文档库 最新最全的文档下载
当前位置:文档库 › 光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法
光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法(试行)

第一章总则

第一条为规范光伏理论发电功率及受阻电量等指标的统计分析,依据《光伏发电站太阳能资源实时监测技术要求》(GB/T 30153-2013)、《光伏发电功率预测气象要素监测技术规范》(Q/GDW 1996-2013)的有关要求,制定本方法。

第二条本方法所称的光伏电站,是指按照公共电站要求已签订《并网调度协议》、集中并入电网的光伏发电站,不包括分布式光伏发电系统。

第三条本方法适用于国家电网公司各级电力调度机构和调管范围内并网光伏电站开展理论发电功率及受阻电量统计计算工作。

第二章术语和定义

第四条光伏电站发电功率指标包括理论发电功率和可用发电功率。

光伏电站理论发电功率指在某时刻光资源情况下站内所有逆变器及相关设备均正常运行时可发出的功率,其积分电量为某时段的光伏电站理论发电量。

光伏电站可用发电功率指扣除站内设备故障、缺陷或检修等原因引起受阻后可发出的功率,其积分电量为某时段的光伏电站可用发电量。

第五条光伏电站受阻电力分为站内受阻电力和站外受阻电力两部分。

站内受阻电力指光伏电站理论发电功率与可用发电功率之差,其积分电量为站内受阻电量。

站外受阻电力指光伏电站可用发电功率与实发功率之差,其积分电量为站外受阻电量。

第六条全网理论发电功率指所有光伏电站理论发电功率之和;全网可用发电功率指考虑断面约束的光伏电站可用发电功率之和;可参与市场交易的光伏富余电力指全网可用发电功率与实发功率之差。

第七条全网站内受阻电力指所有光伏电站站内受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的光伏受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。

第三章数据准备

第八条计算理论发电功率和受阻电力需准备的实时数据包括光伏电站实际发电功率、逆变器运行数据和状态信息、气象监测数据、开机容量;非实时数据包括光伏电站基本参数 (格式见附表)、样板逆变器型号及其数量、全站逆变器型号及其数量等。

第九条所有光伏电站应配备气象监测设备,并向调度机

构实时上报气象测量数据,气象数据满足以下条件:(一)气象监测设备测量要素

测量要素应包括水平面总辐照度、法向直射辐照度、散射辐照度、地面平均风速、风向、环境温度、气压。

(二)气象监测设备测量误差

辐照度的测量误差:不大于±5%;

风速的测量误差:不大于±0.5m/s(3m/s~30m/s);

风向的测量误差:不大于±5°;

环境温度的测量误差:不大于±0.5℃;

气压的测量误差:不大于±3hPa

(三)数据传输

光伏电站应上传所有气象监测设备的测量数据,数据采集应满足实时性的要求,数据传输时间间隔不大于5min,宜采用时段内的平均值。

因气象监测设备故障或者传输通道故障等原因造成数据无效或中断,宜采用与本气象监测设备数据相关性最高的监测数据代替。

第十条所有光伏电站样板逆变器的选择,应考虑在不同地理位臵的均匀分布,逆变器型号以及电池板类型、材料等具有代表性。原则上样板逆变器个数不少于本站总数的5%,不超过10%,对于组串式逆变器,应以单个子阵作为一个样板单元。

第四章光伏电站理论发电功率计算方法

第十一条光伏电站理论功率及受阻电量计算主要有两种方法:气象数据外推法和样板逆变器法。各光伏电站可根据实际情况选择算法,建议具备条件的同时采用两种方法计算。

第十二条气象数据外推法采用物理方法将实测水平面辐照强度转换为光伏组件斜面辐照强度,将环境温度转换为板面温度,综合考虑光伏电站的位臵、不同光伏组件的特性及安装方式等因素,建立光伏电池的光电转换模型,得到光伏电站的理论功率。按如下方式计算:

(1)根据气象监测设备的实测水平辐照强度和环境温度,将水平辐照强度转化为光伏组件斜面的有效辐照强度,将环境温度转化为光伏组件的有效温度,有条件的宜使用直采光伏组件温度数据。

(2)根据光伏组件标准工况下的设备参数,计算当前气象条件下光伏组件输出的直流功率。

(3)综合考虑光伏组件的有效数量、光伏组件的老化、光伏组件的失配损失、光伏组件表面的尘埃遮挡、光伏电池板至并网点的线路传输及站用电损失、逆变器效率等因素,得到光伏电站并网点的交流功率。(具体计算详见附录)第十三条样板逆变器法是在选定样板逆变器基础上,建立样板逆变器出力与全站出力之间的映射模型,获得全站理论发电功率,按如下方式计算。

光伏电站理论发电功率:

,,11k M K

k j j k m

k m k N P p M ===?∑∑ 光伏电站可用发电功率:

,,11k M K

k j j k m

k m k N P p M ==''=?∑∑ 式中,P j 为光伏电站j 理论发电功率,j P '为光伏电站j 可用发电功率,k 为逆变器型号编号,K 为逆变器型号数量,M k 为型号k 逆变器的样板逆变器数量,N k 为型号k 逆变器的

全站总数量,k

N '为型号k 逆变器的开机运行总数量,,,j k m p 为光伏电站j 型号k 逆变器第m 台样板机的实际功率。

第五章 光伏电站受阻电量计算方法

第十四条 光伏电站站内和站外受阻电量按如下方式计算。

光伏电站站内受阻电量:

,,,1()

n I j j i j i i E t P P ='=??-∑

光伏电站站外受阻电量:

,,,1()

n O j j i j i i E t P T ='=??-∑

式中,,I j E 为光伏电站j 站内受阻电量,,O j E 为光伏电站j

站外受阻电量,,j i P 为i 时刻光伏电站j 理论发电功率,,j i P '为

i 时刻光伏电站j 可用发电功率,,j i T 为i 时刻光伏电站j 实发

功率,n 为统计时段内样本数量,t ?为时间分辨率。

第六章 全网理论发电功率计算方法

第十五条 全网理论发电功率通过网内所有并网光伏电站的理论发电功率加和获得:

1N j

j P P ==∑

式中,P 为全网理论发电功率,P j 为光伏电站j 的理论发电功率,N 为网内所有并网光伏电站的数量。

第十六条 全网可用发电功率是在网内所有并网光伏电站可用发电功率加和的基础上,考虑断面约束后的可用发电功率。全网可用发电功率计算方法如下:

(1)按照断面约束将所有光伏电站分为不同的光伏电站群,共计S 个光伏电站群,计算每个光伏电站群的可用发电功率:

式中,s R 为光伏电站群s (s =1,2,…S )的可用发电功率,s Θ为光伏电站群s 中所有光伏电站的集合,P L ,s 为光伏电站群s 对应约束断面的限值,L s 、G s 分别为该约束断面下的当前负荷和其它电源实际出力,j P '为光伏电站j 可用发电功率。不

受断面约束的光伏电站群P L ,s 取值无穷大。

(2)多级嵌套断面中,根据下级断面光伏电站群的可用发电功率修正上一级断面光伏电站群的可用发电功率,若存在多个下级断面则进行合并,一直计算到最上级约束断面对应光伏电站群的可用发电功率。

式中,s R '为上一级断面对应光伏电站群s '的可用发电功率,L s '、G s '分别为上一级断面下的负荷和其它电源出力,含所有下级断面的负荷和其它电源出力。

(3)除最上级断面外,剔除嵌套断面中其余断面对应的光伏电站群,则光伏电站群个数变为S ',计算全网可用发电功率:

式中,P '为全网可用发电功率,s R 为光伏电站群s 的可

用发电功率。断面约束和光伏电站群划分随着运行方式的改变而变化。

第七章 全网受阻电量计算方法

第十七条 全网站内受阻电力通过网内所有并网光伏电站站内受阻电力累加获得:

1()

N I j j j P P P ='?=-∑

全网站内受阻电量通过全网站内受阻电力积分获得:

,,11N n I I j I i

j i E E t P ====???∑∑

式中,I P ?为全网站内受阻电力,

I E 为全网站内受阻电量,,I j E 为光伏电站j 站内受阻电量,n 为统计时段内的样本数量,

t ?为时间分辨率,N

为网内并网光伏电站个数。 第十八条 全网断面受阻电力通过所有光伏电站可用发电功率之和减去全网可用发电功率获得:

1N G j j P P P =''

?=-∑

全网断面受阻电量通过全网断面受阻电力积分获得:

,1n G G i

i E t P ==???∑

式中,G P ?为全网断面受阻电力,,G i P ?为第i 时刻的全网

断面受阻电力,G E 为全网断面受阻电量,n 为统计时段内的

样本数量,t ?为时间分辨率。

第十九条 全网调峰受阻电力为全网可用发电功率与实发电力之差:

1N S j

j P P T ='?=-∑

全网调峰受阻电量通过全网调峰受阻电力积分获得:

,1n

S S i i E t P ==???∑

式中,S P ?为全网调峰受阻电力,,S i P ?为第i 时刻的全网

调峰受阻电力,S E 为全网调峰受阻电量,j T 为光伏电站j 实

发功率,n 为统计时段内的样本数量,t ?为时间分辨率,N 为网内并网光伏电站个数。

第八章 附则

第二十条 本办法由国家电力调控中心负责解释。 第二十一条 本办法自发布之日起执行。

附 录 :气象数据外推计算方法

(1)根据气象监测设备的实测水平辐照强度和环境温度,将水平辐照强度转化为光伏组件斜面的有效辐照强度,将环境温度转化为光伏组件的有效温度,具体如下。

光伏组件斜面的有效辐照强度可以采用水平辐照度数据结合太阳高度角、赤纬角、当地纬度、时角、方位角、倾角来计算。

环境温度可利用以下公式转化为光伏组件的板面温度,有条件的宜使用直采光伏组件温度数据。

m a e T T K G =+? (1)

式中:m T 光伏组件的板面温度;a T 为环境温度;e G 为光伏组件斜面的有效辐照强度;K 为温度修正系数,每年通过采集实际运行数据,利用自回归的方法对K 值进行修正。

(2)根据光伏组件标准工况下的设备参数,计算当前气象条件下组件的最佳输出电流MPP I 和最佳的输出电压MPP U :

(1)e MPP mref

ref G I I a T G =+? (2) ln()(1)MPP mref U U e b G c T =+?-? (3)

式中:

ref G —标准太阳辐照强度,值为10002

/W m ; ref T —标准组件温度,值为25℃;

mref I —光伏组件在标准工况下的最佳输出电流;

mref U —光伏组件在标准工况下的最佳输出电压;

G ?—实际的辐照强度与标准辐照强度的差, e ref

G G G ?=-; T ?—实际组件温度与标准组件温度的差, m ref T T T ?=-;

e —自然对数的底数,其值可取2.71828;

a 、

b 、

c —补偿系数,根据光伏组件实验数据进行拟合得到,并根据实测数据定期修正。

最终,计算光伏组件的直流输出功率dc P :

dc MPP MPP P U I =? (4)

(3)综合考虑光伏组件的有效数量、光伏组件的老化、光伏组件的失配损失、光伏组件表面的尘埃遮挡、光伏电池板至并网点的线路传输及站用电损失、逆变器效率等因素,得到光伏电站并网点的理论发电功率acj P 和可用发电功率'acj P :

1234acj j dc inv P n P K K K K η=?????? (5)

''1234acj j dc inv P n P K K K K η=??????

