文档库 最新最全的文档下载
当前位置:文档库 › 酸溶性和胃蛋白酶溶解的鱼鳞鱼骨胶原的提取

酸溶性和胃蛋白酶溶解的鱼鳞鱼骨胶原的提取

酸溶性和胃蛋白酶溶解的鱼鳞鱼骨胶原的提取
酸溶性和胃蛋白酶溶解的鱼鳞鱼骨胶原的提取

Biochemical properties of bone and scale collagens isolated from the subtropical ?sh black drum (Pogonia cromis )and sheepshead

seabream (Archosargus probatocephalus )

Masahiro Ogawa a ,Ralph J.Portier b ,Michael W.Moody a ,Jon Bell a ,

Mark A.Schexnayder c ,Jack N.Losso a,*

a

Food Protein Biotechnology Laboratory,Department of Food Science,Louisiana State University Agricultural Center,

111Food Science Building,Baton Rouge,LA 70803,USA

b

Department of Environmental Studies,Louisiana State University,Baton Rouge,LA 70803,USA c

Fisheries Agent,Louisiana State University Agricultural Center,Baton Rouge,LA 70803,USA

Received 24November 2003

Abstract

Acid-soluble collagen (ASC)and pepsin-solubilized collagen (PSC)were isolated from the bones and scales of black drum (Pogonia cromis )and sheepshead seabream (Archosargus probatocephalus )caught in the Gulf of Mexico.ASC and PSC were an-alyzed for molecular weight by SDS–PAGE,amino acid composition,secondary structure,and denaturation temperature.The molecular masses of the collagen subunits were about 130kDa for a 1and 110kDa for a 2,respectively.The amino acid composition of the PSCs was closer to that of calf skin ASC than to that of cod skin ASC.The melting temperatures of ASC and PSC were >34°C.Intrinsic viscosity of the PSCs was similar to the intrinsic viscosity of collagen from ?sh species such as hake,cod,and cat?sh.Black drum and sheepshead bone and scale collagens were typical type-I collagens and may ?nd applications in the functional food,cosmetic,biomedical,and pharmaceutical industries.ó2004Elsevier Ltd.All rights reserved.

Keywords:Collagen;Denaturation;Fish;Seafood wastes;Bone;Scale;Thermal stability;Viscosity

1.Introduction

Collagen is the most abundant protein in vertebrates and constitutes about 25%of vertebrate total proteins.Collagen is unique in its ability to form insoluble ?bres that have high tensile strength and a right-handed triple superhelical rod consisting of three almost identical polypeptide chains.

Collagen has been,traditionally,isolated from the skins of land-based animals,such as cow and pig.Non-denatured collagens from these sources ?nd applications in cosmetics,biomedical,and pharmaceutical industries.Denatured collagen,known as gelatin,?nds applications in the food and biomedical industries.Biomedical and

pharmaceutical applications of collagen include the treatment of hypertension,urinary incontinence and pain associated with osteoarthritis,use in tissue engi-neering for implants in humans,inhibition of angiogenic diseases,such as diabetes complications,obesity,and arthritis (Rehn et al.,2001).In recent years,the out-break of bovine spongiform encephalopathy (BSE)and the foot-and-mouth disease (FMD)crisis have caused restrictions on collagen trade and the need for alterna-tive safe sources of collagen (Helcke,2000;Trevitt &Singh,2003).

The southern states of Louisiana,Mississippi and Florida have abundant coastal and marine resources.Seafood processors in LA,MS,and FL generate more than 3,000,000pounds of ?sh skins and millions of pounds of bones annually through their processing of black drum (Pogonias cromis )and sheepshead (Archo-sargus probatocephalus )?llets for food services.Due to

*

Corresponding author.Tel.:+1-225-578-3883;fax:+1-225-578-5300.

E-mail address:jlosso@https://www.wendangku.net/doc/5712364973.html, (J.N.Losso).0308-8146/$-see front matter ó2004Elsevier Ltd.All rights reserved.

doi:10.1016/j.foodchem.2004.02.006

Food Chemistry 88(2004)495–501

https://www.wendangku.net/doc/5712364973.html,/locate/foodchem

Food Chemistry

compliance with environmental laws and the growing knowledge of the potential of obtaining health-enhanc-ing products from aquatic sources,interest has grown, among seafood processors across the southern states,in obtaining higher value functional foods,?ne biochemi-cals,and pharmaceuticals,such as antimicrobials,an-tioxidants,enzymes,proteins,nucleic acids,enzyme inhibitors,cosmetics,and pharmaceuticals from?sh, shell?sh,and algae underutilized components.

Thermal denaturation temperatures of collagen iso-lated from the skin of black drum(P.cromis)and sheepshead seabream(A.probatocephalus),measured by melting point using circular dichroism,gave the fol-lowing values:black drum(ASC),34.2°C;sheepshead ASC,34.0°C;black drum PSC,35.8°C;sheepshead PSC,34.3°C(Ogawa et al.,2003).The literature value for the heat stability of calf skin collagen is36.3°C. Black drum and sheepshead have large quantities of calci?ed tissues,such as bones and scales,in addition to skins.The dry weight ratio of bones and scales in the?sh body is higher than that of skin.

Like those of other vertebrates,the bones and scales of?sh contain a high amount of collagen and are abundantly available as a byproduct of?sh processing operations.There are many reports on thermal stability of?sh collagen(Kimura,Zhu,Matsui,Shijoh,&Tak-amizawa,1988;Nagai&Suzuki,2000a;Zhu&Kimura, 1991).However,?sh species with reported collagen de-naturation temperatures higher than30°C,such as e.g. skipjack and carp,are very limited.Most?sh collagens, known to date,denature at temperatures below30°C, indicating that?sh collagen is generally less stable than its mammalian counterparts.

Collagen molecules in solution denature close to the upper limit of the physiological temperature or the maximum body temperature of the animal species from which the collagen is extracted(Privalov,1982).We hypothesized that?sh species that inhabit the tropical and subtropical waters of the Gulf of Mexico may contain collagen with denaturation temperatures above 30°C.

The objective of this research was to investigate the biochemical properties and thermal stability of black drum and sheepshead seabream bone and scale collagens.

2.Materials and methods

2.1.Materials

Adult black drum(P.cromis)and sheepshead seab-ream(A.probatocephalus)were caught in the Gulf of Mexico.The?sh were?lletted and skinned in a seafood processing plant in Kenner,LA.Scales were removed from the skins.Fish vertebral columns were used as bone materials.Fish vertebral column and scales were collected and kept frozen until used.Pepsin,EC 3.4.23.1,was obtained from Fisher Scienti?c(Fair Lawn,NJ).Calf skin type-I acid-soluble collagen was purchased from ICN Biochemicals Inc.(Irvine,CA). NuPAGEòTris-acetate gels(3–8%)and staining and destaining kit were products of Invitrogen(Carlsbad, CA).All other chemicals were of reagent grade.

2.2.Methods

2.2.1.Moisture content

Moisture content was determined by using an OHAUS moisture determination balance Model6010 (Florham,NJ).

2.2.2.Preparation of acid-soluble collagen

All procedures to prepare acid-soluble collagen (ASC)were carried out at ambient temperature(22–23°C),except for centrifugation at4°C.The bones and scales were soaked in10volumes of0.1M NaOH for24 h with stirring,using a magnetic stirrer.The alkaline-treated calci?ed tissues were re-soaked in20volumes of 0.1M NaOH solution with stirring for24h.The alkali-insoluble components were?ltered using a cheese-cloth and were rinsed with distilled water repeated until a neutral pH was reached.The insoluble components were extracted with10volumes of0.5M acetic acid for three days.Thus,the solution was centrifuged at10,000g for 20min at4°C.The residue was re-extracted with10 volumes of0.5M acetic acid for three days and the extract was centrifuged as described above.The super-natants of the two extracts were combined and were salted-out by adding NaCl to give a?nal concentration of0.9mol dmà3.The solution was left overnight;the resulting precipitates were collected by centrifuging at 10,000g for20min.The precipitates were dissolved in10 volumes of0.5M acetic acid.The procedures of salting-out and solubilization were repeated three times.The resulting solution was dialyzed against0.1M acetic acid for further experiments.

2.2.

3.Preparation of pepsin-solubilized collagen

All procedures to prepare pepsin-solubilized collagen (PSC)were carried out at ambient temperature(22–23°C),except for the centrifugation steps which were car-ried at4°C.Bone and scales were treated in alkaline solutions as described above and rinsed with distilled water until a neutral pH value was obtained.The in-soluble components were solubilized with10volumes of 0.5M acetic acid containing0.1%(w/v)pepsin for three days.The solution was centrifuged at10,000g for20min at4°C.The residue was re-extracted with10volumes of 0.5M acetic acid solution containing0.1%(w/v)pepsin for three days,and the extract was centrifuged as de-scribed above.The supernatants of the two extracts were

496M.Ogawa et al./Food Chemistry88(2004)495–501

combined and were salted-out by adding NaCl to give a ?nal concentration of0.9mol dmà3.The solution was left overnight;the resulting precipitates were collected by centrifuging at10,000g for20min.The precipitates were dissolved in10volumes of0.5M acetic acid.The procedures for salting-out and solubilization were re-peated three times.The resulting solution was dialyzed against0.1M acetic acid.

