文档库 最新最全的文档下载
当前位置:文档库 › 高等代数第6章习题参考答案

高等代数第6章习题参考答案

高等代数第6章习题参考答案
高等代数第6章习题参考答案

第六章 线性空间

1.设,N M ?证明:,M N M M N N ==I U 。

证 任取,M ∈α由,N M ?得,N ∈α所以,N M I ∈α即证M N M ∈I 。又因

,M N M ?I 故M N M =I 。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论

哪 一种情形,都有,N ∈α此即。但,N M N Y ?所以M N N =U 。

2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。

证 ),(L N M x Y I ∈?则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。反之,若

)()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此

.L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得

),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ?

于是)()()(L M N M L N M I Y I Y I =。

若x M N L M N L ∈∈∈U

I I (),则x ,x 。 在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L )

。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:

1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;

2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量

乘法;

3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:

2121211211

12

b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,)

()k 。(a ,)=(ka ,kb +

6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: 0k a =o ; 7) 集合与加法同6),数量乘法定义为:

k a a =o ;

8) 全体正实数r ,加法与数量乘法定义为:

a b ab ⊕=,k k a a =o ;

解 1)否。因两个n 次多项式相加不一定是n 次多项式,例如 523n n

x x ++--=()()。

2)令V={f (A )|f (x )为实数多项式,A 是n ×n 实矩阵} 因为

f (x )+

g (x )=

h (x ),kf (x )=d (x ) 所以

f (A )+

g (A )=

h (A ),kf (A )=d (A )

由于矩阵对加法和数量乘法满足线性空间定义的1~8条,故v 构成线性空间。

3)矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,只需证明对称矩阵(上三角矩阵,反对称矩阵)对加法与数量乘法是否封闭即可。下面仅对反对称矩阵证明: 当A ,B 为反对称矩阵,k 为任意一实数时,有

'''(A+B )

=A +B =-A-B=-(A+B ),A+B 仍是反对称矩阵。 KA KA K A KA ''==-=-()()()

,所以kA 是反对称矩阵。 故反对称矩阵的全体构成线性空间。

4)否。例如以已知向量为对角线的任意两个向量的和不属于这个集合。 5)不难验证,对于加法,交换律,结合律满足,(0,0)是零元,任意(a ,b )的负元是(-a ,2

a -

b )。对于数乘:

2

2222222

1(11)111)(,),2(1)(1)(1)

.(.(,).(,)(,[2]())

222

(1)(1)(1)(1)

(,[]())(,())

2222

(1)(,)().(,),

2(a b a b a a b l l l l k k k l a b k la lb a kla k lb a la l l k k kl kl k k kla k lb a la kla a la kl kl kla a klb kl a b -==

=---=+=++----=++=+-=+=。(,)(。,。2

22

22

22

()(1)).(,)[(),()]

2

(1)(1).(,).(,)(,)(,22

(1)(1)(,)

22(1)(1)[(),()].

2k l k l k l a b k l a a k l b k k l l k a b l a b ka kb a la lb a

k k k k ka la kb a a kla k k l k l a a k l b ++-+=+++--⊕=+⊕+--=++++++-=+++

即),(),(),()(b a l b a k b a l k οοο⊕=+。

),()],(),[(2121212211a a b b a a k b a b a k +++=⊕οο

=)])(2

)

1((),([221212121a a k k a a b b k a a k +-+

+++, ),()(221,1b a k b a k οο⊕

=)2)1(,()2)1(,(2

2222111a k k kb ka a k k kb ka -+⊕-+

=)2

)1(2)1(,(2122

2221121a a k a k k kb a k k kb ka ka +-++-++

=)2)1(2)1()(),((212122

221212121a a k a a k a k k a k k a a b b k a a k -+-++-++++

=))(2

)1()(),((2

2221212121a a k k a a b b k a a k +-++++,

即=⊕),(),(2211b a b a k ο),()(221,1b a k b a k οο⊕,所以,所给集合构成线性空间。 6)否,因为.01αα≠=ο。

7)否,因为)()()(,2,)(ααααααααααοοοοοοl k l k l k l k +≠+=+=+=+所以, 所给集合不满足线性空间的定义。

8)显然所给集合对定义的加法和数量乘法都是封闭的,满足

1);

)()()()();)111;

1111

):1,1;

)1;

)(())()()();)()()();

)()l l k lk kl k l k l i a b ab ba b a ii a b c ab c abc a bc a b c iii a a a iv a a a a a a a a

v a a a vi k l a k a a a a kl a vii k l a a a a ka la viii k a b +⊕===⊕⊕⊕=⊕==⊕=⊕⊕⊕=?=⊕=?=⊕=⊕=======+==?=⊕⊕o o o o o o 是零元:的负元是且()()()().

k k k k ab ab a b k a k b ====⊕o o o

所以,所给集合+

R 构成线性空间。

4 在线性空间中,证明:1)00=k 2)βαβαk k k -=-)(。

证 1)00))(()1()())((0==-+=-+=-+=-+=ααααααααk k k k k k k k 。

2)因为()(),()k k k k k k k αββαββααβαβ-+=-+=-=-所以。

5 证明:在实函数空间中,1,t t 2cos ,cos 2式线性相关的。

证 因为1cos 22cos 2

-=t t ,所以1,t t 2cos ,cos 2

式线性相关的。

6 如果)(),(),(321x f x f x f 是线性空间][x P 中三个互素的多项式,但其中任意两个都不互

素,那么他们线性无关。

证 若有不全为零的数321,,k k k 使0)()()(332211=++x f k x f k x f k ,

不妨设,01≠k 则)()()(31

3212

1x f k k x f k k x f --

=,这说明)(),(32x f x f 的公因式也是)(1x f 的因式,即)(),(),(321x f x f x f 有非常数的公因式,这与三者互素矛盾,所以

)(),(),(321x f x f x f 线性无关。

7 在4P 中,求向量ζ在基4321,,,εεεε下的坐标。设

1))1,1,2,1(),1,1,1,1(),11,1,1(),1,1,1,1(),1,1,1,1(4321=--=--=--==ζεεεε;

2))1,0,0,0(),1,1,1,0(),0,0,1,1(),1,3,1,2(),1,0,1,1(4321=--====ζεεεε。

解 1)设有线性关系4321εεεεζd c b a +++=,则????

