P/k W 电动机满 载转速n m /(r/min) 工作机的 转速n w /(r/min) 第一级 传动比 i1 轴承座 中心高 度 H/mm 最短工 作年限 工作环 境 5.1.5 3 710 80 2 170 3年3 班 室内清 洁 目录 一、选择轴的材料 (1) 二、初算轴径 (1) 三、轴承部件结构设计 (1) 3.1轴向固定方式 (2) 3.2选择滚动轴承类型 (2) 3.3键连接设计 (2) 3.4阶梯轴各部分直径确定 (2) 3.5阶梯轴各部段长度及跨距的确定 (2) 四、轴的受力分析 (3) 4.1画轴的受力简图 (3) 4.2计算支反力 (3) 4.3画弯矩图 (3) 4.4画转矩图 (5) 五、校核轴的弯扭合成强度 (5)

六、轴的安全系数校核计算………………………………………………6 七、键的强度校核 (7) 八、校核轴承寿命 (8) 九、轴上其他零件设计 (9) 十、轴承座结构设计 (9) 十一、轴承端盖(透盖).........................................................9参考文献 (10)

一、选择轴的材料 该传动机所传递的功率属于中小型功率,因此轴所承受的扭矩不大。故选45号钢,并进行调质处理。 二、初算轴径 对于转轴,按扭转强度初算直径 3min m P d C n ≥ 式中: P ————轴传递的功率,KW ; m n ————轴的转速,r/mi n; C————由许用扭转剪应力确定的系数,查各种机械设计教材或机械设计手册。 根据参考文献1表9.4查得C=118~106,取C=118, 所以, mm n P C d 6.23355 85.211833==≥ 本方案中,轴颈上有一个键槽,应将轴径增大5%,即 ????d ≥23.6×(1+5%)=24.675mm 按照GB 2822-2005的a R 20系列圆整,取d=25mm。 根据GB/T1096—2003,键的公称尺寸78?=?h b ,轮毂上键槽的尺寸 b=8m m,mm t 2.0013.3+= 三、轴承部件结构设计 由于本设计中的轴需要安装带轮、齿轮、轴承等不同的零件,并且各处受力不同,因此,设计成阶梯轴形式,共分为七段。以下是轴段的草图: 3.1及轴向固定方式 因传递功率小,齿轮减速器效率高、发热小,估计轴不会长,故轴承部件的固定方式可采用两端固定方式。因此,所涉及的轴承部件的结构型式如图2所示。然后,可按轴上零件的安装顺序,从min d 处开始设计。 3.2选择滚动轴承类型 因轴承所受轴向力很小,选用深沟球轴承,因为齿轮的线速度,齿轮转动时飞溅的润滑油不足于润滑轴承,采用油脂对轴承润滑,由于该减速器的工作环境清 洁,脂润滑,密封处轴颈的线速度较低,故滚动轴承采用毡圈密封,由于是悬臂布置所以不用轴上安置挡油板。 3.3 键连接设计 轴段⑦ 轴段⑥ 轴段⑤ 轴段④ 轴段③ 轴段② 轴段① L1 L2 L3 图1