2.2.4.Circular dichroism

The collagen sample,fully dialyzed against0.1M acetic acid solution using a dialysis tube with molecular weight cut o?of12,000–14,000,was diluted to a con-centration of0.3g dmà3with0.1M acetic acid solution. Circular dichroism(CD)measurements were carried out using a AVIV CD spectrometer62DS(Lakewood,NJ) calibrated with re-crystallized D-10-camphorsulfonic

acid,?h

290:5?7800(deg cm2dmolà1).The CD spectrum

of the sample was taken using a0.1cm path-length quartz cell.A mean amino acid residue weight of91 g molà1for collagen(Harrington&Von Hippel,1961) was assumed to determine its molar ellipticity[h].The melting curve of collagen was determined by monitoring [h]at the wavelength of a positive extreme at220nm.

The?h

220was recorded while heating the sample at the

rate of0.5°C minà1(15–45°C).To convert the data into plots of the fractional change against temperature, the following equation was used:F?eY obsdàY UT=eY NàY UT,where F is the fraction,Y obsd is the observed molar ellipticity value at220nm,and Y N and Y U are the

values of?h

220for native-folded(at15°C)and com-

pletely-unfolded(at45°C)forms,respectively.Transi-tion temperature,T màCV,was determined as a temperature indicative of a midpoint,namely F?0:5, between the native and unfolded forms.

2.2.5.Viscosity

Collagen samples(0.04to0.4g/dm3)were prepared in the same manner as the CD sample.A Cannon-Fenske type Kinematic Viscometer tube(Fisher Scienti?c)with the e?ux time for water of about135s at20°C was employed for the viscosity measurement.Eight ml of the sample solution were incubated for30min at20°C,and then the e?ux time of the solution was measured in the tube.Speci?c viscosity(g sp)was calculated by the equation(tàt0)/t0,assuming that the densities of the solution and solvent were the same(t?e?ux time of the collagen solution and t0?e?ux time of the solvent). The reduced viscosity(g sp=c),where c is the protein concentration(g/dl),was plotted against the concen-tration c.The intrinsic viscosity,[g]dl/g,was given as the intercept of the curve of the equation g sp=c??g tkc,where k dl2/g2is the slope.

The thermal denaturation of the collagen was deter-mined from viscosity changes using the same viscometer tube.Eight ml of the collagen solution(0.3g/dl3)were incubated for30min at a given temperature from15to 45°C,and then its viscosity was determined by mea-suring the e?ux time at the same temperature.The thermal denaturation curve of the collagen solution was determined by plotting the reduced viscosity g sp=c against temperature.The thermal denaturation temper-ature,T dàV,was expressed as a mid-point temperature between the extrapolated line for native collagen and that for fully denatured collagen on the g sp=c vs.tem-perature plot.

2.2.6.Sodium dodecyl sulfate–gel electrophoresis(SDS–PAGE)

Electrophoresis was carried out using NuPAGEòTris-acetate gel(3–8%).Dialyzed samples were heated at 100°C for5min in NuPAGEòLDS sample bu?er (Invitrogen)including NuPAGE reducing agent(Invit-rogen).The electrophoretic separation was carried out according to the manufacturer’s procedure.The gel was stained using the NOVEXòcolloidal blue staining kit (Invitrogen)for8h with shaking.After staining,the staining solution was decanted and replaced with400ml de-ionized water overnight with shaking.Band intensi-ties of the gel were analyzed using Scion Image Version Beta4.0.2(Scion Corp.,Frederic,MD).

2.2.7.Protein determination

The protein concentration was determined by a Per-kin a Elmer Series II Nitrogen Analyzer2410(Shelton, CT).The nitrogen–protein conversion factor for colla-gen is5.4(Benedict&Ellis,1987).

2.2.8.Amino acid composition

Samples were hydrolyzed under vacuum with6M HCl at110°C for24h under argon atmosphere in the presence of phenol.Amino acid analysis was performed using a Hewlett Packard AminoQuant II system(Palo Alto,CA).

3.Results and discussion

3.1.Chemical properties

Fig.1shows SDS–PAGE patterns of the isolated collagens.Bone ASC and PSC had at least two di?erent a chains(a1and a2)and their cross-linked chains (Fig.1(a)).In both species,the molecular mass of bone ASC subunit was about130kDa for a1and110kDa for a2.The existence of at least two di?erent subunits shows that a major collagen from the?sh bones is a type-I collagen.There were no signi?cant di?erences in subunit molecular mass between bone and scale collagens (Fig.1(b)).In addition,the electrophoretic patterns and migration of scale and bone collagens were similar to the electrophoretic patterns of collagens isolated from the

M.Ogawa et al./Food Chemistry88(2004)495–501497

skin of the same ?sh species (Ogawa et al.,2003).Kimura,Miyauchi,and Uchida (1991)reported that soluble collagen from scale and bone of lathyritic carp consisted of two molecular forms,ea 1T2a 2as a main component and a 1a 2a 3as a minor one.Therefore,the calci?ed tissues of black drum and sheepshead might contain a 1a 2a 3as a minor component as well.Table 1shows the band intensity ratio of cross-linked chain (dimer form,b or trimer form,and c form)to total non-cross-linked monomer chains (a 1ta 2)on the SDS–PAGE gel.In both species,acid-soluble collagen con-tained higher population of cross-linked components than its pepsin-solubilized counterpart,showing that the intra-and/or inter-molecular cross-linking of collagens,that is,b and c components,was richer in ASC than in PSC.ASC from black drum scale had a lower b cross-linking rate (0.66)than sheepshead ASCs.ASC and PSC from sheepshead bones and scales had higher cross-linked rates than ASC and PSC from Blackdrum bones and scales.

The amino acid compositions of the pepsin-solubi-lized collagens (PSCs)are shown in Table 2.Black drum and sheepshead collagens had similar amino acid pro-?les.The collagens were high in proline (Pro),glycine

(Gly),and alanine (Ala),which are characteristic of all collagens.High levels of hydroxylysine (Hyl)and hy-droxyproline (Hyp),as observed in collagens from ani-mal species,were measured in the ?sh collagens.The distribution patterns of amino acid composition were closer,especially for Pro and Hyp,to calf collagen ra-ther than to cod collagen (Herbage,Bouillet,&Bern-engo,1977;Yamaguchi,Lav e ty,&Love,1976).The same amino acid distribution patterns were observed in the collagens isolated from the skin of black drum and sheepshead (Ogawa et al.,2003).The similarity in the electrophoretic migration and amino acid composition suggested that the chemical compositions of type I col-lagen were highly conserved among the tissues.3.2.Secondary structure and collagen thermal behavior CD spectra of collagen are shown in Fig.2.Native collagen from bones gave a characteristic CD spectrum with a positive extreme at 220nm and a negative peak that appeared at 197–199nm (Fig.2(a)).Slight

devia-

Fig.1.SDS–PAGE patterns of (a)bone and (b)scale collagens.1.Black drum ASC;2.sheepshead ASC;3.black drum PSC;4.sheeps-head PSC;5.Molecular weight marker.

Table 2

Amino acid compositions of PSCs

Black drum Sheepshead Bone

Scale Bone Scale Hyp 84.6?1.087.9?4.888.5?5.786.4?4.8Asx 44.4?1.141.6?2.743.1?1.841.5?2.5Thr 26.6?0.525.3?2.026.6?2.324.8?1.4Ser 35.5?1.337.0?2.834.5?3.538.2?2.4Glx 68.7?1.063.9?4.165.8?3.763.5?4.3Pro 107?2.3111?9.7106?1.3113?3.1Gly 338?10.5345?25.9342?29.2347?20.2Ala 130?1.6124?7.8129?9.2124?6.8Cys 0.0?0.00.0?0.00.0?0.00.0?0.0Val 18.0?0.318.6?1.417.9?1.316.2?3.5Met 12.4?0.911.6?0.813.2?0.512.2?0.8Ile 6.3?0.1 6.7?0.6 6.7?0.67.0?0.5Leu 20.0?0.318.7?1.218.5?1.317.7?1.0Tyr 1.8?0.0 1.7?0.1 1.9?0.1 1.8?0.2Phe 12.8?0.112.4?1.012.9?0.912.9?0.9Hyl 8.5?0.57.4?0.99.1?0.78.1?0.5Lys 26.2?1.730.2?2.527.7?2.829.7?1.8His 6.3?0.5 5.9?0.3 4.8?0.5 5.4?0.3Arg 53.6?1.051.5?2.852.2?3.951.0?2.9Total

1000

1000

1000

1000

The mean ?standard deviation of three determinations for the same sample preparations;Asx ?Asp +Asn;Glx ?Gln +Glu.