???=+--=-+-=--+=+++1

121

d c b a d c b a d c b a d c b a ,

可得ζ在基4321,,,εεεε下的坐标为4

1

,41,41,45-=-===

d c b a 。 2)设有线性关系4321εεεεζd c b a +++=,则????

???=-+=-=+++=++1

0300

2d b a d b d c b a c b a ,

可得ζ在基4321,,,εεεε下的坐标为0,1,0,1=-===d c b a 。

8求下列线性空间的维数于一组基:1)数域P 上的空间P n n ?;2)P n n ?中全体对称(反对称,

上三角)矩阵作成的数域P 上的空间;3)第3题8)中的空间;4)实数域上由矩阵A 的全体实

系数多项式组成的空间,其中A=,00000012?

???

? ??ωω231i

+-=ω。

解 1)n n P ?的基是{

),,...,2,1,}(n j i E ij =且2dim()n n

P

n ?=。

2) i)令?????

??

?

?

?

???=...

............1............1.........

...

ij F ,即,1==ji

ij a a 其余元素均为零,则

{}nn n n F F F F F ,...,,...,,...,222,111 是对称矩阵所成线性空间n M 的一组基,所以n M 是

2

)

1(+n n 维的。 ii)令?????

??

?

?

?-???=...

............1............1.........

...

ij G ,即),(,1j i a a ji

ij ≠=-=其余元素均为零,则

{}n n n n G G G G G ,1223,112,...,,...,,...,-是反对称矩阵所成线性空间n S 的一组基, 所以它是

2

)

1(-n n 维的。 iii) {}nn

n n E E E E E ,...,,...,,...,222,111是上三角阵所成线性空间的一组基,所以它是

2

)

1(+n n 维的。 3)任一不等于1的正实数都是线性无关的向量,例如取2,且对于任一正实数a ,可经2线性表出,即.2)(log 2οa a =,所以此线性空间是一维的,且2是它的一组基。

4)因为231i +-=ω,13

=ω,所以?????+=+===2

3,13,3,12q n q n q

n n ωωω,

于是E A A =????? ??=????? ?

?=111,1322

ωω, 而??

???+=+===23,13,3,2q n A q n A q n E A n

9.在4P 中,求由基,1ε,,,,432εεε到基4321,,,ηηηη的过渡矩阵,并求向量ξ在所指基下的坐标。设

)()()()()?????????????

?====1,0,0,00,1,0,00,0,1,00,0,0,114

32

1εεεε,()()

()()?

????

??===-=3,1,6,61,2,3,50,1,3,01,1,1,24321ηηηη,

()4321,,,x x x x =ξ在4321,,,ηηηη下的坐标; )()()()()??????????????--=-=-=-=1,0,1,11,1,2,11,1,1,110,2,12432

1εεεε,()()()()

???????=-==-=2,1,3,12,1,1,22,2,1,01,0,1,243

21ηηηη,

()0,0,0,1=ξ在,1ε,,,432εεε下的坐标; )()()()()??????????????--=--=--==1,1,1,11,1,1,11,1,1,11,1,1,13432

1εεεε,()

()()()

???????--====1,1,1,00,0,1,11,3,1,21,0,1,143

21ηηηη,

()1,0,0,1-=ξ在4321,,,ηηηη下的坐标;

解 )1(4321,,,ηηηη)=(,1ε,,,432εεε)??

?

?

?

?

?

?

?-310112116331

6502

=(,1ε432,,εεε)A

这里A 即为所求由基,1ε,,,432εεε到4321,,,ηηηη的过渡矩阵,将上式两边右乘得1

-A , 得 (,1ε432,,εεε)=(4321,,,ηηηη)1

-A ,

于是

=ξ(,1ε432,,εεε)??????? ??4321x x x x =(4321,,,ηηηη)1-A ?????

?

? ??4321x x x x ,

所以在基下的坐标为

1-A ????

??

? ??4321x x x x ,

这里1-A =?

?

??

???????

??------

-2726319127

732003

1

272331942719111

3194。

)2令)1,0,0,0(),0,1,0,0(),0,0,1,0(),0,0,0,1(4321====e e e e 则

(,1ε432,,εεε)=(43,21,,e e e e )????

??? ??-----1110011112121111

=(43,21,,e e e e )A ,

(4321,,,ηηηη)=(43,21,,e e e e )??

??

?

?

?

?

?-222111203111

1202=(43,21,,e e e e )B , 将(43,21,,e e e e )=(,1ε432,,εεε)1

-A 代入上式,得

(4321,,,ηηηη)=(,1ε432,,εεε)1

-A B ,

这里

1-A =?

????

??????

??-----

--138********

3131134133132134133131135135136133133

,1-A B=??

??

?

?

?

??0100111010111001, 且B A 1

-即为所求由基,1ε,,,432εεε到基4321,,,ηηηη的过渡矩阵,进而有

()0,0,0,1=ξ=(43,21,,e e e e )??????? ??0001=(,1ε432,,εεε)1-A ????

??

? ??0001

=(,1ε432,,εεε)???

???

????

? ??--133132135133,

所以ξ在,1ε432,,εεε下的坐标为???

??--133,132,13

5,133。

)343,21,,e e e e 同)2,同理可得

A=,111111*********

1???????

??------B=???

?

??

?

??-10111030111

101

21

1-A =41,111111*********

1????

??

?

??------ 则所求由,1ε432,,εεε到4321,,,ηηηη的过渡矩阵为

1-A B=??????????

? ??------410

4

14141043414321414141214743

。 再令1ηξa =+b 2η+c 3η+d 4η,即

()()()??

??

?

?

?

??--=?

?????

? ??=11100011

1312

10

1

1,,,,,,0,0,0,14321d c b a d c b a ηηηη, 由上式可解得ξ在下的坐标为4321,,,ηηηη下的坐标为 ()=d c b a ,,,??