(6) 式中:

j n —并网运行的光伏组件的全部数量;

'j n —并网运行的光伏组件有效数量;

dc P —光伏组件的直流输出功率;

1K —光伏组件老化损失系数,无量纲,每年按照一定比

例递减,11a K k y =-?,其中a y 为不同太阳能电池材料年衰减率,

以太阳能电池制造厂家提供的相关衰减率参数为依据,k 为并网光伏电站投入使用的年数;

2K —光伏组件失配损失系数,无量纲;

3K —尘埃遮挡损失系数,无量纲;

4K —线路传输及站用电损失系数,无量纲;

每年通过采集实际运行数据,利用自回归的方法对1K 、2K 、3K 、4K 值进行修正;

inv η—并网逆变器效率,无量纲,采用欧洲标准EN 50530

进行等效。

附表:光伏电站基本参数

表1:光伏电站基础信息

序号名称单位基本内容备注

1 光伏电站名称

2 建设地点

3 电站经纬度坐标

5 占地面积平方公里

7 装机容量兆瓦

8 电力调度机构名称

10 并网线路及电压等

11 上网变电站名称

表2:光伏阵列信息表

序号电池

型号

电池

片数

逆变器

型号

逆变器效率

(欧洲标准)

光伏阵

列的倾

斜角

光伏阵

列的方

串并联

方式

总功率

(W)

倾斜角:光伏电池板与地面的夹角

方位:如果电池板水平放臵,方位角为零。正南为0,正西为90,正北180,正东270

表3:光伏组件参数表

电池型号Vmp(最

佳工作

电压)V

Imp(最

佳工作电

流)A

Voc(开路

电压)

Isc(短路

电流)

Pm(峰值

功率)W

年衰减

率(%)

光伏发电预测

太阳能发电预测综述 在煤矿,石油开采量日益见底和生态环境急速恶化的严峻形势下,太阳能作为一种自然能源,以其储量丰富且清洁无污染性显示了其独特的优势,已被国际公认为未来最具竞争性的能源之一。 从太阳能获得电力,需通过太阳电池将光能转化为电能。它同以往其他电源发电原理完全不同。要使太阳能发电真正达到实用水平,一是要提高太阳能光电变换效率并降低其成本,二是要实现太阳能发电同的电网联网。 1.太阳能发电的分类 目前太阳能发电主要有以下两种形式: 1.太阳能光发电 太阳能光发电是指无需通过热过程直接将光能转变为电能的发电方式。它包括光 伏发电、光化学发电、光感应发电和光生物发电。光伏发电是利用太阳能级半导 体电子器件有效地吸收太阳光辐射能,并使之转变成电能的直接发电方式,是当今 太阳光发电的主流。在光化学发电中有电化学光伏电池、光电解电池和光催化电池,目前得到实际应用的是光伏电池。[1] 2.太阳能热发电 通过水或其他工质和装置将太阳辐射能转换为电能的发电方式,称为太阳能热发电。 先将太阳能转化为热能,再将热能转化成电能,它有两种转化方式:一种是将太阳 热能直接转化成电能,如半导体或金属材料的温差发电,真空器件中的热电子和热 电离子发电,碱金属热电转换,以及磁流体发电等;另一种方式是将太阳热能通过

热机(如汽轮机)带动发电机发电,与常规热力发电类似,只不过是其热能不是来 自燃料,而是来自太阳能。太阳能热发电有多种类型,主要有以下五种:塔式系统、 槽式系统、盘式系统、太阳池和太阳能塔热气流发电。前三种是聚光型太阳能热 发电系统,后两种是非聚光型。一些发达国家将太阳能热发电技术作为国家研发 重点,制造了数十台各种类型的太阳能热发电示范电站,已达到并网发电的实际应 用水平。[2] 2.太阳能光伏发电影响因素 太阳能光伏发电成为目前太阳能利用的主要方式之一。光伏发电分为离网和并网两种形式,随着光伏并网技术的成熟与发展,并网光伏发电已成为主流趋势。由于大规模集中并网光伏发电系统容量的急速增加,并网光伏发电系统输出功率固有的间歇性和不可控等缺点对电网的冲击成为制约并网光伏发电的重要元素。太阳能光伏发电系统发电量受当地太阳辐射量、温度、太阳能电池板性能等方面因素的影响。 (1)光照强度对光伏发电量的影响:光照强度是指在单位时间和单位面积内,在地球表面上接收到的垂直投射的太阳辐射能量。光伏发电系统产生电能所需的能量完全来自、于太阳的辐照,因此光照强度对光伏发电系统的发电量具有决定性的作用,二者之间呈正相关性,即光照强度越强,光伏发电量越多。 (2)季节类型对光伏发电量的影响:由于在不同的季节,太阳入射角的大小以及方向、日照时间的长短、光照强度的强弱存在明显的差异,到达地表的太阳辐照度经过吸收、散射,辐射等各种减弱作用后也会不同,光伏发电系统的发电量的多少也在变化。这种差异性即为不同的季节类型对光伏发电量的影响。 (3)天气类型对光伏发电量的影响:将天气类型的时间范围确定在24 小时之内。由于晴