导航原理实验报告

导航原理实验报告 院系: 班级: 学号: 姓名: 成绩: 指导教师签字: 批改日期:年月日 哈尔滨工业大学航天学院 控制科学实验室

实验1 二自由度陀螺仪基本特性验证实验 一、实验目的 1.了解机械陀螺仪的结构特点; 2.对比验证没有通电和通电后的二自由度陀螺仪基本特性表观; 3.深化课堂讲授的有关二自由度陀螺仪基本特性的内容。 二、思考与分析 1. 定轴性 (1) 设陀螺仪的动量矩为H ,作用在陀螺仪上的干扰力矩为M d ,陀螺仪漂移角 速度为ωd ,写出关系式说明动量矩H 越大,陀螺漂移越小,陀螺仪的定轴性(即稳定性)越高. 答案: d d H M ω=? /sin d d H M θω = 干扰力矩M d 一定时,动量矩H 越大,陀螺仪漂移角速度为ωd 越小,陀螺漂移越小, 陀螺仪的定轴性(即稳定性)越高. (2) 在陀螺仪原理及其机电结构方而简要蜕明如何提高H 的量值? 答案:H J =Ω 由公式2A J dm r = ???可知 提高H 的量值有四种途径: 1. 陀螺转子采用密度大的材料,其质量提高了,转动惯量也就提高了。 2. 改变质量分布特性。在质量相同的情况下,若质量分布的半径距质 心越远,H 越大。因此将陀螺转子的有效质量外移,如动力谐陀螺将转子设计成环状。即在陀螺电机定子环中,可做成质量集中分布在环外边缘的环形结构,切边缘部分材质密度大,可提高转动惯量。 3. 增大r,可有效提高转动惯量。 4. 另外可通过采用外转子电机来改变电机质量分布,增大r 。改变电机定转子结构:采用外转子,内定子结构的转子电机。

4. 增加陀螺转子的旋转速度。 2/602(1)/n s f p ωππ==- ,60(1)/n f s p =- 提高电压周波频率 f ↑——〉n ↑——H ↑ f=400Hz 适当减少极对数 ,如取p=1 适当减少转差率s ,可通过减少转子支承轴承摩擦来实现 2.进动性 (1) 在外框架施加一沿x 轴正方向作用力矩时,画出动量矩H 的进动方 向及矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。 b) 在内框架施加一沿Y 轴正方向作用力矩时,画出动量矩H 的进动方向及 矢量M ,ω,H 的关系坐标图。(设定H 沿Z 轴正方向)并在坐标中标出陀螺仪自转轴的旋转方向n 。

哈工大 自动控制原理本科教学要求

自动控制原理本科教学要求 自动控制专业的自动控制原理课程包括自动控制原理Ⅰ和现代控制理论两部分,分两个学期讲授。 《自动控制原理I》教学大纲 课程编号:T1043010 课程中文名称:自动控制原理 课程英文名称: Automatic Control Theory 总学时: 100 讲课学时:88 实验学时:16 习题课学时:0 上机学时: 学分:6.0 授课对象:自动控制专业本科生 先修课程:电路原理、电子技术和电机方面的有关课程;复变函数和线性代数 教材:《自动控制原理》(第三版)李友善主编,国防工业出版社,2005年 参考书:《自动控制原理》(第四版)胡寿松主编,科学出版社,2001年 《Linear Control System Analysis and Design》(第四版)清华大学出版社,2000年 一、课程教学目的: 自动控制原理是控制类专业最重要的一门技术基础课。