?

??

---

-23,421,21ηξa =。 10.继第9题1)求一非零向量ξ,它在基,1ε432,,εεε与4321,,,ηηηη下有相同的坐标。

解 设ξ在两基下的坐标为()

4,321,,x x x x ,则

ξ=(,1ε432,,εεε)??????? ??4321x x x x =(4321,,,ηηηη)????

??

?

??4321x x x x 。

又因为

(4321,,,ηηηη)=(,1ε432,,εεε)??

??

?

?

?

?

?-310112116331

6502

=(,1ε432,,εεε)A , 所以

??????? ??4321x x x x =A ??????? ??4321x x x x ?(A - E )????

??

?

??4321x x x x =0。

01

01

111321,02

101

1

11163216501

≠-=-=

-且E A ,

于是只要令就有,4c x -=

??

?

??=+=++-=++c

x x c x x x c x x x 263231321321,

解此方程组得

()

4,321,,x x x x =()c c c c -,,, (c 为任意非零常数), 取c 为某个非零常数0c ,则所求ξ为

40302010εεεεξc c c c -++=。

11.证明:实数域作为它自身的线性空间与第3题8)中的空间同构。 证 因为它们都是实数域上的一维线性空间,故同构。

12.设12,V V 都是线性空间V 的子空间,且12V V ?,证明:如果1V 的维数与2V 的维数相等,那么12V V =。

证 设dim(1V )=r ,则由基的扩充定理,可找到1V 的一组基,,.....,21r a a a ,因21V V ?,且它们的唯数相等,故,,.....,21r a a a ,也是2V 的一组基,所以1V =2V 。

13.n n P A ?∈。

1)证明:全体与可交换的矩阵组成的一个子空间,记做C (A ); 2)当A=E 时,求C (A );

3)当A=????

?

?

?

??n ......

....................21时,求C (A )的维数和一组基。 证 1)设与A 可交换的矩阵的集合记为C(A)。若B,D 属于C(A),可得

A(B+D)=AB+AD=BA+DA=(B+D)A ,

故 B+D ∈C(A)。若k 是一数,B )(A C ∈,可得 A (kB )=k(AB)=k(BA)=(kB)A , 所以kB ∈C(A)。故C(A)构成n

n P ?子空间。

2)当A=E 时,C (A )=n

n P

?。

3)设与A 可交换的矩阵为B=(ij b ),则B 只能是对角矩阵,故维数为n,nn

E E E ,...,2211即为它的一组基。

14.设求中全体与可交换的矩阵所成的子空间的维数和一组基。 解 若记

A=S E +=???

?

? ??+????? ??113000000100010001,

并设B=???

?? ??22

2

111

c b a c b a c b a 与A 可交换,即AB=BA ,则SB=BS 。且由 SB==????? ??????? ??22

2111

113000000c b a c b a c b a

????

?

??++++++212

12

1333000

00

c c c b b b a a a , BS=????

? ??22

2

111

c b a c b a c b a ????? ??113000000=????

?

??22

2111333c c c c c c c c c

, 可是01==c c , 又 ??

?=++=++2

212

21333c b b b c a a a ,

即??

?++=--=+-212

2

12333b b b c a a a c ,

该方程组的系数矩阵的秩为2,所以解空间的维数为5。取自由未知量a,2c ,并 令b=1,其余为0,得2c =3,a=3; 令1a =1,其余为0,得2c =3,a=3

1

-

; 令1b =1,其余为0,得2c =1,a=1; 令2a =1,其余为0,得2c =0,a=3

1-

; 令2b =1,其余为0,得2c =1,a=1; 则与A 可交换的矩阵为

B=????

?

??22

2

11

00c b a b a b a , 其中,a,2c 可经b,2121,,,b b a a 表示,所求子空间的一组基为

????? ??300000013, ??????? ??-0000010031 ,????? ??100010001, ?

???

??

? ??-0010000031 , ????? ??110000001,

且维数为5。

15.如果 ,0321=++γβc c a c 且031≠c c ,证明:L ()β,a =L ()γβ,。 证 由031≠c c ,知,01≠c 所以a 可

γβ,经线性表出,即βα,可经γβ,线性表出,

同理,γβ,也可经βα,线性表出。故L ()β,a =L ()γβ,。

16.在4P 中,求由下面向量组生成的子空间的基与维数。设

1)()???????=--===)1,1,1,1()0,3,1,1()1,0,2,1(1,3,1,24321a a a a , ()???????-=-=--=-=)

1,3,5,1()1,3,5,4()1,3,1,1(1,3,1,24321a a a a 。

解 1)4321,,,a a a a 的一个极大线性无关组421,,a a a ,因此421,,a a a 为L ()4321,,,a a a a 的一组基,且的维数是3。

2)4321,,,a a a a 的一个极大线性无关组为21,a a ,故21,a a 是L ()4321,,,a a a a 的一组基,且维数为2。 17.在4P 中,由齐次方程组

???

??=+-+=-+-=+-+0

11135303330

45234321

43214321x x x x x x x x x x x x 确定的解空间的基与维数。

解 对系数矩阵作行初等变换,有

???

?

? ??---→????? ??----→????? ??----000078304523783078304523111353331

34523 所以解空间的维数是2,它的一组基为 ??? ??-

=0,1,38,911a ,??

?

??=1,0,37,922a 。 18.求由向量12,αα生成的子空间与由向量12,ββ生成的子空间的交的基与维数,设

1)()()???-==1,1,1,10,1,2,121a a ()

()???-=-=7,3,1,11,0,1,22

1ββ;

2)()()??

?==1,1,0,10,0,1,121a a ()

()

???==0,1,1,01,1,0,021ββ;

3)()

???

??--==--=)

1,1,0,1()1,1,1,3(2,1,2,13

21a a a ()()???--=--=3,7,2,15,6,5,221ββ。

解 1)设所求交向量 1k =γ1α2k +2α1l =1β2l +2β, 则有 1k 1α2k +2α1l -1β2l +2β0=,

即 ??????