Table 1

Band intensity ratios a of cross-linked chain to total monomer chains in collagen

Bone Scale

Black drum ASC

Sheepshead ASC Black drum PSC Sheepshead PSC Black drum ASC Sheepshead ASC Black drum PSC Sheepshead PSC b =ea 1ta 2T 1.15?0.11 1.36?0.060.49?0.040.80?0.050.66?0.07 1.29?0.050.39?0.120.61?0.08c =ea 1ta 2T

0.43?0.04

0.65?0.03

0.21?0.03

0.44?0.07

0.32?0.12

0.57?0.18

0.14?0.08

0.27?0.11

a

The results of two independent collagen isolations.

498M.Ogawa et al./Food Chemistry 88(2004)495–501

tions in ellipticity were observed among the four colla-gen species measured,suggesting that there was a minor discrepancy in structure.On the other hand,scale col-lagens showed similar secondary structures,as seen in Fig.2(b),denoting a positive extreme at 220nm and a negative peak at 198nm.These spectral characteristics in bone and scale collagens are typical of the collagen triple-helix structure (Engel,1987).Fig.3provides the melting curves of the collagen triple-helix.All collagens showed apparently bi-phase thermal transition,as shown by collagens from ?sh skins (Ogawa et al.,2003)and animal skins (Brown,Farrell,&Wildermuth,2000;Sato et al.,2000).The existence of bi-phase thermal transitions suggests that those collagens possessed at least two inner domains with diverse stabilities or two di?erent collagen molecules with diverse stabilities.In the transition curve,the contribution of the ?rst tran-sition was less than that of the second transition.The ?rst transitions for bone collagens began at about 28°C and the ?rst transition for scale collagen occurred at 26°C (Fig.3(a)and (b),respectively).In both bone and scale,the second transition started at 33°C for black drum and 32°C for sheepshead.The transition was completed at around 38°C for every collagen species.

Thermal behaviour of sardine scale collagen using op-tical rotation was investigated by Nomura,Sakai,Ishii,and Shirai (1996).The structure of the collagen altered in the temperature range 23–30°C with a T m of 27.3°C;this T m value was 6–8°C lower than the T m of black drum and sheepshead scale collagens.3.3.Viscosity and its thermal behaviours

One of the physicochemical characteristics of colla-gen is its high viscosity.The results of the intrinsic vis-cosity of bone PSCs are given in Table 3.The intrinsic viscosity of black drum collagen was 13.7dl/g,which was similar to the intrinsic viscosity values reported for cod skin ASC (12.8dl/g),hake skin ASC (13.7dl/g),and marine cat-?sh muscle (12.7dl/g)(Ciarlo et al.,1997;Gordon Young &Lorimer,1960;Rose &Mandal,1996).On the other hand,sheepshead PSC had a higher viscosity value of 19.1dl/g.The high viscosity can be accounted for by the high proportion of b -and c

-chains,

Fig.2.CD spectra of (a)bone and (b)scale collagens.The spectra were taken at 15°C.Filled diamond,black drum ASC;un?lled diamond,black drum PSC;?lled triangle,sheepshead ASC;un?lled triangle,PSC,sheepshead

PSC.

Fig.3.Melting curves of collagens from (a)bones and (b)scales.The fraction change of ?h 220was plotted against temperature.Filled dia-mond with solid line,black drum ASC;un?lled diamond with broken line,black drum PSC;?lled triangle with solid line,sheepshead ASC;un?lled triangle with broken line,PSC,sheepshead PSC.

M.Ogawa et al./Food Chemistry 88(2004)495–501499

resulting in a higher average molecular weight (Table 1).Thus,the viscosity of bone PSCs was similar to the viscosity of collagens from other parts,such as skin,of the ?sh.Changes in the viscosity upon heating are shown in Fig.4.The viscosity started declining at 30°C.It decreased completely at 40°C for black drum and 39°C for sheepshead and remained low above 40°C.The denaturation temperatures T d àV were 35.5and 34.8°C

for black drum and sheepshead,respectively.Those values were much higher than those of bone collagens from other ?sh species,such as skipjack tuna (29.7°C)and yellow seabream (29.5°C)(Nagai &Suzuki,2000b).The high heat resistance will be favourable for practical applications.

3.4.Correlation between chemical and stability charac-teristics

In both species of black drum and sheepshead,col-lagens from the calci?ed tissues bones and scales had amino acid compositions analogous to those from the skins (Ogawa et al.,2003).The imino acid (Pro +Hyp)content of collagen is closely related to thermostability (Privalov,1982).Imino acid contents of black drum and sheepshead collagens were relatively high and closer to mammal calf rather than to cod,which inhabit cool-temperature to sub-arctic waters (Table 4).The sub-tropical ?sh collagens acquired high thermostability (T m àCD,33.7–35.4°C)which is comparable to calf skin collagen,owing to the high imino acid content.The T m àCD value was similar to denaturation temperature T d àV value (34.8–35.7°C).This is reasonable because the unfolding of collagen helical structure causes loss of viscosity.So,the two kinds of denaturation tempera-tures could be compared to each other at the same protein concentration and in the same solvent.Dena-turation temperatures of collagen from over 30marine source collagen (including 25teleostei sources)were determined by viscosity measurement under the same conditions,that is,in 0.1M acetic acid as solvent and at a protein concentration of 0.3g/dm 3(Kimura et al.,1988;Nagai &Suzuki,2000b;Zhu &Kimura,1991).Black drum bone PSC had the highest T d àV (35.7°C),followed by sheepshead bone PSC (34.8°C)for all col-lagens of marine origin.Judging from the CD melting curve results,the scale collagens are anticipated to have high T d àV values as well.Thus,the collagens from bones and scales of black drum and sheepshead were

Table 3

Intrinsic viscosities of collagens at 20°C

[g ](dl/g)

Slope k (dl 2/g 2)Black drum bone PSC 13.7216.4Sheepshead bone PSC 19.1309.6Cod skin ASC 12.8a 135.8a Hake skin ASC 13.7b ND Marine cat-?sh

12.7c

ND

ND,not determined.a

Gordon Young and Lorimer (1960).b

Ciarlo,Paredi,and Fraga (1997).c

Rose and Mandal

(1996).

Fig.4.Thermal denaturation curves of bone PSCs measured by vis-cosity.Each value was the mean of three determinations.Un?lled di-amond with broken line,black drum.Un?lled triangle with broken line,sheepshead.

Table 4

Imino acid contents and thermal transition temperatures of collagens Source of collagen

Imino acids (Pro +Hyp)residues per 1000residues T m àCD/°C T d àV /°C Physiological temperature a /°C Black drum bone PSC 19134.935.715–35Sheepshead bone PSC 19534.534.810–35Black drum scale PSC 19935.3ND 15–35Sheepshead scale PSC

19933.6ND 10–35Cod (Gadus morhua )skin ASC 13013.0b ND )0.5–10Calf skin ASC

215

ND

36.3c

37d

ND,not determined.

a

Marine and Coastal Species Information System (1996),Fish and Wildlife Information Exchange,Conservation Management Institute,Virginia Polytechnic Institute and State University.(https://www.wendangku.net/doc/5712364973.html,/WWW/macsis/?sh.htm).b

Burge and Hynes (1959).c

Sikorski,Scott,and Buisson (1984).d

Body temperature.

500

M.Ogawa et al./Food Chemistry 88(2004)495–501

found to be quite heat-stable.It is possible to suggest that other?sh species in the Gulf coast may also have collagens with high denaturation temperatures,because collagen’s thermostability is correlated with the physi-ological temperature of the?sh(Privalov,1982;Rigby, 1968).The high heat resistances of bone and scale collagens suggest the possibility of using them as sub-stitutes for the land-based animal collagens,about which there are some concerns from consumers and manufacturers.

Acknowledgements

This work was supported by a grant from the US Department of Commerce through Louisiana Sea Grant Project#167-14-5114.We thank Mr.Harlon Pearce at La?sh(Kenner,LA)for providing the?sh bones and scales.

References

Benedict,R.C.,&Ellis,R.L.(1987).Determination of nitrogen and protein content of meat and meat Products.Journal of the Association of O?cial Analytical Chemists,70,69–74.

Brown, E.M.,Farrell,H.M.,Jr.,&Wildermuth,R.J.(2000).

In?uence of neutral salts on the hydrothermal stability of acid-soluble collagen.Journal of Protein Chemistry,19,85–92. Burge,R.E.,&Hynes,R.D.(1959).The optical rotatory power of collagen.Nature,84,1562–1563.