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

风力发电对电力系统的影响学习资料

风力发电对电力系统 的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能

发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

光伏电站发电量计算方法

光伏电站平均发电量计算方法小结 一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算/估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 光伏电站在做前期可行性研究的过程中,需要对拟建光伏电站的发电量做理论上的预测,以此来计算投资收益率,进而决定项目就是否值得建设。一般而言,每个有经验的光伏人心里都有一个简便的估算方法,可以得出与计算值相差不多的数据,那么本次总结列举光伏电站的平均发电量计算 /估算的方法,通过案例分析各方法的差异,方便读者选择最合适的计算方法。 一、计算方法 1)国家规范规定的计算方法。 根据最新的《光伏发电站设计规范 GB50797-2012》第6 6条:发电量计算中规 疋: 1、光伏发电站发电量预测应根据站址所在地的太阳能资源情况,并考虑光伏发电站系统设计、光伏方阵布置与环境条件等各种因素后计算确定。 2、光伏发电站年平均发电量 Ep计算如下: Ep=HA< PAZX K 式中: HA为水平面太阳能年总辐照量(kW? h/m2); Ep——为上网发电量(kW?h); PAZ ――系统安装容量(kW); K ――为综合效率系数。 综合效率系数K就是考虑了各种因素影响后的修正系数,其中包括: 1)光伏组件类型修正系数; 2)光伏方阵的倾角、方位角修正系数 3)光伏发电系统可用率 ;

4)光照利用率; 5)逆变器效率 ; 6)集电线路、升压变压器损耗 ; 7)光伏组件表面污染修正系数 ; 8)光伏组件转换效率修正系数。 这种计算方法就是最全面一种 ,但就是对于综合效率系数的把握 , 对非资深光伏从业人员来讲 ,就是一个考验 ,总的来讲 ,K2 的取值在 75%-85%之间,视情况而定。 2)组件面积——辐射量计算方法 光伏发电站上网电量Ep计算如下: Ep=HA< SX K1X K2 式中: HA为倾斜面太阳能总辐照量(kW? h/m2); S――为组件面积总与(m2) K1 ——组件转换效率 ; K2 ——为系统综合效率。 综合效率系数K2就是考虑了各种因素影响后的修正系数,其中包括: 1)厂用电、线损等能量折减 交直流配电房与输电线路损失约占总发电量的3%,相应折减修正系数取为 97%。 2)逆变器折减 逆变器效率为 95%~98%。 3)工作温度损耗折减光伏电池的效率会随着其工作时的温度变化而变化。当它们的温度升高时 , 光伏组件发电效率会呈降低趋势。一般而言 , 工作温度损耗平均值为在 2、5%左右。 其她因素折减

光伏电站发电量的计算方法

光伏电站发电量计算方法 ①理论发电量 1)1MW屋顶光伏电站所需电池板面积一块235MW的多晶电池板面积 1.65*0.992=1.6368㎡,1MW需要1000000/235=4255.32块电池,电池板总面积 1.6368*4255.32=6965㎡ 2)年平均太阳辐射总量计算 上海倾角等于当地纬度斜面上的太阳总辐射月平均日辐照量H 由于太阳能电池组件铺设斜度正好与当地纬度相同,所以在计算辐照量时可以直接采 用表中所列数据(2月份以2 8天记)。 年平均太阳辐射总量=Σ(月平均日辐照量×当月天数) 结算结果为5 5 5 5.3 3 9 MJ/(m 2·a)。 3)理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ=6771263.8*0.28KWH=1895953.86KWH =189.6万度 ②系统预估实际年发电量 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往 达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时 要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件,当光伏组件内部的温度达到5 0-7 5℃时,它的输出功率降为额定时的8 9%,在分析太阳 电池板输出功率时要考虑到0.8 9的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太 阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%的影响,在分析太阳电池板输出功率时要考虑到0.9 3的影响系数。

屋顶光伏电站成本计算与效益分析

屋顶光伏电站成本计算与效益分析 一、补贴说明: 光伏发电每度电国家补贴元每度补贴20 年,各个地方还有地方补贴,北京为元每度补贴 5 年。 二、方式说明 (一)全自发自用 指的是屋顶光伏所发电量全额消纳。 此方式投资回报率最高,例如商业用电元每度,光伏发电国家每度电补贴元(按照实际用量算)补贴20 年,在此基础上北京市政府再给补贴每度电元(各地政策不一样),那么一度电实际产生的价值为元(省了元电费再加上元补贴)在此基础上的投资回报率非常高,年收益率在30%左右。 (二)自发自用余额上网指的是屋顶光伏所发电量不能全额消纳,剩余电量上网卖给供电局。 此方式自用部分同上,上网部分按照当地上网电价加国家补贴计算。例如北京上网电价元每度,那么一度电的实际价值为元加元。此方式投资回报率取决于用电量,用电量越大回报率就越高。 (三)全额上网 指的是屋顶光伏所发电量全部卖给供电局,根据各地上网电价不同,一般 元每度电。此方式投资回报率较低,年收益率在15%左右。 根据前段时间炒得很热的“绿屋顶行动”计划,我们也总结了一下,测算方法如下

成本核算: 光伏发电成本目前大约7元/瓦,10平米屋顶大概能安装1kw的光伏,也就是说10 平米的屋顶成本7000 元。 发电量计算: 1kw 的光伏组件光照一小时能发电1 度(理论值),年发电量是 按照年日均光照时间计算的,以北京为例,北京的日均光照时间大约为小时,那么1kw的光伏组件每天能发电度(理论值) 案例分析: 以1w平米屋顶做例子,1w平米可安装1000kw的光伏组件,那么投资成本为700w1w平米屋顶每天可发电1000*=4200度(理论),年发电1533000度。 如果是自发自用,每度电能产生元的价值,那么一年能产生1533000*=3096660 元,也就是说2 年多就能回本,屋顶光伏发电设备的理论使用寿命是25年(实际还要长)也就是说后面20多年都是纯利润。(实际发电量因设备损耗等原因会低一些,但也不会太多,投资回报率在 3 年多一点。) 三、合作方式 租赁屋顶: 由我公司出资按照平米数计算每年支付屋顶租金。(具体费用根据用电量和并网方式计算) 电费打折:屋顶光伏所发电量给予企业价格折扣。(一般为9折左右,根据具体项目不同进行确定) 自行出资建设:由我方承担工程施工,企业出资建设,之后电站 由企业持有,免费用电加补贴。 合资建设:由企业和我方共同出资建设,根据出资比例逐年进行