?=--=-+=+++=---0

70302022122212

1212121l l k l k k l l k k l l k k ,

可算得7

11

3

0111

1

1212

11------=

D 0=, 且0

1

1

1122

11--0≠ , 因此方程组的解空间维数为1,故交的维数也为1。任取一非零解(,,21k k ,1l )2l =

)1,3.,4,1(--,得一组基 )4,3,2,5(421-=+-=ααγ,

所以它们的交L )(γ是一维的,γ就是其一组基。 2)设所求交向量 1k =γ1α2k +2α1l =1β2l +2β,

则有 ???????=-=--=-=+0

000122122

121l k l l k l k k k ,

因方程组的系数行列式不等于0,故方程组只有零解,即,02121====l l k k 从而 交的维数为0。

3)设所求交向量为 1k =γ1α2k +2α1l =1β2l +2β,

即 ???????=-+-+-=++++-=--+=+--+0

352076025202321321213212

12121321l l k k k l l k k k l l k k l l k k k ,

03

1127

1

1

1201

2

1131

≠------ 知解空间是一维的,因此交的维数是1。令,11=l ,可

得02=l ,因此交向量12211βββγ=+=l l 就是一组基。

19. 设1V 与2V 分别是齐次方程组n n n x x x x x x x =====+++-12121...,0...的解空间,

证明:.21V V P n

⊕=

证 由于0...21=+++n x x x 的解空间是你

n -1维的,其基为

)1,...,0,0,1(),...,0,...,1,0,1(),0,...,0,1,1(121-=-=-=-n ααα而由 n n x x x x ====-121...

知其解空间是1维的,令,1=n x 则其基为).1,...,1,1(=β且βααα,,...,,121-n 即为n P 的一组

基,从而.21V V P n +=又)dim ()dim ()dim (21V V P n

+=,故 .21V V P n ⊕=。

20. 证明:如果,,1211121V V V V V V ⊕=+=那么 21211V V V V ⊕⊕=。 证 由题设知,21211V V V V ++= 因为 ,21V V V ⊕=所以

)dim ()dim ()dim (21V V V +=, 又因为,12111V V V ⊕= 所以 ),dim ()dim ()dim (12111V V V +=

故)dim ()dim ()dim ()dim (21211V V V V ++=, 即证21211V V V V ⊕⊕=。 21. 证明:每一个n 维线性空间都可以表示成n 个一维子空间的直和。

证 设n ααα,...,,21是n 维线性空间V 的一组基。显然)(),...,(),(21n L L L ααα都是V 的

一维子空间,且 ),...,,()(...)()(2121n n L L L L αααααα=+++=V ,又因为 )dim ())(dim (...))(dim ())(dim (21V L L L n =+++ααα, 故 )(...)()(21n L L L V ααα⊕⊕⊕=。 22.证明:和

∑=s

i i

V

1

是直和的充分必要条件是∑-=1

1

i j j

i V

V I

{0}(2,...,)i s ==。

证 必要性是显然的。这是因为}0{1

1

1

=?∑∑≠-=j j

i i j j

i V

V V

V I

I

,所以

∑-=1

1

i j j

i V

V I

}0{=。

充分性 设

∑=s

i i

V

1

不是直和,那么0向量还有一个分解s ααα+++=...021,

其中(1,2,...,)j j V j s α∈=。在零分解式中,设最后一个不为0的向量是),(s k k ≤α 则k k αααα++++=-121...0 ,即 k k αααα-=+++-121..., 因此,1

1

,k k k j j

k V V

∈∈

∑-=αα,这与}0{1

1

=∑-=k j j

k V

V I

矛盾,充分性得证。

23. 再给定了空间直角坐标系的三维空间中,所有自原点引出的向量天添上零向量构成

一个三维线性空间R 3。

1) 问所有终点都在一个平面上的向量是否为子空间?

2) 设有过原点的三条直线,这三条直线上的全部向量分别成为三个子空间,,,321L L L

问32121,L L L L L +++能构成哪些类型的子空间,试全部列举出来;

3)就用该三维空间的例子来说明,若U,V,X,Y 是子空间,满足U+V =X ,X ?Y ,是否一定有Y Y U Y V =+I I 。

解 1)终点所在的平面是过原点的平面,那么所有这些向量构成二维子空间;但终点在

不过原点的平面上的向量不构成子空间,因为对加法不封闭。

2)21L L + ;

(1)直线1l 与2l 重合时,是21L L +一维子空间; (2)1l 与2l 不重合时,时21L L +二维子空间。

321L L L ++ :

(1) ,1l 32,l l 重合时,321L L L ++构成一维子空间; (2) ,1l 32,l l 在同一平面上时,321L L L ++构成二维子空间; (3) ,1l 32,l l 不在同一平面上时,321L L L ++构成三维子空间。

3) 令过原点的两条不同直线1l ,2l 分别构成一维子空间U 和V ,X =U +V 是二维子空

间,在1l ,2l 决定的平面上,过原点的另一条不与1l ,2l 相同的直线3l 构成一维子空间Y ,显然},0{},0{,==?V Y U Y X Y I I 因此}0{)()(=⊕V Y U Y I I ,

故)()(V Y U Y Y I I ⊕= 并不成立。

二.补充题参考解答

1.1)证明:在P[x]n 中,多项式))...()()...((111n i i i x x x x f αααα----=+- (i =1,2,…,n )是一组基,其中n ααα,...,,21是互不相同的数;

2)在1)中,取n ααα,...,,21是全体n 次单位根,求由基1,1

,...,-n x x 到基n

f f f ,...,,21的过渡矩阵。

证 1)设 0...2211=+++n n f k f k f k ,将1α=x 代入上式 ,得 0)(,0)(...)()(1111312≠====ααααf f f f n , 于是1k =0。同理,将n x x αα==,...,2分别代入,可得

0...32====n k k k ,

所以n f f f ,...,,21线性无关。而P[x]n 是n 维的,故n f f f ,...,,21是P[x]n 的一组基。

2)取n ααα,...,,21为全体单位根,,...,.,11

2

-n ε

εε则

121 (11)

1

-++++=--=

n n x x x x x f , 1223212 (1)

-----+++++=--=

n n n n n n x x x x x x f εεεεε

, ...........................................................