Ciarlo,A.S.,Paredi,M.E.,&Fraga,A.N.(1997).Isolation of soluble collagen from hake skin(Merluccius hubbsi).Journal of Aquatic Food Product Technology,6,65–77.

Engel,J.(1987).Folding and unfolding of collagen triple helices.

Advances in Meat Research,4,145–161.

Gordon Young,E.,&Lorimer,J.W.(1960).The acid-soluble collagen of cod skin.Archives of Biochemistry and Biophysics,88,373–381. Harrington,W.F.,&Von Hippel,P.H.(1961).The structure of collagen and gelatin.Advances in Protein Chemistry,16,1–138. Helcke,T.(2000).Gelatin,The food technologist’s friend or foe?

International Food Ingredients,1,6–8.

Herbage,D.,Bouillet,J.,&Bernengo,J.-C.(1977).Biochemical and physiological characterization of pepsin-solubilized type-II colla-

gen from bovine articular cartilage.Biochemical Journal,161,303–312.

Kimura,S.,Miyauchi,Y.,&Uchida,N.(1991).Scale and bone type-I collagens of carp(Cyprinus carpio).Comparative Biochemistry and Biophysiology,99B,473–476.

Kimura,S.,Zhu,X.-P.,Matsui,R.,Shijoh,M.,&Takamizawa,S.

(1988).Characterization of?sh muscle type I collagen.Journal of Food Science,53,1315–1318.

Nagai,T.,&Suzuki,N.(2000a).Preparation and characterization of several?sh bone collagen.Journal of Food Biochemistry,24,427–436.

Nagai,T.,&Suzuki,N.(2000b).Isolation of collagen from?sh waste material–skin,bone,and?ns.Food Chemistry,68,277–281. Nomura,Y.,Sakai,H.,Ishii,Y.,&Shirai,K.(1996).Preparation and some properties of type I collagen from?sh scales.Bioscience Biotechnology and Biochemistry,60,2092–2094.

Ogawa,M.,Moody,M.W.,Portier,R.J.,Bell,J.,Schexnayder,M.,& Losso,J.N.(2003).Biochemical properties of black drum and sheepshead seabream skin collagen.Journal of Agricultural and Food Chemistry,51,8088–8092.

Privalov,P.L.(1982).Stability of proteins.Advances in Protein Chemistry,35,1–104.

Rehn,M.,Veikkola,T.,Kukk-Valdre,E.,Nakamura,H.,Ilmonen, M.,Lombardo,C.,Pihlajaniemi,T.,Alitalo,K.,&Vuori,K.

(2001).Interaction of endostatin with integrins implicated in angiogenesis.Proceedings of the National Academy of Sciences of the USA,98,1024–1029.

Rigby,B.J.(1968).Amino-acid composition and thermal stability of the skin collagen of the Antarctic ice-?sh.Nature,219,166–167. Rose,C.,&Mandal,A.B.(1996).The interaction of sodium dodecyl sulfate and urea with cat-?sh collagen solutions in acetate bu?er: Hydrodynamic and thermodynamic studies.International Journal of Biological Macromolecules,18,41–53.

Sato,K.,Ebihara,T.,Adachi,E.,Kawashima,S.,Hattori,S.,&Irie, S.(2000).Possible involvement of aminotelopeptide in self-assem-bly and thermal stability of collagen I as revealed by its removal with proteases.Journal of Biological Chemistry,275,25870–25875. Sikorski,Z.E.,Scott,D.N.,&Buisson,D.H.(1984).The role of collagen in the quality and processing of?sh.CRC Critical Reviews in Food Science and Nutrition,20,301–343.

Trevitt, C.R.,&Singh,P.N.(2003).Variant Creutzfeldt-Jakob disease:Pathology,epidemiology,and public health implications.

American Journal of Clinical Nutrition,78,651S–656S. Yamaguchi,K.,Lav e ty,J.,&Love,R.M.(1976).The connective tissues of?sh https://www.wendangku.net/doc/5712364973.html,parative studies on hake,cod,and cat?sh collagen.Journal of Food Technology,11,389–399.

Zhu,X.-P.,&Kimura,S.(1991).Thermal stability and subunit composition of muscle and skin type I collagens from skipjack.

Nippon Suisan Gakkaishi,57,755–760.

M.Ogawa et al./Food Chemistry88(2004)495–501501

蛋壳膜中胶原蛋白的提取分离

赵敏陈访访潘津泳张亚光刘艳秋 西南交通大学生命科学与工程学院,四川成都610031 摘要:以废弃的鸡蛋壳为原料,采用酶法对鸡蛋壳膜中的胶原蛋白进行提取,探讨胶原蛋白提取的最佳条件。结果得出,壳膜的最佳分离条件为0.5 mol/L盐酸,pH7.0,温度30℃,固液体积比1∶10,反应时间1h;胶原蛋白的最佳提取条件为0.5 mol/L醋酸,胃蛋白酶5%(150 U/g),温度40℃,pH2.5,提取体积1∶10,反应时间24h。 蛋壳膜;离心;超滤浓缩;SDS-PAGE电泳;胶原蛋白 The Extraction and Separation of Collagen in Eggshell Membrane  ZHAO MinCHEN Fang-fangPAN Jin-yongZHANG Ya-guangLIU Yan-qiu 西南交通大学大学生科研训练计划(SRTP)第四期 作者简介:赵敏(1987-),女(汉),在读硕士,研究方向:微生物与生 化药学。 通信作者:刘艳秋(1974-),女,讲师,博士。 万方数据

万方数据

@@[1]周倩,罗志刚,何小维.胶原蛋白的应用研究[J].现代食品科技, 2008(3):285-289 @@[2]任俊莉,付丽红,邱化玉.胶原蛋白的应用及其发展前景[J].中国 皮革,2003,32(23): 16--17 @@[3] Phanat Kittiphattanabawon, Soottawat Benjakul Wonnop Visessan guan Takashi Nagai, Munehiko Tanaka.Characterization of acid soluble collagen from skin and bone of bigeye snapper (Priacanthus  tayenus)[J].Food chemistry,2005,89(3):363-372 @@[4] Willoughby C E, Batterbury M, Kaye S B. Collagen corneal shields  [J]. Survey of ophthalmology, 2002,47(2):174-182 @@[5]罗有福,佟健,盛绍基.鸡蛋膜的最新研究进展[J].云南化工,2002, 29(1):21-23 @@[6]皮钰珍,王淑琴,李秋红.鸡蛋壳膜资源的开发与应用前景[J].食 品科技,2006(4): 128-130 @@[7]张瑞宇.废弃蛋壳的利用价值及其资源化途径与技术[J].重庆工 商大学学报:自然科学版,2006,23(6):551-555 @@[8]周艳华,马美湖,蔡朝霞,等.对蛋壳膜中角蛋白与胶原蛋白的提 取分离技术及功能多肽的概述[J].四川食品与发酵,2008,44(4): 48-54 @@[9]张瑞宇,陈嘉聪.蛋壳内膜中角蛋白的提取研究[J].食品科学, 2005,26(9):71-274 @@[10]杨德玉,李珍,高新,等.酶法提取蛋壳膜中的角蛋白[J].食品科学, 2007,28(6):240-242 @@[11]陈璎洁.蛋壳膜中提取出的胶原蛋白的表征[J].明胶科学与技 术,2009,29(3):131-136 @@[12]郭云,张景锡,彭必先.各类型胶原的分离方法[J].明胶科学与技 术,2005,25(3): 113-122 @@[13]聂珍媛,任凤莲,夏金兰,等,一种禽蛋壳膜高效分离新方法[J].食 品科技,2008(2):66-69 @@[14]李燕,王川,蓝蔚青,胶原蛋白的分离纯化及氨基酸组成分析[J]. 食品科技,2007(10):137-141 @@[15]王彦宏,朱平,冷南,等.Ⅱ型胶原蛋白的提取纯化和鉴定[J].第四 军医大学学报,2002,23(19):1820-1821 @@[16]李二凤,何小维,罗志刚.胶原蛋白的提取工艺研究[J].食品研究 与开发,2006,27(3):63-65 @@[17]王晨,吴晖,李晓凤,等.胃蛋白酶酶解提取鸡骨胶原蛋白工艺的 研究[J].现代食品科技,2008,24( 12):285 -289 @@[18]胡耀星,周念波,赵为.鱼鳞中胶原蛋白的提取纯化及应用[J].武 汉生物工程学院学报,2006,2(2):115-117  2011-09-05 万方数据