这门课主要讲解自动控制的基本理论、自动控制系统的分析方法与设计方法。 本课程的主要任务是培养学生掌握自动控制系统的构成、工作原理和各件的作用;掌握建立控制系统数学模型的方法。掌握分析与综合线性控制系统的三种方法:时域法、根轨迹法和频率法。掌握计算机控制系统的工作原理以及分析和综合的方法。了解非线性控制系统的分析和综合方法。建立起以系统的概念、数学模型的概念、动态过程的概念。 通过课程的学习使学生掌握分析、测试和设计自动控制系统的基本方法。结合各种实践环节,进行自动控制领域工程技术人员所需的基本工程实践能力的训练。从理论和实践两方面为学生进一步学习自动控制专业的其他专业课如:过程控制、数字控制、飞行器控制、智能控制、导航与制导、控制系统设计等打下必要的专业技术基础。自动控制原理课程是自动控制专业学生培养计划中承上启下的一个关键环节,因此该课程在自动控制专业的教学计划中占有重要的位置。 二、教学内容及基本要求 第一章控制系统的一般概念(2学时) 本课程的目的及讲授内容,自动控制的基本概念和自动控制系统,开环控制与闭环控制,控制系统的组成,控制系统的基本要求。 第二章控制系统的数学模型(12学时) 控制系统微分方程的建立,传递函数的基本概念和定义,传递函数的性质,基本环节及传递函数,控制系统方框图及其绘制,方框图的变换规则,典型系统的方框图与传递函数,方框图的化简,用梅森增益公式化简信号流图。 第三章线性系统的时域分析(14学时) 典型输入信号,一阶系统的瞬态响应,线性定常系统的重要性质,二阶系统的标准型及其特点,二阶系统的单位阶跃响应,二阶系统的性能指标,二阶系统的脉冲响应,二阶系统的单位速度响应,初始条件不为零时二阶系统的过渡过程。 闭环主导极点的概念,高阶系统性能指标的近似计算。稳定的基本概念和定义,线性系统的稳定条件,劳斯稳定判据。控制系统的稳态误差,稳态误差的计算:泰勒级数法和长除法,控制系统的无静差度,用终值定理计算稳态误差,减小稳态误差的方法 第四章根轨迹法(12学时) 控制系统的根轨迹,绘制根轨迹的基本规则,控制系统的根轨迹分析,参数根轨迹,闭环系统的零极点分布域性能指标 第五章线性系统的频域分析(14学时) 频率特性的概念,典型环节频率特性的极坐标图表示,典型环节频率特性的对数坐标图表示,开环系统的对数频率特性,最小相位系统。v=0、1、2时开环系统的极坐标图,Nyquist稳定判据,用开环系统的Bode图判定闭环系统的稳定性,控制系统的相对稳定性。控制系统的性能指标,二阶系统性能指标间的关系,高阶系统性能指标间的关系,开环对数频率特性和性能指标的关系。 第六章控制系统的综合与校正(14学时) 控制系统校正的基本方法,基本控制规律。相位超前校正网络,用频率特法确定相位超前校正参数,按根轨迹法确定相位超前校正参数。相位滞后网络,用频率特性法确定相位滞后校正参数,按根轨迹法确定相位滞后校正参数。相位滞后-超前校正网络,控制系统的期望频率特性,控制系统的固有频率特性,根据期望频率特性确定串联校正参数。