1

2121

...1----++++=--=n n n n n n x x x x x f εεεε,

故所求过渡矩阵为?

?

??

?

??

?

??------1 (1)

11

...1.........

...

......1 (112)

2

42

21n n n n n n εεεεεεεεε。 2.设n ααα,...,,21是n 维线性空间V 的一组基,A 是一个n ×s 矩阵,且

A n s ),...,,(),...,,(2121αααβββ=,

证明:),...,,(21s L βββ的维数等于A 的秩。

证 只需证s βββ,...,,21的极大线性无关组所含向量的个数等于A 的秩。设

???????

?

??=ns nr n s r a a a

a a a A ..............

.......

......11111,

且≤=r r A rank ,)(min(,)n s 。不失一般性,可设A 的前r 列是极大线性无关组,由条

件得?????

????+++=+++=+++=n

ns s s s n nr r r r n

n a a a a a a a a a αααβαααβαααβ.....................................................................................................2211221112211111,

可证r βββ,...,,21构成r βββ,...,,21,s r ββ,...,1+的一个极大线性方程组。事实上,设

0...2211=+++r r k k k βββ,

于是得0)...(...)...()...(1112221111111=+++++++++n r r n r r r r a k a k a k a k a k a k ααα,

因为n ααα,...,,21线性无关,所以???

??=+++=+++0

.............................................

(221)

11212111r nr n n r r k a k a k a k a k a k a , 该方程组的系数矩阵秩为,r 故方程组只有零解0...21====r k k k ,于是r βββ,...,,21 线性无关。

其次可证:任意添一个向量j β后,向量组r βββ,...,,21,j β一定线性相关。事实上,

设0...2211=++++j j r r k k k k ββββ,于是???

??=++++=++++0

.............................................0 (221)

111212111j nj r nr n n j j r r k a k a k a k a k a k a k a k a , 其系数矩阵的秩为r

3. 设f ),...,,(21n x x x 是一秩为n 的二次型,证明:有n

R 的一个

)(2

1

s n -维子空间1V (其中为符号差),使对任一),...,,(21n x x x 1V ∈,有f ),...,,(21n x x x =0。

证 设f ),...,,(21n x x x 的正惯性指数为p ,负惯性指数为q ,则p+q=n 。于是存在可逆矩阵,

C ,Y =CX ,使f ),...,,(21n x x x 2

21221......q p p p y y y y ++---++=,

)(21s n -=)(21

q p n --=?

?

?≥<时当时当q p q q p p ,,。 下面仅对 p

将Y=CX 展开,有方程组???????????=++=++=++=++++++++q

p n n q p q p p n n p p p

n pn p n n y x c x c y x c x c y x c x c y x c x c ,11,1,11

1,1111

1111...............................................................................,

任取???

????===''21)0,...,0,1,...,0,1,0,...,0(.................................)0,...,1,0,0,...,1,0()'

0,...,0,1,0,...,0,1(p εεε,

则p εεε,...,,21线性无关,将p εεε,...,,21分别代入方程组,可解得p ααα,...,,21,使得

211,αεαC C =p p C εαε==,...,2,且p ααα,...,,21线性无关。

下面证明p 维子空间L (p ααα,...,,21)即为所要求得1V 。事实上,对任意

L X ∈0(p ααα,...,,21),设p p k k k X ααα+++=...22110,代入Y CX =得

'

21212211221100)0,...,0,,...,,,,...,(......p p p p p p k k k k k k k k k C k C k C k CX Y =+++=+++==εεεααα故 0 (2)

2

12

2

1'

00=---++==p p k k k k AX X f 即证1V =L (p ααα,...,,21)。 4. 设1V ,2V 是线性空间V 的两个非平凡的子空间,证明:在V 中存在α,使

21,V V ∈∈

αα同时成立。 证 因为1V ,2V 非平凡的子空间,故存在1V ∈

α,如果2V ∈α,则命题已证。设2V ∈α 则一定存在2V ∈

β,若1V ∈β,则命题也得证。下设1V ∈β,于是有21,V V ∈∈αα及 1V ∈β,2V ∈

β, 因而必有21,V V ∈+∈+βαβα。事实上,若1V ∈+βα,又 1V ∈β,则由1V 是子空间,必有1V ∈α,这与假设矛盾,即证∈+βα1V ,同理可证