【CN109796529A】一种胶原蛋白及其提取方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910257876.7 (22)申请日 2019.04.01 (71)申请人 武汉轻工大学 地址 430023 湖北省武汉市汉口常青花园 学府南路68号 (72)发明人 徐玉玲 汪海波 何浪 李盛  张军涛 未本美  (74)专利代理机构 北京思创大成知识产权代理 有限公司 11614 代理人 高爽 (51)Int.Cl. C07K 14/78(2006.01) C07K 1/30(2006.01) C07K 1/14(2006.01) (54)发明名称一种胶原蛋白及其提取方法(57)摘要本发明公开了一种胶原蛋白及其提取方法。该方法包括如下步骤:1)将含有胶原蛋白的动物组织在液氮中进行冷冻、研磨;2)将研磨后的动物组织以酸/酶法提取胶原蛋白,得到胶原蛋白溶液;3)将胶原蛋白溶液透析、冻干后,得到粉末状的所述胶原蛋白。本发明采用冷冻研磨预处理方法,在液氮中预先冷冻含有胶原蛋白的动物组织一段时间,利用研磨仪在一定频率下研磨成粉末,该方法处理后,三螺旋结构及热变性温度并未受影响,能在保持天然胶原纤维化性能的基础上,比原有不冷冻研磨的酸提法的提取率提高18%-82%,这对于胶原应用及胶原基生物材料 的应用具有重要意义。权利要求书1页 说明书5页 附图2页CN 109796529 A 2019.05.24 C N 109796529 A

权 利 要 求 书1/1页CN 109796529 A 1.一种胶原蛋白提取方法,其特征在于,该方法包括如下步骤: 1)将含有胶原蛋白的动物组织在液氮中进行冷冻、研磨; 2)将研磨后的动物组织以酸/酶法提取胶原蛋白,得到胶原蛋白溶液; 3)将胶原蛋白溶液盐析、透析、冻干后,得到粉末状的所述胶原蛋白。 2.根据权利要求1所述的胶原蛋白提取方法,其中,进行步骤1)之前,还包括预处理步骤: 将含有胶原蛋白的动物组织脱脂、除杂蛋白后,干燥。 3.根据权利要求1所述的胶原蛋白提取方法,其中, 所述含有胶原蛋白的动物组织为哺乳动物皮和/或鱼类皮; 所述胶原蛋白为哺乳动物皮胶原蛋白和/或鱼皮胶原蛋白。 4.根据权利要求1所述的胶原蛋白提取方法,其中,步骤1)中,冷冻的时间为16~32h。 5.根据权利要求1所述的胶原蛋白提取方法,其中,步骤1)中,所述研磨的时间为3-25min。 6.根据权利要求5所述的胶原蛋白提取方法,其中,步骤1)中,所述研磨的时间为10-20min。 7.根据权利要求1所述的胶原蛋白提取方法,其中,步骤1)中,所述研磨的频率为10~25HZ。 8.根据权利要求1所述的胶原蛋白提取方法,其中,步骤2)中,酸/酶法提取胶原蛋白的步骤包括: 将研磨后的样品使用0.4~0.6mol/L乙酸浸泡并搅拌3~5d,再加入胃蛋白酶使混合溶液中胃蛋白酶的浓度为1.5~2.5%,搅拌16~32h后得到胶原蛋白溶液。 9.根据权利要求1所述的胶原蛋白提取方法,其中,步骤3)中,所述透析的时间≥3d。 10.由权利要求1-9中任意一项所述的胶原蛋白提取方法得到的胶原蛋白。 2

鲫鱼鱼皮胶原蛋白提取工艺的研究毕业论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 本科毕业论文(设计) 题目鲫鱼鱼皮胶原蛋白提取 工艺的研究

微波法提取鱼鳞胶原蛋白及其性质研究

微波法提取鱼鳞胶原蛋白及其性质研究 摘要:以淡水鱼加工后的下脚料鱼鳞为原料,采用微波法提取其中的胶原蛋白,设计单因素试验和正交试验考察乙酸浓度、微波功率、微波处理时间和料液比对鱼鳞中胶原蛋白提取率的影响。结果表明,优化的提取工艺条件为微波功率400 W、0.6 mol/L的乙酸溶液作提取剂、料液比m鱼鳞∶V乙酸=1∶25(g/mL)、微波处理时间5 min,此条件下胶原蛋白提取液中羟脯氨酸含量为186.358 mg/g,胶原蛋白提取率为41.37%。对提取的鱼鳞胶原蛋白进行性质测定,结果表明鱼鳞胶原蛋白的吸水性0.466 g/g、溶解性100%、乳化性51.67%、乳化稳定性91%、吸油性2.8 mL/g、起泡性84%,综合性质较好。 关键词:胶原蛋白;鱼鳞;微波法提取;性质 中国每年淡水鱼加工业的废弃物总量在200万t以上,其中鱼鳞约占15%[1-3]。鱼鳞主要成分是Ⅰ型胶原蛋白和羟基磷灰石,其中胶原蛋白可用于制作生物医用材料等,有较高的经济价值[4,5]。对淡水鱼加工生产中的下脚料鱼鳞进行综合利用研究,提高水产品加工水平,可带来较好的经济效益和社会效益。目前鱼鳞胶原蛋白的主要制备方法有水提法、酶解法、酸法等[6],但在大规模生产中的应用还有一定局限性。微波法萃取是近年发展起来的一种新型提取技术,具有选择性高、萃取效率高、节约能源等优点。本试验采用微波法从鱼鳞中提取胶原蛋白,并对所提取胶原蛋白的性质进行研究,为实现鱼鳞胶原蛋白的大规模生产奠定基础。 1 材料与方法 1.1 材料与仪器 混合鱼鳞取自西昌农贸市场。主要试剂包括羟脯氨酸(Hyp)标准液、对二甲基氨基苯甲酸显色试剂、高氯酸、氯胺T溶液、胃蛋白酶、大豆色拉油、活性炭等。主要仪器有立式电热鼓风干燥箱、微波炉、粉碎机、旋转黏度计、高速离心机、试验用微型粉碎机、组织捣碎机、冷冻干燥机等。 1.2 试验方法 1.2.1 鱼鳞胶原蛋白的提取新鲜混合鱼鳞用清水洗净,0.1 mol/L NaOH浸泡24 h[7],0.6 mol/L HCl浸泡24 h,蒸馏水洗净,36 ℃干燥后粉碎[8]。加入乙酸溶液后采用微波处理一段时间以提取胶原蛋白[9]。在胶原蛋白粗提液中加入3~5 g活性炭,搅拌30 min,纱布过滤后4 000 r/min离心20 min,倾出上清液,重复操作1次,过滤得到胶原蛋白液。用比色法测定胶原蛋白液中的羟脯氨酸含量,由于淡水鱼鳞胶原蛋白中羟脯氨酸含量是相对固定的,因此试验过程中以羟脯氨酸含量表示胶原蛋白的含量[10]。将胶原蛋白粗提液置于不锈钢托盘中,于冰箱冷冻室内冻结成冰,冷冻干燥机预冷至-45 ℃后放入冻结样品,开启真空泵冷冻

胶原蛋白的提取方法

胶原蛋白的提取方法 胶原蛋白的提取与纯化的目标是尽量使胶原提取的产率、纯度更高,并且使所提取的胶原能满足不同领域的要求。迄今为止,胶原的提取方法主要有以下4种:酸法、碱法、盐法、酶法。在实际提取过程中,不同提取方法之间往往相互结合,以取得较好的提取效果。 1、酸法提取 酸法提取主要采用低离子浓度酸性条件浸渍处理原料,从而破坏分子间的盐键和希夫碱,而引起纤维膨胀、溶解。作为溶剂使用的酸,主要有盐酸或亚硫酸、磷酸、硫酸、醋酸、柠檬酸和甲酸等。酸法是提取胶原蛋白比较常用和有效的方法,用酸法提取的胶原最大程度地保持了其三股螺旋结构。此法处理快速,所得产品的分子量是连续的,适用于医用生物材 料及原料的制备,但产品得率低,设备腐蚀严重,污染重。赵苍碧等采用0.3 %的醋酸溶液在 4 ℃下从牛腱中提取胶原蛋白,得到高纯度的胶原蛋白溶液。余海等采用0.5 mol/L的醋酸溶液在4 ℃下从鼠尾肌腱胶成功提取出I型胶原蛋白。Takeshi等胶原蛋白课题组 采用0.5 mol/L的醋酸溶液从海妒鱼、鳍鱼、金枪鱼、水母等的皮中提取、分离出纯度较高的胶原蛋白,并对所提取的胶原蛋白的理化性质作了系统的研究。2、碱法提取 碱法提取胶原蛋白常用的处理剂为石灰、氢氧化钠、碳酸钠等。如Holzer等采用1 %~1.5 %石灰水浸泡的方法提取胶原蛋白。由于它容易造成肽键水解,因此得到的水解产物分子量比较低。所以,若想保留胶原的三股螺旋结构,此法不可取。 3、盐法提取 盐法提取胶原蛋白所用的中性盐有盐酸-三羟甲基胺基甲烷(Tris-HCl)、氯化钠、柠檬酸盐等。在中性条件下,当盐的浓度达到一定量时,胶原溶解。并且可采用不同浓度的氯化钠对提取的胶原蛋白进行盐析处理,可以沉淀出不同类型的胶原蛋白。 4、酶法提取