哈尔滨工业大学机械设计大作业_带传动电算

H a r b i n I n s t i t u t e o f T e c h n o l o g y 上机电算说明书 课程名称:机械设计 电算题目:普通V带传动 院系:机电工程学院 班级: 设计者: 学号: 指导教师: 设计时间:2015.11.11-2015.12.1 哈尔滨工业大学

目录 一、普通V带传动的内容 (1) 二、变量标识符 (1) 三、程序框图 (2) 四、V带设计C程序 (3) 五、程序运行截图 (10) 参考文献 (11)

一、普通V带传动的内容 给定原始数据:传递的功率P,小带轮转速n1 传动比i及工作条件 设计内容:带型号,基准长度Ld,根数Z,传动中心距a,带轮基准直径dd1、dd2,带轮轮缘宽度B,初拉力F0和压轴力Q。 二、变量标识符 为了使程序具有较好的可读性易用性,应采用统一的变量标识符,如表1所示。表1变量标识符表。 表1 变量标识符表

三、程序框图

四、V带设计c程序 #include #include #include #define PAI 3.14 int TYPE_TO_NUM(char type); /*将输入的字符(不论大小写)转换为数字方便使用*/ float Select_Ki(float i); /*查表选择Ki的程序*/ float Select_KA(float H,int GZJ,int YDJ); /*查表选择KA的程序*/ float Select_KL(float Ld,int TYPE); /*查表选择KL的程序*/ float Select_M(int TYPE); /*查表选择m的程序*/ float Select_dd1(int TYPE); /*查表选择小轮基准直径dd1的程序*/ float Select_dd2(int dd1,float i); /*查表选择大轮直径dd2的程序*/ float Compute_P0(float V,int TYPE,float dd1); /*计算P0的程序*/ float Compute_DIFP0(int TYPE,float Ki,int n1); /*计算DIFP0的程序*/ float Compute_VMAX(int TYPE); /*计算VMAX的程序*/ float Compute_KALF(float ALF1); /*计算KALF的程序*/ float Compute_B(int TYPE,int z); /*计算带宽B的程序*/ float* Compute_LAK(float dd1,float dd2,int TYPE); /*计算Ld,a,KL的程序*/ main() { float P,H,i,n1,KA,Ki,dd1,dd2,V,P0,DIFP0,Pd,VMAX,*LAK,m,Ld,KALF,a,KL,z,F0,ALF1, Q,B; int YDJ,GZJ,TYPE,ANS; char type,ans; printf(" V带传动设计程序\n"); printf(" 程序设计人:×××\n 班号:123456678\n 学号:1234567896\n"); START: printf("请输入原始参数:\n"); printf("传递功率P(KW):"); scanf("%f",&P); printf("小带轮转速n1(r/min):"); scanf("%f",&n1); printf("传动比i:"); scanf("%f",&i); printf("每天工作时间H(h):"); scanf("%f",&H); printf("原动机类型(1或2):"); scanf("%d",&YDJ); printf("工作机载荷类型:\n1,载荷平稳\n2,载荷变动较小\n3,载荷变动较大\n4,载荷变动很大\n"); scanf("%d",&GZJ);

哈尔滨工业大学自动化专业本科生培养方案

自动化专业本科生培养方案 一、培养目标 本专业培养知识、能力、素质,德、智、体、美全面发展,在较宽的科技领域(包括控制理论与工程应用、系统分析设计与仿真、运动控制、过程控制、飞行器导航制导与控制以及系统工程技术、电子工程技术、计算机技术与应用等)掌握坚实的基础理论和系统的专业知识,并具备在高等院校、科研院所及工业企业等部门和行业从事与控制系统相关的分析、设计、开发、集成、管理及维护的高素质、复合类、创新型高级科技人才。 本专业注重宽基础、强适应性,注重基础理论及其与工程实际相结合,面向国家现代化建设,并具有紧密结合航天、宇航与国防工业现代化建设需求的人才培养特色。 二、培养要求 本专业学生主要学习自动化领域的基本理论和基本知识,接受自动化领域的基本方法及其解决实际工程问题等方面的基本训练,具有自动化工程设计与研究方面的基本能力。 (一)毕业生应在思想和情感方面具备以下主要素质: 1.政治品质。热爱祖国,关心国家大事、时事政治,有较强的法制法规观念; 2.思想品质。树立积极向上的人生观、正确的价值观和辩证唯物主义的世界观; 3.道德品质。具备良好的道德修养和文明的行为准则,具有敬业精神和职业道德。 (二)毕业生应获得以下主要方面的知识和技能: 1.掌握数理等基础理论的原理和方法; 2.具备较扎实的外语综合能力,能够顺利地阅读本专业外文文献; 3.掌握计算机、电气等关联学科的相关原理、方法及相应实验仪器的使用技能; 4.身心健康,具有较好的人文社会科学基础以及军事训练方面的基本知识; 5.掌握自动控制原理、控制系统分析和综合(设计)等专业知识和方法,具有较好的工程实践能力; 6.掌握科学计算、系统仿真、软硬件开发等实验方法和技术; 7.具有辩证的、逻辑的、形象的和创造的科学思维方式和对事物进行统计、分析、综合、归纳的技能,并具备基本的发现问题、分析问题和解决问题的能力。 (三)毕业生应在意识和意志方面具备以下主要素质: 1.协作意识。具备与同学同事协同工作、协调配合的能力; 2.创新竞争意识。崇尚科学,求真务实,具有较强的创新意识和竞争意识; 3.坚毅意志。具备勇于面对困难并善于克服困难的心理素质。 三、主干学科 控制科学与工程。 四、专业主干课程 电路I、模拟电子技术基础II、数字电子技术基础II、自动控制原理I、现代控制理论基础、自动控制元件及线路I、计算机控制、控制系统设计、导航原理、飞行器控制与制导、过程控制系统、运动控制系统。

哈工大导航原理大作业

哈工大导航原理大作业-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

《导航原理》作业 (惯性导航部分)