2V ∈+βα,证毕。

5. 设s V V V ,...,,21是线性空间V 的s 个非平凡的子空间,证明V 中至少有一向量α不属于

s V V V ,...,,21中的任何一个。

证 采用数学归纳法。当n=2时,由上题已证命题成立。

现归纳假设命题对s-1个非平凡的子空间也成立,即在V 中至少存在一个向量不属于 121,...,,-s V V V 中任意一个,如果s V ∈α,则命题已证。

若s V ∈α,对,P ∈?向量s V k ∈+βα,且对P 中s 不同的数,,...,,21s k k k 对应的s 个

向量)....2.1(s i k =+βα中不可能有两个向量同时属于某个非平凡的子空间

).1....2.1(-=s i V i 换句话说,上述S 个向量)....2.1(s i k =+βα中至少有一个向量不

属于任意一个非平凡子空间( 1.2....1)i V i s =-,记为00i k γαβ=+,易见0γ也不属于

s V 。即证命题对s 个非平凡的子空间也成立。即证。

高等代数第6章习题参考答案

第六章 线性空间 1.设,N M ?证明:,M N M M N N ==I U 。 证 任取,M ∈α由,N M ?得,N ∈α所以,N M I ∈α即证M N M ∈I 。又因 ,M N M ?I 故M N M =I 。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪 一种情形,都有,N ∈α此即。但,N M N Y ?所以M N N =U 。 2.证明)()()(L M N M L N M I Y I Y I =,)()()(L M N M L N M Y I Y I Y =。 证 ),(L N M x Y I ∈?则.L N x M x Y ∈∈且在后一情形,于是.L M x N M x I I ∈∈或所以)()(L M N M x I Y I ∈,由此得)()()(L M N M L N M I Y I Y I =。反之,若 )()(L M N M x I Y I ∈,则.L M x N M x I I ∈∈或 在前一情形,,,N x M x ∈∈因此 .L N x Y ∈故得),(L N M x Y I ∈在后一情形,因而,,L x M x ∈∈x N L ∈U ,得 ),(L N M x Y I ∈故),()()(L N M L M N M Y I I Y I ? 于是)()()(L M N M L N M I Y I Y I =。 若x M N L M N L ∈∈∈U I I (),则x ,x 。 在前一情形X x M N ∈U , X M L ∈U 且,x M N ∈U 因而()I U (M L ) 。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?U U U I U U I U U U U I U I U 在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L )即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量 乘法; 3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算: 2121211211 12 b a b a a b b a a k k b a ⊕+=+++-1111(a ,)((,) ()k 。(a ,)=(ka ,kb +

高数一试题(卷)与答案解析

《 高等数学(一) 》复习资料 一、选择题 1. 若23lim 53 x x x k x →-+=-,则k =( ) A. 3- B.4- C.5- D.6- 2. 若21lim 21 x x k x →-=-,则k =( ) A. 1 B.2 C.3 D.4 3. 曲线3sin 1x y e x =-+在点(0,2)处的切线方程为( ) A.22y x =+ B.22y x =-+ C.23y x =+ D.23y x =-+ 4. 曲线3sin 1x y e x =-+在点(0,2)处的法线方程为( ) A.122y x =+ B.122y x =-+ C.132y x =+ D.1 32 y x =-+ 5. 211 lim sin x x x →-=( ) A.0 B.3 C.4 D.5 6.设函数0()(1)(2)x f x t t dt =+-?,则(3)f '=( ) A 1 B 2 C 3 D 4 7. 求函数43242y x x =-+的拐点有( )个。 A 1 B 2 C 4 D 0

8. 当x →∞时,下列函数中有极限的是( )。 A. sin x B. 1x e C. 21 1x x +- D. arctan x 9.已知'(3)=2f ,0(3)(3) lim 2h f h f h →--=( ) 。 A. 32 B. 3 2 - C. 1 D. -1 10. 设42()=35f x x x -+,则(0)f 为()f x 在区间[2,2]-上的( )。 A. 极小值 B. 极大值 C. 最小值 D. 最大值 11. 设函数()f x 在[1,2]上可导,且'()0,(1)0,(2)0,f x f f <><则()f x 在(1,2)内( ) A.至少有两个零点 B. 有且只有一个零点 C. 没有零点 D. 零点个数不能确定 12. [()'()]f x xf x dx +=? ( ). A.()f x C + B. '()f x C + C. ()xf x C + D. 2()f x C + 13. 已知2 2 (ln )y f x =,则y '=( C ) 2222(ln )(ln )f x f x x '. 24(ln )f x x ' C. 224(ln )(ln )f x f x x ' D. 22 2(ln )() f x f x x ' 14. ()d f x ? =( B) A.'()f x C + B.()f x C.()f x ' D.()f x C + 15. 2ln x dx x =?( D ) A.2ln x x C + B. ln x C x + C.2ln x C + D.()2ln x C +

高等代数第6章习题解

第六章习题解答 习题6.1 1、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+????=∈= ? ?????;(2),()x x y V f y y αα-????=∈= ? ????? ; (3)2,()x y V f y x y αα+????=∈= ? ?+???? ; (4)0,()x V f y αααα??=∈=+ ???,0V α∈是一个固定的非零向量。 (5)0,()x V f y ααα??=∈= ???,0V α∈是一个固定的非零向量。 解:(1)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (2)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (3)不是。因为 而 121211*********()()y y y y f f x y x y x x y y αβ++++??????+=+= ? ? ?+++++?????? 所以()()()f f f αβαβ+≠+ (4)不是。因为0()f k k ααα=+,而000()()kf k k k k ααααααα=+=+≠+ 所以()()f k kf αα≠ (5)不是。因为0()f αβα+=,而00002()()f f αβαααα+=+=≠ 2、设n n V P ?=是数域F 上全体n 阶方阵构成的集合,有§4.5,V 是F 上2 n 维线性空间, 设A V ∈是固定元,对任意M V ∈,定义 ()f M MA AM =+ 证明,f 是V 的一个线性变换。 证明:,,M N V k F ?∈∈,则 所以 f 是V 的一个线性变换。 3、设3 V R =,(,,)x y z V α=∈,定义

高数上试题及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( ).

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

高等代数试题附答案

高等代数试题附答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( ) 5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。其中 ),,,()(2 4232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( )

高等代数习题及答案(1)

高等代数试卷 一、判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题1分,共10分) 1、)(x p 若是数域F 上的不可约多项式,那么)(x p 在F 中必定没有根。 ( ) 2、若线性方程组的系数行列式为零,由克莱姆法则知,这个线性方程组一定是无解的。 ( ) 3、实二次型),,,(21n x x x f 正定的充要条件是它的符号差为n 。 ( ) 4、 321321;3,2,1,,,x x x i R x x x x W i 是线性空间3R 的一个子空间。( ) 5、数域F 上的每一个线性空间都有基和维数。 ( ) 6、两个n 元实二次型能够用满秩线性变换互相转化的充要条件是它们有相同的正惯性指数和负惯性指数。 ( ) 7、零变换和单位变换都是数乘变换。 ( ) 8、线性变换 的属于特征根0 的特征向量只有有限个。 ( ) 9、欧氏空间V 上的线性变换 是对称变换的充要条件为 关于标准正交基的矩阵为实对称矩阵。 ( ) 10、若 n ,,,21 是欧氏空间V 的标准正交基,且 n i i i x 1 ,那么 n i i x 1 2 。 ( ) 二、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其号码写 在题干后面的括号内。答案选错或未作选择者,该题无分。每小题1分,共10分) 1、关于多项式的最大公因式的下列命题中,错误的是( ) ① n n n x g x f x g x f ,, ; ② n j i j i f f f f f j i n ,,2,1,,,1,1,,,21 ; ③ x g x g x f x g x f ,, ; ④若 1,1, x g x f x g x f x g x f 。 2、设D 是一个n 阶行列式,那么( ) ①行列式与它的转置行列式相等; ②D 中两行互换,则行列式不变符号; ③若0 D ,则D 中必有一行全是零; ④若0 D ,则D 中必有两行成比例。 3、设矩阵A 的秩为r r (>)1,那么( ) ①A 中每个s s (<)r 阶子式都为零; ②A 中每个r 阶子式都不为零;