鱼皮胶原蛋白工艺20130413

鱼皮胶原蛋白生产工艺 (20130413修改版) 1、清洗分拣:到货新鲜鱼皮,如为冷冻鱼皮,则在槽车内加入纯化水充分解冻, 手工去掉掺杂在鱼皮中的杂质,碎肉,鱼骨等杂质,使用pH为8—9的NaCO3(没有可以使用NaOH代替)浸泡10—15min,即拣出转入纯化水中浸泡并手工清洗,洗液使用纯化水配制,再次去掉掺杂在鱼皮中的杂质,碎肉,鱼骨等。 2、洗涤:经1步处理的鱼皮,使用纯化水清洗至pH7—7.5。 3、投料:将清洗后的鱼皮投料至水解罐,投料用水为纯化水,料水比保持在1:1.2 至1:1.5。 4、水解:使用夹套升温至100摄氏度,并保持20—30min,注意不得使用直通 蒸汽,考虑到物料在升温初期流动性差,升温前期升温速度宜慢,控制罐底层与顶层物料温差小于30℃,当罐内物料已可以随搅拌轴充分旋转后,加快升温速度。温度升温过程中随时探查罐底是否有糊锅情况发生。如在升温过程中罐内鱼皮已经破碎为小片,且大块的鱼皮达到揉捏即碎,毫无韧性的状态,通知技术部取样并考虑提前终止水解。 5、酶解:使用真空或循环水系统降温至55-60摄氏度,在pH7.5—8.0条件下(调 节前取样检测pH,并询问技术部进行pH调节要求),加入0.05%的2#号酶进行水解,水解至无肉眼可见鱼肉鱼皮(鱼鳞不计)即终止,酶解时长控制在2h以内,酶解时如果pH不低于6.0则不需要调节pH值。 6、灭活:酶解结束后即升温至90摄氏度灭活20min。 7、粗滤:使用HCl调节pH至6.0—6.5后(调节前取样检测pH,并询问技术部 进行pH调节要求),添加按料液固形物含量0.5%--1%的白土进入板框过滤间进行一次过滤,过滤后的料渣运至冷库保存。 8、精滤:进行一次过滤后的料液,并添加按料液固形物含量0.5%--1%的白土, 0.2—0.3%的活性碳,在60℃以上搅拌1h,同样调节pH6.0—6.5(调节前取 样检测pH,并询问技术部进行pH调节要求),进行二次板框过滤操作。9、浓缩:过滤后的澄清料液,在高真空、低温度条件(一效温度80℃以下), 浓缩至30%即停止浓缩。 10、喷粉:进入喷粉操作,喷粉时出风口的温度要低,控制在80℃以下。 11、包装:按蛋白粉包装形式包装,如果喷出来的粉比重很轻,可以使用万 能搅碎机粉碎一下,提高比重。

鱼鳞胶原蛋白的提取方法

鱼鳞胶原蛋白的提取方法 摘要:人口、资源和环境是当前全球性的重大问题,加强对水产品的废弃物鱼鳞的加工利用和实现渔业生产的可持续发展已成为当今热门研究课题。文章简述了鱼鳞的结构特点,介绍了目前对鱼鳞胶原蛋白的提取方法,旨在使人们了解鱼鳞的真正价值所在,为其开发利用作参考。 关键词:鱼鳞胶原蛋白提取方法 近年来,淡水鱼加工业随着我国淡水鱼产量的增长而得到了较快的发展,鱼品加工也越来越广泛。但是,许多淡水鱼加工过程仅局限于对鱼体肌肉的利用,而对鱼鳞等废弃物的加工利用甚少。每年淡水鱼加工业的废弃物总量达到200万吨以上,其中鱼鳞约占15%,即30万吨。若能合理利用,可有效减少环境污染,又可提高企业效益,因此加大对鱼鳞含有物质的利用,可应用多个行业,其利用价值巨大,发展前景广阔。 1 鱼鳞的结构与组成 鱼鳞是鱼体与外界接触的组织,是鱼类真皮层的变形物,通常占鱼体重量的1%~5%,起保护鱼体免受伤害的作用。通常鱼鳞可分为三种:(1)板鳃鱼所特有的木盾鳞;(2)斜方型、边缘相联的硬鳞;(3)最常见的骨鳞,在硬骨鱼中最多。鱼鳞主要由蛋白质,卵磷脂,羟基磷灰石和鸟嘌呤组成,其中有机物占41%一55%,钙盐38%~46%。蛋白质占总重的70%,主要为胶原蛋白和鱼鳞角蛋白。鱼鳞胶原蛋白主要为I型胶原。I型胶原蛋白为三股超螺旋结构,即三条多肽链每条都向左旋转形成左手螺旋结构,这三条肽链再以氢键相互结合形成右手超螺旋结构。这种结构非常稳定,胶原一般不溶于水和中性盐溶液、稀酸、稀碱及一般有机溶剂,溶于强酸和强碱。 2 鱼鳞胶原蛋白的提取方法 2.1鱼鳞提取胶原蛋白的前处理 在鱼鳞的前处理中主要做的是脱钙,方法主要有酸脱钙和EDTA脱钙。酸脱

胶原蛋白的提取

胶原蛋白的提取 实验原料:猪皮,氯仿,乙醇,乙酸,0.05mol/L Tris-HCl缓冲液,NaCl,NaOH,胃蛋白酶,蒸馏水。 实验器材:搅拌机,低温离心机,控温磁力搅拌器,电子天平,透析设备,PH试纸,烧杯,玻璃棒,小刀,研钵。 实验需配药品:A:氯仿/乙醇(2:1)约需400ml, B:0.5mol/L乙酸约3000ml, C:6mol/L NaOH溶液约40ml, D:质量分数0.1%、0.01%的乙酸(透析用), E:含4.5mol/LNaCl的0.05mol/LTris-HCl缓冲液约需200ml。 实验步骤: 1,猪皮的前处理: (1)称取猪皮50g,用氯仿/乙醇(2:1,A)溶液对其进行脱脂后切除皮下脂肪,去毛并细切; (2)将组织小块用乙醇和蒸馏水洗涤多次; (3)将洗涤后的组织放入搅拌机中搅拌成糊状,用含4.5mol/L NaCl的0.05mol/L Tris-HCl 缓冲液(pH 7.5,E)充分洗涤(2h)以去除脂质及血清等成分,低温离心(8000r/min,30min,4℃)取沉淀。 2,提取胶原蛋白: (1)进行前处理后,在沉淀中加入500ml含胃蛋白酶250mg的0.5mol/L冰醋酸(B),搅拌并维持在4℃,提取48h; (2)高速冷冻离心机离心(4000r/min)吸取上清液。在上清液中加入NaCl至4.4mol/L (NaCl2.2mol)搅拌过夜; (3)低温离心,将沉淀溶于0.5mol/L冰醋酸中,再逐级用2.4mol/L(NaCl1.2mol,以500ml 冰醋酸计),1.7mol/L(NaCl0.85mol)及1.0mol/L(NaCl0.5mol)的NaCl反复盐析、酸溶。最后得到的上清液即为胶原粗提液。 3,胶原蛋白提纯: (1)在粗提胶原蛋白溶液缓慢加入6 mol/L NaOH溶液(C)调节pH值到7,冷冻离心除掉沉淀物,在剩余的溶液中加入氯化钠固体研细粉末,缓慢搅拌,4 ℃静置过夜保存;(2)离心取沉淀,用稀醋酸再次溶解,将溶解液装入透析袋中,用质量分数分别为0.1%、0.01%的乙酸溶液(D)透析1 d,再用蒸馏水透析3d,每天换透析液两次,最后得到的是纯度较高的胶原蛋白水溶液; (3)将纯化的胶原蛋白水溶液采用低温冷冻干燥法制备成纯胶原蛋白样品,备用。