风力发电对电力系统的影响

风力发电对电力系统的影响 摘要 风力发电总是依赖于气象条件,并逐渐以大规模风电场的形式并入电网,给电网带来各种影响。因此,电网并未专门设计用来接入风电,如果要保持现有的电力供应标准,不可避免地需要进行一些相应的调整。本论文依据正常条例讨论了风电设计和设备网络的开发所遇到的一些问题和解决风电场并网时遇到的各种问题。由于风力发电具有大容量、动态和随机性的特性,它给电力系统的有功/无功潮流、电压、系统稳定性、电能质量、短路容量、频率和保护等方面带来影响,针对这些问题提出了相应的对策,以期待更好地利用风力发电。 关键词:风力发电;电力系统;影响;风电场 1. 引言 人们普遍接受,可再生能源发电是未来电力的供应。由于电力需求快速增长,对以化石燃料为基础的发电是不可持续的。相反的,风电作为一种有发展前景的可再生能源备受人们关注。当由于工业发展和世界大部分地区经济的增长而引起电力的需求稳步增长时,它有抑制排放和降低不可替代燃料储备消耗的潜力。 当大型风电场(几百兆瓦)成为一个主流时,风力发电越来越受欢迎。2006年间,包括世界上超过70个国家在内的风能发展,装机容量从2005年的59091兆瓦达到74223兆瓦。2006年的巨大增长表明,决策者们开始重视风能发展能够带来的好处。由于到2020年12%的供电来于1250Gw的安装风电装机,将积累节约10771百万吨的二氧化碳,这个报道是人类减少温室气体排放的一个重要手段。 大型风电场的电力系统具有很高的容量、动态随机性能,这将会挑战系统的安全性和可靠性。而提供电力系统清洁能源的同时,风电场也会带来一些对电力系统不利的因素。随着风力发电的膨胀和风电在电力系统中比重的增加,影响将很可能成为风力集成的技术性壁垒。因此,应该探讨其影响并提出解决这些问题的对策。 风能已经从25年前的原型中走了很长的路,而且在未来的二十年里它也会继续前进。有一系列的问题与风电系统的运作和发展。虽然风力发电的渗透可能会取代传统的植物产生大量的能量,关注的重点是风力发电和电网之间的相互作用。本文提供了一个概述风力发电对电力系统的影响,并建议相应的对策来处理这些问题,以适应电力系统中的风力发电。 根据上述问题,本文从总体上讨论了风力发电项目开发过程中遇到的问题,以及在处理项目时,将风电场与电力系统相结合的问题。由于风力发电具有容量大、动态、随机性等特点,其影响主要包括有功、无功功率流、电压、系统稳定性、电能质量、短路容量、系统备用、频率和保护。针对这些问题,提出相应的对策建议,以适应电力系统的风力发电。 本文的组织如下。第2节给出了风力发电的发展情况。在第3节介绍了风力发电的特点。在4节中,详细讨论了风力发电对电力系统的影响。在第5节中,提出了减少风力发电的影响的对策。最后,第6节总结本文。

单位面积光伏组件安装容量测算

单位面积光伏发电系统安装容量测算 1.引言 近年来随着环境污染的愈加严重以及国家对于光伏发电项目的支持力度不断加大,且分布式光伏发电系统具有可安装在任何有阳光照射的地方的优点,越来越多的企业和居民对安装分布式光伏发电系统具有浓厚的兴趣。对于居民及企业用户来讲,摆在面前的首要问题就是投资问题,目前大部分光伏发电项目都是以每瓦成本来进行项目报价,所以居民和企业用户关心的第一个问题就是自己的空余空间能够安装多大容量的光伏发电系统。 2.安装容量测算 对于光伏发电系统的设计,其首要原则就是根据安装地点的具体情况选择合适的组件安装方式,然后根据现场可安装面积进行发电系统容量估算,然后结合客户用电情况及意向确定最终的光伏发电系统安装容量。下面我们将以河南森源集团有限公司22KW分布式光伏发电工程为例,详细阐述单位面积光伏发电系统安装容量的测算方法。 河南森源集团22KW分布式光伏发电工程平面布置如图1所示。 图1 河南森源集团22KW分布式光伏发电工程平面布置图

从图中我们可以看出该安装地点东西长30米,南北宽18米,面积540平方米,由于屋顶平面西侧为电梯机房,高度约5米,考虑电梯机房在安装地点的投影面积,在该机房东侧11米内不考虑安装光伏组件。该分布式光伏发电工程选用光伏组件的功率为250W,尺寸为1640mm*992mm,光伏方阵长度为17.8米,宽度为2.6米,光伏组件的安装方式如图2所示。 图2 光伏组件安装方式 考虑安装地点屋顶承重能力,将多个光伏阵列并行分布在安装楼面,需确定光伏组件阵列间距离以避免南部的方阵对北部方阵形成遮阴。 光伏组件阵列行间距计算: 为防止南边的方阵对北边的形成遮阴,计算的原则是:冬至日上午9点到下午3点期间,南部的光伏阵列对北部的阵列不形成遮挡。计算公式如图: 其中:d为光伏组件前后排间距。 Φ为安装地理位置的纬度。 H为阵列前排最高点与后排组件最低位置的高度差。 此工程安装地点为郑州市,位于河南省中部偏北,东经112°42' -114°14',北纬34°16' - 34°58'之间,计算时取Φ为34°。光伏组件的安装高度差H