一、题目要求 A fighter equipped with SINS is initially at the position of ?35 NL and ?122 EL,stationary on a motionless carrier. Three gyros X G ,Y G ,Z G ,and three accelerometers, X A ,Y A ,Z A are installed along the axes b X ,b Y ,b Z of the body frame respectively. Case 1:stationary onboard test The body frame of the fighter initially coincides with the geographical frame, as shown in the figure, with its pitching axis b X pointing to the east,rolling axis b Y to the north, and azimuth axis b Z upward. Then the body of the fighter is made to rotate step by step relative to the geographical frame. (1) ?10around b X (2) ?30around b Y (3) ?50-around b Z After that, the body of the fighter stops rotating. You are required to compute the final output of the three accelerometers on the fighter, using both DCM and quaternion respectively,and ignoring the device errors. It is known that the magnitude of gravity acceleration is 2/8.9g s m =. Case 2:flight navigation Initially, the fighter is stationary on the motionless carrier with its board 25m above the sea level. Its pitching and rolling axes are both in the local horizon, and its rolling axis is ?45on the north by east, parallel with the runway onboard. Then the fighter accelerate along the runway and take off from the carrier. The output of the gyros and accelerometers are both pulse numbers,Each gyro pulse is an angular increment of sec arc 1.0-,and each accelerometer pulse is g 6e 1-,with 2/8.9g s m =.The gyro output frequency is 10 Hz,and the accelerometer ’s is 1Hz. The output of gyros and accelerometers within 5400s are stored in MATLAB data files named gout.mat and aout.mat, containing matrices gm of 35400? and am of 35400? respectively. The format of data as shown in the tables, with 10 rows of each matrix selected. Each row represents the out of the type of sensors at each sample time.

哈工大机械设计大作业一千斤顶

Harbin Institute of Technology 哈尔滨工业大学 机械设计作业设计计算说明书 题目:设计螺旋起重器(千斤顶) 系别: 班号: 姓名: 日期:

Harbin Institute of Technology 哈尔滨工业大学 机械设计作业任务书 题目:设计螺旋起重器 设计原始数据:题号3.1.1 起重量Fq=30 kN 最大起重高度H=180mm

一 选择螺杆、螺母的材料 螺杆采用45#调制钢,由参考文献[2]表10.2查得抗拉强度b 600 MPa σ=,s 355 MPa σ=。 螺母材料用铝黄铜ZCuAl10Fe3。 二 耐磨性计算 螺杆选用45# 钢,螺母选用铸造铝黄铜ZCuAl10Fe3,由参考文献[1]表 5.8 查得[]p =18~25MPa 从表 5.8 的注释中可以查得,人力驱动时[]p 值可以加大20%,则[]p =21.6~30MPa 取[]25MPa p = 。 按耐磨性条件设计螺纹中径2d ,选用梯形螺纹,则 2d ≥ 由参考文献[1]查得,对于整体式螺母系数2ψ==1.2—2.5,取2ψ=。 则 式中:Q F -----轴向载荷,N ; 2d -----螺纹中径,mm ; []p -----许用压强,MPa ; 查参考文献[2]表11.5取公称直径28d =mm ,螺距3P =mm ,中径226.5d =mm ,小径 324.5d =mm ,内螺纹大径428.5D =mm 。 三 螺杆强度校核 螺杆危险截面的强度条件为: 219.6d mm ≥==

e []σσ=≤ (2) 式中:Q F -----轴向载荷,N ; 3d -----螺纹小径,mm ; 1T -----螺纹副摩擦力矩,2 1tan(') 2Q d T F ψρ=+ (3) ψ为螺纹升角,ψ ; []σ-----螺杆材料的许用应力,MPa 。 查参考文献[1]表5.10得钢对青铜的当量摩擦因数'0.08~0.10f =,螺纹副当量摩擦角 'arctan 'arctan 0.08~arctan 0.10 4.5739~5.7106f ρ===,取'5.7106ρ=(由表5.10的注 释知,大值用于启动时,人力驱动属于间歇式,故应取用大值)。把数据代入(3)式中,得 把数据代入(2)式中,得 由参考文献[1]表5.9可以查得螺杆材料的许用应力 s []4σ σ= (4) 其中s 355 MPa σ=,则 []88.75a MP σ= 显然,e []σσ<,螺杆满足强度条件。 四 螺母螺牙强度校核 螺母螺纹牙根部的剪切强度条件为 4[]Q F Z D b ττπ= ≤ (5) 式中:Q F -----轴向载荷,N ; 4D -----螺母螺纹大径,mm ; 126.5 30000tan(2.0637 5.1427)502612T N mm =??+?= ?70.4e MPa σ==