鱼鳞胶原蛋白的提取工艺研究【开题报告】

开题报告 食品科学与工程 鱼鳞胶原蛋白的提取工艺研究 一、综述本课题国内外研究动态,说明选题的依据和意义 胶原蛋白是细胞外基质的结构蛋白质,其分子在细胞外基质中聚集为超分子结构。其分子量为30万道尔顿,它是由3条左手螺旋构型α肽链结合而成的三螺旋结构,互相盘绕成螺旋结构。在胶原蛋白中甘氨酸(Gly)几乎占总含量的1/3,脯氨酸(Pro)和羟脯氨酸(Hyp)的含量是都高于其他蛋白质中的含量,且羟基赖氨酸(Hyl)仅在胶原蛋白中存在。胶原蛋白是结缔组织中极其重要的一种结构蛋白占全身总蛋白质的30%以,它广泛存在于动物的骨、腱、肌鞘、韧带肌膜、软骨和皮肤中。由于其分子结构稳定并具有良好的生物相容性,在医药、保健、食品加工、化妆品等领域有良好的应用前景。 近年来,我国水产品产量一直保持着高速增长的势头,其中,2005年产量高达4900万吨,约占世界水产品产量的35%,位居世界第一位。伴随着我国渔业生产的快速发展,水产品加工也越来越广泛,但是在加工过程中会不可避免地产生大量的下脚料,其中的鱼鳞通常被人们视为下脚料,这类下脚料往往被随意丢弃,不但造成了资源浪费,还会污染环境。据统计,我国每年废弃的鱼鳞达到30万吨以上。 鱼鳞约占鱼体重的2%~5%,研究表明,鱼鳞中含有丰富的蛋白质、卵鳞脂和各种矿物质,有机物占41%~55%,钙盐为38%~46%,主要由蛋白质和羟基磷灰石组成,其中蛋白质占鱼鳞总重的70%,主要为胶原蛋白和鱼鳞角蛋白。水产胶原蛋白具有陆生动物胶原蛋白没有的一些特点以及更高的安全性,由此以鱼鳞作为原料提取胶原蛋白是一种很好的途径。 胶原蛋白质结构和功能特点的多样性和复杂性,决定了它在许多领域的重要地位以及广阔的应用前景。当今科学技术已将胶原蛋白广泛应用于医药工业、食品工业、日用化学品工业、生物合成及胶原修饰等领域中,鱼鳞胶原蛋白作为极有发展潜力与应用价值的高附加值产品而倍受人们的关注与青睐。 鱼鳞中含有大量的胶原蛋白,采用传统工艺进行水产品加工的过程中,一般将其作为废弃物丢弃,这是一种巨大的浪费。本文总结了鱼鳞胶原三个产品的制备技术与应用,其中鱼鳞明胶和鱼鳞胶原蛋白粉的加工技术已相对成熟,而作为生物医用材料的胶原蛋白的开发尚处于起步阶段。以鱼鳞胶原制备的一系列产品具有广阔的应用领域,横跨化工业、食品行业、化妆品

鱼皮和鱼鳞胶原蛋白及多肽的特点和应用

鱼皮和鱼鳞胶原蛋白及多肽的特点和应用 鱼鳞是鱼真皮层的变形物,占鱼体重量的1%~5%,由结缔组织构成,起到保护鱼 体免遭损害的作用。通常鱼鳞分三种:一种是板鳃鱼(如鲨鱼等)所特有的鳞;另一种是斜方型、边缘相联的硬鳞;第三种是骨鳞,这在硬骨鱼类中最多,每个鳞片可分为上下两层,上层由骨质组成,坚固脆薄,下层由纤维结缔组织相互交错而成,显得柔软以便鱼体活动,然而鱼鳞的真正构造还不太清楚,但通过X射线研究,推测与动物的骨相似,而且研究发现,鱼鳞成分和骨骼也相似,但是鱼鳞中的无机盐类含量较动物骨骼中无机盐类的含量要少得多(王彩理等,2005)。显微镜下,鱼鳞表面能看到规则的隆起线形成的鳞相,鱼鳞的纹样可以作为鱼的种类、年龄等的标记,并且鱼鳞也可被作为重金属的污染监视指标而利用。我国每年鱼的废弃物总量就达到200万t以上,其中鱼鳞约占15%,即30万t(罗红宇,2 2003)。近年来,营养学家发现,鱼鳞含有丰富的蛋白质和多种矿物质,其中有机物占41%~55%,磷酸钙38%~46%,还含少量碳酸钙、磷酸镁、磷酸钠等无机盐(刘庆慧 等,2000),鱼鳞的有机物组成中除生胶质外,大部分为鱼类特有的鱼鳞硬蛋白(Ichthylepidin)、脂肪、色素、粘液质等(王彩理和朱伯清,2004)。如果能充分利用这些成分,不仅可以提高鱼类加工的附加值,同时可减少环境污染,创造良好的经济与社会效益。1 鱼鳞的食品开发 从鱼鳞中提取鱼鳞胶在食品开发中具有广泛的应用。鱼鳞胶含有除色氨酸以外的全部必需氨基酸,若补充色氨酸,其营养价值更高,鱼鳞胶是强有力的保护胶体,乳化力强,既有利于食物消化,又可抑制牛奶、豆浆等蛋白质因胃酸而引起的凝集作用。鱼鳞胶在食品工业中可以作为增稠剂、乳化剂、稳定剂、澄清剂等,广泛应用于罐头、饮料、乳品加工、肉制品加工、果酒酿造等方面(王彩理,2002;王彩理和朱伯清,2004)。鱼鳞胶还是不可多得的滋补品,我国许多地方有食用鱼鳞胨的习惯,现代研究也表明其具有生血、养颜、美容、降低血清总胆固 醇和甘油三酸酯等众多功效。日本已经有了专门以鱼鳞胶原蛋白为原料的片剂。 保健品开发 营养学家研究发现,鱼鳞是特殊的保健品,它含有较多的卵磷脂。能把脂肪球分解成乳状液与水交融,有增强人脑记忆力、延缓脑细胞衰老的作用。鱼鳞中含有多种不饱和脂肪酸,可减少胆固醇在血管壁内沉积,促进血液循环,起着预防高血压及心脏病的作用。鱼鳞中还含有丰富的多种微量元素矿物质,尤以钙、磷含量为高。研究表明,鱼鳞含丰富的胶原蛋白(王南平和郭朋达,2004),胶原蛋白具有良好的生物学特性,是一种重要的功能性蛋白质,它与细胞增生、分化、运动、免疫、关节润滑、伤口愈合等有密切相关,可以作为组织的支持物,对细胞、组织乃至器官行使正常功能并对外伤修复具有重大影响。胶原蛋白有利于上皮细胞的增生修复,促进创面愈合,可应用于烧伤、创伤的治疗;而且胶原蛋白能诱导血小板附着,激活血液凝固因子,用于创面和外科手术的止血等。鱼鳞胶也可以作为药剂直接利用,替代来源稀少的龟甲胶,有效率在95%以上。另外,鱼鳞胶和其他明胶混合

胶原蛋白提取

毕业论文外文资料翻译 学院:生物科学与工程学院 专业:生物工程 姓名:李秀莉 学号:120302214 外文出处:Food Chemistry 190(2016) 186-193 附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 响应面优化蛋壳膜中胃蛋白酶溶性胶原蛋白提取工艺关键词: 蛋壳膜、响应面优化法、胃蛋白酶溶性胶原蛋白 摘要: 本文利用响应面优化法(RSM)确定了自变量对蛋壳膜中胃蛋白酶溶性胶原蛋白(PSC)提取产率的影响。采用中心复合设计(CCD)的实验设计和结果分析方法,选取最有可能的条件范围进行了优化实验:NaOH浓度(X1:0.4-1.2mol/L),碱处理时间(X2:6-30h),酶浓度(X3:15-75U/mg)以及水解时间(X4:12-60h)。实验数据用适当的统计学方法通过多元线性回归分析得到一个二阶多项式方程,分析表明最佳提取条件为:NaOH浓度为0.76mol/L,碱处理时间为18h,酶浓度为50U/mg,水解时间为43.42h。在最佳提取条件下的提取率实验值是30.049%,这与预测值30.054%高度一致。 1.前言 胶原蛋白是脊椎动物的主要结构蛋白,大约占一个动物总蛋白的30%(Muyonga, Cole, & Duodo, 2004)。胶原蛋白的分子结构由三个多肽α-链扭曲在一起形成的一个三股螺旋体。在所有胶原蛋白的“胶原域”都发现了(Gly-X-Y)n重复。X和Y的位置往往分别被脯氨酸和羟脯氨酸占用(Gelse, Poschl, & Aigener, 2003)。目前,至少已有27中胶原蛋白类型已确定,其氨基酸序列、分子结构和功能明显不同(Canty & Kadler, 2005; Cheng, Hsu, Chang, Lin, & Sakata, 2009)。胶原蛋白已被广泛用作医药、化妆品、生物医学和食品行业的材料(Cheng et al.,2009)。一般来说,工业应用的胶原蛋白的主要来源是牛与猪的皮肤和骨头。然而,阮病毒疾病的爆发,如海绵脑病(BSE),传染性海绵脑病(TSE)和口蹄疫(FMD),以及禽流感,导致一些消费者对从这些动物体提取的胶原蛋白和胶原蛋白产品的担忧。此外,以猪为原料提取胶原蛋白不能被犹太人和穆斯林接收(Liu, Liang, Regenstein, & Zhou, 2012; Regenstein & Zhou, 2007)。因此,全球对胶原蛋白的代替原料的需求增加了,如水生动物。但是,关于胶原蛋白提取的其他来源的信息是有限的。 蛋壳作为副产品大约占了一个鸡蛋总重量(60g)的10%(Nys, Bain, & Immerseel, 2011)。据估计每年在伊朗蛋制品工业都产生100000吨的蛋壳。蛋壳膜存在于白色液体和固体蛋壳内表面之间。胶原蛋白占蛋壳膜总蛋白含量的10%(MacNeil, 2006)。在蛋