光伏发电年发电量计算

以1MW装机容量为例(300KW即0.3MW),你可以自己换算下。 电力系统的装机容量是指该系统实际安装的发电机组额定有效功率的总和。 由于光伏发电必然有损耗,所以实际发电量是无法达到理论值的。 1、1MW光伏电站理论年发电量: =年平均太阳辐射总量*电池总面积*光电转换效率 =5555.339*6965*17.5% =6771263.8MJ =6771263.8*0.28 KWH =1895953.86 KWH =189.6万度 2、实际发电效率 太阳电池板输出的直流功率是太阳电池板的标称功率。在现场运行的太阳电池板往往达不到标准测试条件,输出的允许偏差是5%,因此,在分析太阳电池板输出功率时要考虑到0.9 5的影响系数。 随着光伏组件温度的升高,组f:l二输出的功率就会下降。对于晶体硅组件, 当光伏组件内部的温度达到50-75℃时,它的输出功率降为额定时的89%,在分析太阳电池板输出功率时要考虑到0.89的影响系数。 光伏组件表面灰尘的累积,会影响辐射到电池板表面的太阳辐射强度,同样会影响太阳电池板的输出功率。据相关文献报道,此因素会对光伏组件的输出产生7%

的影响,在分析太阳电池板输出功率时要考虑到0.93的影响系数。 由于太阳辐射的不均匀性,光伏组件的输出几乎不可能同时达到最大功率输出,因此光伏阵列的输出功率要低于各个组件的标称功率之和。 另外,还有光伏组件的不匹配性和板问连线损失等,这些因素影响太阳电池板输出功率的系数按0.9 计算。 并网光伏电站考虑安装角度因素折算后的效率为0.88。 所以实际发电效率为:0.9 5 * 0.8 9 * 0.9 3*0.9 5 *0.8 8 =65.7%。 3、系统实际年发电量: =理论年发电量*实际发电效率 =189.6*0.9 5 * 0.8 9 *0.9 3*0.9 5 * 0.8 8 =189.6*65.7% =124.56万度

光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法(试行) 第一章总则 第一条为规光伏理论发电功率及受阻电量等指标的统计分析,依据《光伏发电站太阳能资源实时监测技术要求》(GB/T 30153-2013)、《光伏发电功率预测气象要素监测技术规》(Q/GDW 1996-2013)的有关要求,制定本方法。 第二条本方法所称的光伏电站,是指按照公共电站要求已签订《并网调度协议》、集中并入电网的光伏发电站,不包括分布式光伏发电系统。 第三条本方法适用于国家电网公司各级电力调度机构和调管围并网光伏电站开展理论发电功率及受阻电量统计计算工作。 第二章术语和定义 第四条光伏电站发电功率指标包括理论发电功率和可用发电功率。 光伏电站理论发电功率指在某时刻光资源情况下站所有逆变器及相关设备均正常运行时可发出的功率,其积分电量为某时段的光伏电站理论发电量。 光伏电站可用发电功率指扣除站设备故障、缺陷或检修等原因引起受阻后可发出的功率,其积分电量为某时段的光伏电站可用发电量。

第五条光伏电站受阻电力分为站受阻电力和站外受阻电力两部分。 站受阻电力指光伏电站理论发电功率与可用发电功率之差,其积分电量为站受阻电量。 站外受阻电力指光伏电站可用发电功率与实发功率之差,其积分电量为站外受阻电量。 第六条全网理论发电功率指所有光伏电站理论发电功率之和;全网可用发电功率指考虑断面约束的光伏电站可用发电功率之和;可参与市场交易的光伏富余电力指全网可用发电功率与实发功率之差。 第七条全受阻电力指所有光伏电站站受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的光伏受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第八条计算理论发电功率和受阻电力需准备的实时数据包括光伏电站实际发电功率、逆变器运行数据和状态信息、气象监测数据、开机容量;非实时数据包括光伏电站基本参数(格式见附表)、样板逆变器型号及其数量、全站逆变器型号及其数量等。 第九条所有光伏电站应配备气象监测设备,并向调度机

风电接入对电网的影响

风电的接入对电网的影响 1.对电网频率的影响 风电出力波动将会产生严重的有功功率平衡问题。风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。 2.对电网电压的影响 风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。系统要求节点电压与额定值的偏差不允许超过一定的范围。因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。风电接入系统的所带来的电压与无功功率问题亟待解决。 综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。 [1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73. [2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36. [3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.

光伏电站组件容量配比优化方案

光伏电站组件容量配比优化方案 近年来,不同地区的光伏电站采用光伏组件容量与逆变器容量配比值大于1的设计的思路,以达到提高逆变器的运行效率、电站收益的目的。本文将基于某地的实测辐射值进行分析,并计算不同配比值情况下的电站新增发电量与新增投资的关系,以确定合理的配比值。 一、某地实测辐射数据分析 本文采用某地某全年的实测辐射数据。选取其中的水平面总辐射、温度数据进行计算分析。实测数据采样时间为1min,共计525600组,数据完备率96.32%。完成缺失数据插补后,该地全年水平面总辐射量为6262.5MJ/m2。 根据上述数据得出如下:逐月、年代表日逐时、月代表日逐时的辐射量(值)分布图。(其中:数据已调整为真太阳时):

图1该地区逐月总辐射量直方图 图2该地区年代表日总辐射值分布图 图3该地区逐月代表日总辐射值分布图根据上图可得出如下结论:

(1)该地月总辐射量最大值发生在春、夏换季的5月;且全年逐月总辐射量较平均,有利于光伏电站平稳出力; (2)该地年代表日总辐射极大值差异较小,4个年代表日差异主要是日照时长及当日天气情况而引起的日总辐射量的差异。 (3)该地5月至8月的正午(真太阳时)存在总辐射值超过1000W/m2的情况发生,根据对数据的分析。超过总辐射值超过1200W/m2在6月时有发生。 (4)该地10月至次年4月的空气质量好,透明度高,日总辐射值变化较平稳。 二、不同容量配置比值的计算 本文将采用基于实测的辐射数据完成光伏电站全年逐时(分钟)的发电功率计算。计算时根据如下步骤分别进行计算: (1)光伏组件容量与逆变器容量配比值选择1、1.05、1.1、1.15、1.20分别计算全年逐时发电功率。 (2)考虑各光伏电站实际效率存在差异,光伏组件至逆变器直流母线的效率分别取80%、85%对步骤(1)的各计算结果进行折算。 (3)考虑到逆变器具备的短时超发能力,分别计算超过逆变器标称功率100%、105%、110%的能量损失。 (4)根据步骤(1)~(3)的计算结果,综合计算因光伏组件超配增发的功率与不同效率值、逆变器不同超发能力情况下而限电的最终增发的功率比值。 (5)光伏电站综合单位投资分别取7.5元/W(其中组件价格取3.5元/W)、8元/W(其中组件价格取4元/W)进行光伏电站新增投资比例的计算; (6)综合步骤(4)、(5)的计算结论,计算△发电量与△投资的比值,其结果如下:

光伏发电功率预测与模型分析

光伏发电功率预测与模型分析 摘要 近年来,随着对可再生能源需求的日益提高,太阳能光伏发电技术得到了迅速的发展,大规模光伏发电系统的应用也日益广泛起来,但也随之出现了很多问题。由于太阳辐射量与季度、阴晴及昼夜等气象条件密切相关,从而造成了光伏发电系统输出功率的随机性和间歇性的固有缺点,而且考虑到储能技术上的不成熟等因素,当大量的光伏发电系统接入电网时,势必会对电力系统的安全稳定运行和电能质量等带来严峻挑战,从而限制光伏发电产业的发展,所以对光伏发电系统输出功率进行预测对于电力系统运行而言具有非常重要的意义。 本文通过对影响光伏发电功率因素进行分析对目前现有的光伏发电功率预测方法进行分类,并根据统计方法和物理方法为依据,对太阳辐照量预测进行预测和直接对光伏发电系统的输出功率预测两种方法进行阐述和细化对比。再根据各自所使用的数学模型不同将预测方法分为时间序列法、神经网络法、支持向量机方法、回归分析方法和智能预测方法[6]。最后对不同分类的预测方法及相应的数学模型进行分析阐述和对比,说明其适用范围及精确度,并对其可行性进行分析,提出在功率预测中需要解决的问题。 关键词:光伏系统;功率预测;数学模型;方法 Abstrackt

\ In recent years, with the demand for renewable energy increasing, solar photovoltaic technology has been rapid development of large-scale photovoltaic power generation system applications are increasingly widespread up, but also will be a lot of problems. Since the amount of solar radiation quarter, Teenage and other weather conditions closely related to circadian, resulting in a power output of photovoltaic power generation system and intermittent randomness inherent shortcomings, and taking into account factors such as energy storage technology immaturity, when a large number PV system connected to the grid ,it must have a safe and stable operation of power systems and power quality pose serious challenges, thus limiting the development of photovoltaic power generation industry, so the output power of the photovoltaic power generation system to predict in terms of the power system operation has a very important significance. Based on the impact of photovoltaic power factor analysis on currently available PV power prediction method for classification, and physical methods based on statistical methods and is based on the amount of solar radiation forecasts and projections directly to the output power of photovoltaic systems forecast describes two methods and refined contrast. And then according to their mathematical models used to forecast method is divided into different time series, neural networks, support vector machine, regression analysis and intelligent prediction method. Finally, the prediction of different classification methods and the corresponding mathematical model to analyze and compare elaborated, indicating its scope and accuracy, and its feasibility analysis, forecasting in power need to be resolved. Keywords: PV systerm;Power Prediction;Mathematical model;Method 1前言

浅谈风力发电对电网的影响

浅谈风力发电对电网的影响 随着我国经济的发展,大规模企业越来越多,对能源的需求也在不断的增长。但是由于企业的增加对矿产资源的开采带来了很大的压力,矿产资源属于不可再生资源,因此,大规模的开采资源总有一天会被开采殆尽。为此,必须不断的加快新能源的开发与利用,以替代自然资源,文章通过介绍风力发电对电网的影响,更加清晰阐述了新能源的优势,表明了其在当今社会中的重要性。 标签:风力发电;发电机;电网;可持续发展 近年来,随着我国对矿产资源的不断开发利用,出现了资源匮乏的危机。相信许多仁人志士也已经意识到了这一点,寻找新能源,替代自然资源。已经成为了当代发展的目标。既能不污染环境,又能够实现可持续发展是当代的主题。风能完全符合这一主题,而且在我国风能资源十分丰富,蕴藏了巨大的能量。因此有效推动风力发电的进一步利用和发展尤为重要。以下就风力发电对电网的影响展开阐述。 1 风力发电机的类型 实现风电并网的前提是首先考虑风力发电机的类型,不同的类型发电机有不同的工作原理。因此其对电网产生的影响也不尽相同。目前我国的风力发电机有以下三种类型。现分述如下: 1.1 异步风力发电机 異步发电机是目前国内运用最多的发电机,其具有结构简单、运行可靠、价格实惠等优势。但是这种风力发电机的发电能力较新型的机组发电能力低。原因是其机组为定速恒频机组,运行转速基本稳定。不仅如此,在其运行的过程中还得从电力系统中吸收无功功率,才能正常运行。目前,为了满足该种发电机的使用,多数情况下是在其机端并联补偿电容器,以满足其工作的需求。 1.2 双馈异步风力发电机 此种发电机来自国外,价格昂贵。仅有少数在我国使用。但是该种发电机可在一定的范围内变速运行。通过调节器功率因数,不用再额外的吸收无功功率。例如其功率因数可以从领先的0.95~滞后的0.95。 1.3 直驱式交流永磁同步发电机 目前,我国有许多的大型风力发电机组,但是在实际的运用中,有一个共性,就是齿轮箱容易出故障,因为此减少了其自身的寿命。所以为了解决这一问题,人们研究了无齿轮箱发电机。便是直驱式交流永磁同步发电机。