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

大学高数试卷及答案

浙江农林大学 2016 - 2017 学年第 一 学期期中考试 课程名称: 高等数学I 课程类别: 必修 考试方式: 闭卷 注意事项:1、本试卷满分100分。 2、考试时间 120分钟。 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。每小题3分,共21分) 1.下列各式正确的是: ( ) A. sin lim 1x x x →+∞= B. 0sin lim 0x x x →= C. 1lim 1x x e x →+∞??+=- ??? D. 1lim 1x x e x →+∞ ?? += ??? 2. 当0x +→ ( ) 1 B. ln C. 1- 1-3. 设()f x 在x a =的某邻域有定义,则它在该点处可导的一个充分条件是:( ) A.1lim ()()h h f a f a h →+∞?? +-???? 存在 B. 0(2)()lim h f a h f a h h →+-+存在 C. 0 ()()lim 2h f a h f a h h →+--存在 D. 0()() lim h f a f a h h →--存在 学院: 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题

4. 函数33y x x =-在区间[0,1]上的最小值是: ( ) A. 0 B. 没有 C. 2 D. 29 - 5. 函数21y x =-在区间[1,1]-上应用罗尔定理时,所得到的中值ξ= ( ) A. 0 B. 1 C. 1- D. 2 6.设函数2 ()(1)0 ax e x f x b x x ?≤=?->?处处可导,那么: ( ) A .1a b == B .2,1a b =-=- C .0,1a b == D .1,0a b == 7. 设x a =为函数()y f x =的极值点,则下列论述正确的是 ( ) A .'()0f a = B .()0f a = C .''()0f a = D .以上都不对 二、填空题(每小题3分,共21分) 1. 极限232)sin (1cos lim x x x x x +-+∞→= . 2 .极限lim n →∞ ?? +L =. 3.设函数f (x )=2310 22 2 x x x x a x ?+-≠? -??=?在点x =2处连续,则a = . 4. 函数()sin x f x x = 的间断点为 . 5. 函数22ln y x x =-的单调减区间为 . 6. 设函数ln y =dy = . 7.椭圆曲线cos sin x a t y b t =??=? 在4t π =相应的点处的切线方程为 .

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

2019高数(下)试题及答案

第二学期期末考试试卷 一、 填空题(每空 3 分,共 15 分) 1. 已知向量()1,1,4r a =-,()3,4,0r b =,则以r a ,r b 为边的平行四边形的面积等于. 2. 曲面sin cos z x y =在点1,,442ππ?? ??? 处 的切平面方程是. 3. 交换积分次序()22 0,x dx f x y dy = ??. 4. 对于级数11 n n a ∞ =∑(a >0),当a 满足条件 时收敛. 5. 函数1 2y x =-展开成x 的幂级数为 . 二、 单项选择题 (每小题3分,共15分) 1. 平面20x z -=的位置是 ( ) (A )通过y 轴 (B )通过x 轴 (C )垂直于y 轴 (D )平行于xoz 平面 2. 函数(),z f x y =在点()00,x y 处具有偏导数 ()00,x f x y ',()00,y f x y ',是函数在该点可微分的 ( ) (A )充要条件 (B )充分但非必要条件 (C )必要但非充分条件 (D )既非充分又非必要条件 3. 设()cos sin x z e y x y =+,则10 x y dz ===( ) (A )e (B )()e dx dy +

(C )1()e dx dy -+ (D )()x e dx dy + 4. 若级数()11n n n a x ∞ =-∑在1x =-处收敛, 则此级数在2x =处( ) (A )敛散性不确定 (B )发散 (C )条件收敛 (D )绝对收敛 5. 微分方程y xy x '-=的通解是( ) (A )212 1x y e =- (B )212 1x y e -=- (C )212 x y Ce -= (D )212 1x y Ce =- 三、(本题满分8分) 设平面通过点()3,1,2-,而且通过直线43521 x y z -+==, 求该平面方程. 四、(本题满分8分) 设(),z f xy x y =+,其中(),f u v 具有二阶连续偏导数, 试求z x ??和2z x y ???. 五、(本题满分8分) 计算三重积分y zdxdydz Ω =???, 其中 (){},,01,11,12x y z x y z ≤≤-≤≤≤≤. 六、(本题满分8分) 计算对弧长的曲线积分L ?,

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

高等代数试题2(附答案)

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ? ?-----=17 5131 023A 的特征根是 ,特征向量分别为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( ) 5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。其中 ),,,()(2 42 32 22 1x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是)(2R M 的 子空间。( )

高等代数考研习题精选

《高等代数》试题库 一、 选择题 1.在[]F x 里能整除任意多项式的多项式是()。 A .零多项式 B .零次多项式 C .本原多项式 D .不可约多项式 2.设()1g x x =+是6242()44f x x k x kx x =-++-的一个因式,则=k ()。 A .1 B .2 C .3 D .4 3.以下命题不正确的是()。 A .若()|(),()|()f x g x f x g x 则; B .集合{|,}F a bi a b Q =+∈是数域; C .若((),'())1,()f x f x f x =则没有重因式; D .设()'()1p x f x k -是的重因式,则()()p x f x k 是的重因式 4.整系数多项式()f x 在Z 不可约是()f x 在Q 上不可约的()条件。 A .充分 B .充分必要 C .必要 D .既不充分也不必要 5.下列对于多项式的结论不正确的是()。 A .如果)()(,)()(x f x g x g x f ,那么)()(x g x f = B .如果)()(,)()(x h x f x g x f ,那么))()(()(x h x g x f ± C .如果)()(x g x f ,那么][)(x F x h ∈?,有)()()(x h x g x f D .如果)()(,)()(x h x g x g x f ,那么)()(x h x f 6.对于“命题甲:将(1)n >级行列式D 的主对角线上元素反号,则行列式变为D -; 命题乙:对换行列式中两行的位置,则行列式反号”有()。 A .甲成立,乙不成立; B .甲不成立,乙成立; C .甲,乙均成立; D .甲,乙均不成 立 7.下面论述中,错误的是()。 A .奇数次实系数多项式必有实根; B .代数基本定理适用于复数域;

高等代数试题及答案

. . 中国海洋大学2007-2008学年第2学期期末考试试卷 a ?? 的子空间.