鱼皮胶原蛋白喷雾干燥机及生产工艺

购买鱼皮胶原蛋白喷雾干燥机及生产工艺常州干燥,专业为客户提供鱼皮胶原蛋白干燥塔,鱼皮胶原蛋白烘干机等技术设计方案,并有相关的成熟精验与使用单位,技术力量雄厚,加工设备精良,产品质量可靠,服务设施完善,免费安装,代培技术指导,在管理和售后服务上更加完善和周到。欢迎来电咨询洽谈! 鱼皮胶原蛋白生产工艺: 1、清洗分拣:到货新鲜鱼皮,如为冷冻鱼皮,则在槽车内加入纯化水充分解冻,手工去掉掺杂在鱼皮中的杂质,碎肉,鱼骨等杂质,使用pH为8—9的NaCO3(没有可以使用NaOH代替)浸泡10—15min,即拣出转入纯化水中浸泡并手工清洗,洗液使用纯化水配制,再次去掉掺杂在鱼皮中的杂质,碎肉,鱼骨等。

2、洗涤:经1步处理的鱼皮,使用纯化水清洗至 pH7—7.5。 3、投料:将清洗后的鱼皮投料至水解罐,投料用水为纯化水,料水比保持在1:1.2至1:1.5。 4、水解:使用夹套升温至100摄氏度,并保持 20—30min,注意不得使用直通蒸汽,考虑到物料在升温初期流动性差,升温前期升温速度宜慢,控制罐底层与顶层物料温差小于30℃,当罐内物料已可以随搅拌轴充分旋转后,加快升温速度。温度升温过程中随时探查罐底是否有糊锅情况发生。如在升温过程中罐内鱼皮已经破碎为小片,且大块的鱼皮达到揉捏即碎,毫无韧性的状态,通知技术部取样并考虑提前终止水解。 5、酶解:使用真空或循环水系统降温至55-60摄氏度,在pH7.5—8.0条件下(调节前取样检测pH,并询问技术部进行pH调节要求),加入0.05%的2#号酶进行水解,水解至无肉眼可见鱼肉鱼皮(鱼鳞不计)即终止,酶解时长控制在2h以内,酶解时如果pH不低于6.0则不需要调节pH值。 6、灭活:酶解结束后即升温至90摄氏度灭活20min。 7、粗滤:使用HCl调节pH至6.0—6.5后(调节前取样检测pH,并询问技术部进行pH调节要求),添加按料

胶原蛋白项目计划书1128

胶原蛋白项目投资计划书 一、项目概况 国务院发布的“国家中长期科学和技术发展规划纲要(2006-2020年)”中,“重点领域及其优先主题”第51项是“先进医疗设备与生物医用材料”。而胶原蛋白则是新型生物医用材料、组织工程技术以及生物药物缓释体系的的重要组成部分,其高速发展完全符合国家的政策导向。 高附加值农业也是十二五重点支持的领域之一,鱼胶原蛋白系列产品的开发符合新兴农产品深开发的发展方向。2005年我国水产品总量已达到5100万吨,占世界总产量的35.7%。据我国农业部渔业局委托上海水产系统有关单位进行的《中国水产废弃物利用产业调查报告》指出:2002年水产品加工业处理水产原料达到了1589.2万吨,总产值达761.1亿元。除此之外,大约还有40%的国外水产品在中国加工,每年大约有800万吨废弃物(包括鱼皮、鳞、骨、内脏等)产生。因此,每年由如此巨大量的鱼类加工原料被废弃,如能全面综合利用,其产能和效能则不可限量。所以,开发海洋生物资源综合加工利用技术,具有重大的经济、生态和社会意义。 胶原基生物材料及制品的临床应用已有几十年,2010年全球市场销量已达86亿美金,国内仅有不到10亿人民币的销量。目前市售的胶原基医疗产品是以陆地动物组织如牛/猪皮肤或跟腱为主要来源,涉及病毒传播等问题,已被列入我国重点监控的高风险产品名录。寻找更为安全的胶原来源以保证其临床医用的安全性,已成为亟待解

决的关键难题。迄今未见水产品人畜共患疾病的报道,因此,水产品废弃物来源的鱼胶原比陆地动物源胶原的生物安全性高。从鱼鳞/鱼皮等水产品加工废弃物中提取的胶原产品用于食品、化妆品领域已有10多年历史并证明安全有效。世界上迄今只有欧盟批准的鱼胶原基医用止血材料1项,因此鱼胶原医用产品的研发、转化和标准化基本属于空白。 二. 领军人物及团队 本项目负责人顾其胜教授是生物材料行业的行业带头人,曾开发出多项具有自主知识产权的产品,是国家生物医用材料领域的知名专家,尤其擅长于天然多糖、蛋白质和其他生物制品等生物材料的开发和转化,作为多家高校的客座教授,参与过“十一五”中的863项目及重点支撑项目,并带教研究生多名。 项目开发团队的人员配置合理,有生物学、材料学、临床医学等专业背景并配置有高学历(硕士、博士)的人才作为项目的主要负责小组。顾其胜教授作为总负责人具有丰富的开发、管理、产业化经验,其他参与人员均有相应的产品开发、生产、质控、保障、临床验证、产品申报等方面的经验,可保证项目实施各阶段接口之间的有效衔接。 本项目的研发团队有天然多糖及其衍生化制品开发和转化的相关专业经历,曾参与国家863、十一五专项、国家自然科学基金等支持的相关项目的研发工作,对天然多糖及其衍生化产物的制备、纯化有丰富的经验积累和实践技能积累。项目组在胶原蛋白开发领域有丰

胶原蛋白的提取工艺研究

实验21 胶原蛋白的提取工艺研究 一、实验目的 1.掌握胶原提取与分离的工艺方法。 2.掌握冷冻离心机的使用。 3.了解胶原提取的实验原理。 二、实验原理 胶原是生物体内一种纤维蛋白,主要存在于皮肤、骨、软骨及肌腱等组织中,占人体或其他动物体总蛋白含量的25~33%。胶原分为可溶性胶原和不溶性胶原。随着年龄的增长,胶原分子间出现共价键架桥。这些架桥大多位于胶原分子N及c端的非胶原性肽(端肽)部分,因而易被蛋白酶切断。在酸性条件下,以胃蛋白酶处理(底物﹕酶=20~100﹕1)或中性条件下经木瓜蛋白酶处理,被切除部分端肽的胶原分子便变为可溶性。本实验采用胃蛋白酶消化法从猪皮或肌腱中提取胶原蛋白。 三、主要仪器与试剂 1.主要仪器 控温磁力搅拌器,高速组织捣碎机,酸度计(或pH试纸),高速冷冻离心机。 2.试剂 猪皮或肌腱,胃蛋白酶,醋酸,硫酸铜,硫酸钾,氢氧化钠,硫酸,硼酸,盐酸。 四、实验步骤 安全预防:醋酸具有刺激性气味,需要在通风橱中进行。 1.原料前处理 将新鲜猪皮或肌腱去脂肪、筋膜后,切成5 mm以下的薄片,越少越有利于提取胶原蛋白。然后除血,脱脂,再用蒸馏水漂洗干净,晾干备用。前处理时必须充分去除脂肪组织,胶原中一旦有脂质混入,无论是进行中性,还是酸性沉淀溶解都是不能去除的,最后只能得到乳浊状的胶原溶液。 2.胶原蛋白的提取 将上述预处理好的猪皮或肌腱称重后放入三角烧瓶中,分别加入一定量的酶和一定浓度的乙酸溶液进行水解,控制温度4 ℃左右缓慢搅拌3 d,然后用高速冷冻离心机以4000 r·min -1离心,取上清溶液,即可得粗提胶原蛋白溶液。 3.胶原蛋白提纯 在粗提胶原蛋白溶液缓慢加入6mol·L-1氢氧化钠溶液调节pH值到7,冷冻离心除掉沉淀物,在剩余的溶液中加入氯化钠固体研细粉末,缓慢搅拌,4 ℃静置过夜保存。离心取沉淀,用稀醋酸再次溶解,将溶解液装入透析袋中,用质量分数分别为0.1%的乙酸溶液透析1 d,再用蒸馏水透析,最后得到的是纯度较高的胶原蛋白水溶液。 4.蛋白质含量的测定 凯氏定氮法。 五、思考题 1.原料前处理时,为什么必须充分去除脂肪组织? 2.胶原蛋白提纯过程中,在剩余溶液中加入氯化钠的作用是什么? 3.酶解时,对提取温度和pH值有何要求? 参考文献

相关文档