导航原理(pdf版)

导航原理(V0.1) 导航贯穿于飞行全过程。正确实施导航,是完成任务的先决条件。对于每一个想要在虚拟战线任务中顺利找到目标,完成任务并安全返航的飞友,熟练的掌握导航技术是必须的。 第一节导航仪表 与导航有关的仪表主要有罗盘和无线电导航仪,罗盘又分为磁罗盘和综合远读罗盘(也叫做转发罗盘),综合远读罗盘实际上是把远读罗盘和无线电导航仪合二为一,比如德机的罗盘中的小飞机就是无线电导航仪的指针,它指向无线电导航台或电台的方位,德机的罗盘外圈的刻度是活动的,跟随航向的变化而旋转,正12点的位置就是当前航向。美国海军飞机的罗盘中的双针就是无线电导航仪的指针,它指向电台方向,单针指示的是当前航向,而美国陆航的指针定义刚好相反,单针是无线电导航仪的指针,双针指示当前航向。苏机的无线电导航仪是单独的,它的使用我们以后再说。磁罗盘实际上跟指南针是一样的,只是它的刻度盘是做在磁体上的,跟磁体一起旋转,因此它只能在水平状态下使用。导航仪表中还包括航空时钟,它跟我们平时用的钟一样,这里就不讲了。 综合远读罗盘(德)综合远读罗盘(美)磁罗盘(美) 磁罗盘(苏)无线电导航仪(苏)

第二节判读航图和导航计算 航图的判读是导航的基础,游戏中的航图,跟我们常见的地图大体相同,所用的图标也很相似,但由于游戏本身的特点,以及我们在飞行中的实际需要,因此也有一些不同的地方。 图1 图例图2放大后的图1局部游戏中的航图图标大多与真实地图相同,如浅蓝色不规则线条表示河流,较大面积浅蓝色区域表示湖泊,黑色线条表示铁路,但公路却分为两种,红线表示泥土公路,黄色带棕色边的线表示沥青或水泥公路,大块的绿色区域表示森林,森林间的浅色区域表示草地,不规则的小块黄色区域表示城镇,城镇上面标有城镇名称。图中的蓝色菱形图标表示空军基地。 游戏中的航图跟真实地图一样是上北下南,左西右东,并且也采用 经度和纬度,图2是放大后的地图,可以看到地图边缘标有经度和纬度, 但游戏中的航图主要采用英文字母和数字来表示位置。图1是我们看航 图时最常用的一种比例,图中经线和纬线交叉将地图划分为一个个区 域,用英文字母代表纵列(经度),用数字代表横列(纬度),两条经线 和两条纬线之间的距离是10千米,因此地图上每一个区域的边长是10 千米。每一个区域可以用字母和数字来表示,如D5、E3等等。图3 区域分划但用这样的方法来表示位置不够精确,因此我们在此基础上将每一个区域分为9个小区,每个小区用一个数字来表示,以增加精度。如图3,将一个区域(图中为D3)均分为9个小区,用小键盘上的数字键位置进行编号,这样每一个小区就可以这样表示,如D3-1,D3-6。图1中的空军基地,如果用D3来表示,因为D3地区有10×10千米,因此精度很低,而如果用D3-5来表示,由于D3-5小区只有3.3×3.3千米,精度大为提高。 一般的航图显示比例分为两个档次,既每格10千米和每格1千米,而在太平洋地区的一些地

相关文档
相关文档 最新文档