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,,是V 上的线性变换,且= . 证明: 的值域与核都是 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ????????? ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'6662α--=(-. 所以正交阵1 2612 610210 2 2T ?-????-? ?=??????????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 01 0011 0n E D E -?? ?? ? ??? ? ?== ????? ?????? ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1,, ,,n n D D D D E -=在P 上线性无关.

高等代数真题答案

第六章习题册 1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘. (b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘. (c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘. 2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这里αβV k F ,∈,∈.

3. 下述集合是否是()n M R 的子空间 (a) { ()}T n V A M R A A =∈|=? (b) {()()[]}V f A f x R x =|∈, 这里()n A M R ∈是一个固定方阵. 4. 叙述并证明线性空间V 的子空间1W 与2W 的并12W W ∪仍为V 的子空间的充分必要条件. 5. 设1S 与2S 是线性空间V 的两个非空子集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?. (b) 1212()()()Span S S Span S Span S =+∪. (c) 1212()()()Span S S Span S Span S ?∩∩.

6. 如果123f f f ,,是实数域上一元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性无关.试证之. 7. 设S 是数域F 上线性空间V 的一个线性无关子集, α是V 中一个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈. 8. (a) 证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的子空间的一个基. (b). 求3()M F 的子空间{()()[]}f A f x F x |∈ 的一个基和维数, 这里010001000A ???? =?????? 9. 在4 R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014??????????????????????????????=,=,=,=,=????????????????????????????????????????

高等代数习题

高等代数习题 第一章基本概念 §集合 1、设Z是一切整数的集合,X是一切不等于零的有理数的集合.Z是不是X的子集 2、设a是集A的一个元素。记号{a}表示什么 {a} A是否正确 3、设 写出和 . 4、写出含有四个元素的集合{ }的一切子集. 5、设A是含有n个元素的集合.A中含有k个元素的子集共有多少个 6、下列论断那些是对的,那些是错的错的举出反例,并且进行改正. (i) (ii) (iii)

(iv) 7.证明下列等式: (i) (ii) (iii) §映射 1、设A是前100个正整数所成的集合.找一个A到自身的映射,但不是满射. 2、找一个全体实数集到全体正实数集的双射. 3、是不是全体实数集到自身的映射 4.设f定义如下: f是不是R到R的映射是不是单射是不是满射 5、令A={1,2,3}.写出A到自身的一切映射.在这些映射中那些是双射 6、设a ,b是任意两个实数且a

7、举例说明,对于一个集合A到自身的两个映射f和g来说,f g与 g f一般不相等。 8、设A是全体正实数所成的集合。令 (i)g是不是A到A的双射 (ii)g是不是f的逆映射 (iii)如果g有逆映射,g的逆映射是什么 9、设是映射,又令,证明 (i)如果是单射,那么也是单射; (ii)如果是满射,那么也是满射; (iii)如果都是双射,那么也是双射,并且 10.判断下列规则是不是所给的集合A的代数运算: 集合 A 规则1 2 3 全体整数 全体整数 全体有理数 b a b a+ → |) , (

4 全体实数 §数学归纳法 1、证明: 2、设是一个正整数.证明 ,是任意自然数. 3、证明二项式定理: 是个元素中取个的组合数. 这里 , 4、证明第二数学归纳法原理. 5、证明,含有个元素的集合的一切子集的个数等于。 §整数的一些整除性质 1、对于下列的整数 ,分别求出以除所得的商和余数: ; ; ; .

《高等代数》月测试试题与及答案

《高等代数》月测试试题与及答案(行列式与线性方程组部分) 一、(共12分)叙述下列概念或命题: (1)线性相关;(2)极大线性无关组;(3)行列式按一行(列)展开定理. 答:(1)向量组 称为线性相关,如果有数域 中不全为零的数 ,使 . 注对如下定义也视为正确:如果向量组 ( )中有一个向量可由其余的向量线性表出,那么向量组 称为线性相关的. (2)一向量组的一个部分组称为一个极大线性无关组,如果这个部分组本身 是线性无关的,并且从这向量组中任意添加一个向量(如果还有的话),所得的部分向量组都线性相关. 注对如下定义也视为正确:向量组 的一个部分组 称为一个极大线性无关组,是指:(ⅰ) 线性无关;(ⅱ) 可由 线性表出.

(3)行列式等于某一行(列)的元素分别与它们代数余子式的乘积之和. 注用公式写出按行(或列)展开定理亦可. 二、判断题:(在括号里打“√”或“×”,共20分) 1. . (×) 2.若向量组 ( )线性相关,则其中每个向量都是其余向量的线性组合.(×)3.在全部 ( )级排列中,奇排列的个数为 .(√)4.若排列 为奇排列,则排列 为偶排 列.(×)5.若矩阵 的秩是 ,则 的所有高于 级的子式(如果有的话)全为零.(√)

6.若一组向量线性相关,则至少有两个向量的分量成比 例.(×) 7.当线性方程组无解时,它的导出组也无 解.(×) 8.对 个未知量 个方程的线性方程组,当它的系数行列式等于0时,方程组一定无 解.(×) 9.等价向量组的秩相 等. (√) 10.齐次线性方程组解的线性组合还是它的 解.(√) 三、(共18分)计算行列式 (1) 解原式 . 注用其它方法计算出结果的给满分,方法正确而计算错误的,酌情给分.(2)

相关文档