光伏发电系统设计计算方法

1) 西藏昌都地区一座总功率Pm=30kwp 离网光伏电站,经910天运行,累计发电74332kwh。 平均每天发电量g=74332kwh/910天=81.68kwh。 2) 理论计算: 昌都地处西藏东南部,查表1,年平均辐射量为1625-1855kwh/m2 ,取F=1700kwh/m2 或h1 =4.6h a) 年发电量G=Pm×F ×y×η/1Kw=30kwp ×1700kwh×1.1 ×0.54/1kw=30294(kwh) 每天发电量g=G/365=30294/365=83(Kwh) ;或 b)每天发电量g=Pm ×h1 ×y×η=30kwp ×4.6h×1.1 ×0.54=81.97(kwh) 理论计算发电量81.97(kwh)与实际发电量81.68kwh十分接近,表明理论计算的正确性。 二、并网光伏发电系统设计计算 并网光伏发电系统的设计比离网光伏发电系统简单,这不仅是因为离网光伏发电系统不需要蓄电池和充电控制器,且其供电对象是较稳定的电网。故毋须考虑发电量与用电量之间的平衡,也不需要考虑负载的电阻、电感特性。通常只需根据光伏组件总功率计算其发电量。反之,根据需要的发电量设计并网发电系统设置。 (一) 设计依椐: 1) 光伏发电系统所在地理位置(纬度) ; 2) 当地年平均光辐射量; 3) 需要年发电量或光伏组件总功率或投资规模或占地面积等; 4) 并网电网电压,相数; (二) 并网发电系统设计计算 1) 发电量或组件总功率计算: 年平均每天发电量g=Pm×h1×y×η (kwh) 或 g= Pm×F(M J/m2 ) ×y×η/3.6×365×1 (kwh) 或 g= Pm×F(kwh/m2 ) ×y×η/365 (kwh) 平均年发电量G=g×365 (kwh) 2) 并网逆变器选用: 并网逆变器的选用主要根据下列要求: a) 逆变器额定功率=0.85-1.2Pm; b) 逆变器最大输入直流电压>光伏方阵空载电压; c) 逆变器最输入直流电压范围>光伏方阵最小电压; d) 逆变器最大输入直流电流>光伏方阵短路电流; e) 逆变器额定输入直流电压=光伏方阵最大功率电压; f) 额定输出电压=电网额定电压; g) 额定频率=电网频率; h) 相数=电网相数; 并网逆变器的输出波形畸变、频率误差等应满足并网技术要求。此外,必须具有短路、过压、欠压保护和防孤岛效应等功能。 三、光伏组件方阵设计: (一) 光伏组件水平倾角设计: 光伏组件水平倾角的设计主要取决于光伏发电系统所处纬度和对一年四季发电量分配的要求。 1) 对于一年四季发电量要求基本均衡的情况,可以按以下方式选择组件倾角: 光伏发电系统所处纬度光伏组件水平倾角 纬度0°--- 25°倾角等于纬度 纬度26°--- 40°倾角等于纬度加5°∽10° 纬度 41°----55°倾角等于纬度加10°∽15°

光伏理论发电功率及受阻电量计算方法

光伏理论发电功率及受阻电量计算方法 第一章总则 第一条为进一步完善电网实时平衡能力监视功能,规范日内市场环境下光伏理论发电功率及受阻电量等指标的统计分析,依据《光伏发电站太阳能资源实时监测技术要求》(GB/T 30153-2013)、《光伏发电功率预测气象要素监测技术规范》(Q/GDW 1996-2013)的有关要求,制定本方法。 第二条本方法所称的光伏电站,是指按照公共电站要求已签订《并网调度协议》、集中并入电网的光伏发电站,不包括分布式光伏发电系统。 第三条本方法适用于国家电网公司各级电力调度机构和调管范围内并网光伏电站开展理论发电功率及受阻电量统计计算工作。 第二章术语和定义 第四条光伏电站发电功率指标包括理论发电功率和可用发电功率。光伏电站理论发电功率指在当前光资源情况下站内所有逆变器均可正常运行时能够发出的功率,其积分电量为光伏电站理论发电量;光伏电站可用发电功率指考虑站内设备故障、缺陷或检修等原因引起受阻后能够发出的功率,其积分电量为光伏电站可用发电量。 第五条光伏电站受阻电力分为站内受阻电力和站外受

阻电力两部分:站内受阻电力指光伏电站理论发电功率与可用发电功率之差,其积分电量为站内受阻电量;站外受阻电力指光伏电站可用发电功率与实发功率之差,其积分电量为站外受阻电量。 第六条全网理论发电功率指所有光伏电站理论发电功率之和;全网可用发电功率指考虑断面约束的光伏电站可用发电功率之和;可参与市场交易的光伏富余电力指全网可用发电功率与实发功率之差。 第七条全网站内受阻电力指所有光伏电站站内受阻电力之和;全网断面受阻电力为因通道稳定极限、电网设备检修、电网故障等情况导致的光伏受阻;全网调峰受阻电力指全网可用发电功率与实发功率之差。 第三章数据准备 第八条计算理论发电功率和受阻电力需准备的实时数据包括光伏电站实际发电功率、逆变器运行数据和状态信息、气象监测数据、开机容量;非实时数据包括光伏电站基本参数 (格式见附表)、样板逆变器型号及其数量、全站逆变器型号及其数量等。 第九条所有光伏电站应配备气象监测设备,并向调度机构实时上报气象测量数据,气象数据满足以下条件:(一)气象监测设备测量要素

相关文档
相关文档 最新文档