文档库 最新最全的文档下载
当前位置:文档库 › 76g圆锥仪法10mm液限和17mm液限的相关性研究

76g圆锥仪法10mm液限和17mm液限的相关性研究

76g圆锥仪法10mm液限和17mm液限的相关性研究
76g圆锥仪法10mm液限和17mm液限的相关性研究

2.3.1圆锥曲线的参数方程教案新人教版选修4_4

第三课时 圆锥曲线的参数方程 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 二、重难点:教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法:启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程。 (1)圆2 2 2 r y x =+参数方程? ? ?==θθ sin cos r y r x (θ为参数) (2)圆2 2020)\()(r y y x x =+-参数方程为:?? ?+=+=θ θ sin cos 00r y y r x x (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程。 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆122 22=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为参数),参 数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 2.双曲线的参数方程的推导:双曲线122 22=-b y a x 参数方程 ???==θ θtan sec b y a x (θ为参数)

参数θ几何意义为以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角。 3.抛物线的参数方程:抛物线Px y 22 =参数方程???==Pt y Pt x 222 (t 为参数),t 为以抛物 线上一点(X,Y )与其顶点连线斜率的倒数。 (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义。 B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标。 (3)、参数方程求法:(A )建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B )选取适当的参数;(C )根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D )证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单。与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等。 4、椭圆的参数方程常见形式:(1)、椭圆12222=+b y a x 参数方程 ???==θ θsin cos b y a x (θ为

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

专题用待定系数法求二次函数的解析式

精心整理 精心整理 专题1-用待定系数法求二次函数的解析式 二次函数的解析式常见的三种表达形式: 一般式:y =ax 2+bx +c (a ≠0) 顶点式:y=a(x -h)2+k (a ≠0,(h ,k )是抛物线的顶点坐标) 交点式:y=a(x -x 1)(x -x 2)(a ≠0,x 1、x 2是抛物线与x 轴交点的横坐标) 例1.如果二次函数y =ax 2+bx +c 的图象的顶点坐标为(-2,4),且经过原点,求二次函数解析式. 求二次4例2x=-1x=-11. 2.3.4.二次函数y=ax 2+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。 5.已知二次函数的图象与x 轴的交点为(-5,0),(2,0),且图象经过(3,-4),求解析式 6.抛物线的顶点为(-1,-8),它与x 轴的两个交点间的距离为4,求此抛物线的解析式。 7.二次函数的图象与x 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。 8.把二次函数25 3212++=x x y 的图象向右平移2个单位,再向上平移3个单位,求所得二次函数的

精心整理 精心整理 解析式。 9.二次函数y=ax 2+bx+c ,当x <6时y 随x 的增大而减小,x >6时y 随x 的增大而增大,其最小值为-12,其图象与x 轴的交点的横坐标是8,求此函数的解析式。 10.已知一个二次函数的图象过(1,5)、(1,1--)、(2,11)三点,求这个二次函数的解析式。 11.已知二次函数图象的顶点为(2,k ),在一次函数y=x+1上,并且点(1,1)在图像上,求此二次函数解析式 12.已知二次函数y=ax 2-2ax+c(a 不为0)的图像与x 轴交于A 、B 两点,A 左B 右,与y 轴正半轴交于点C ,AB=4,OA=OC,求二次函数的解析式 13. 2且x 114.3,0), (1Q 点坐15(1(2)

选修4-4-第二讲-参数方程(圆锥曲线的参数方程)-教案

焦点在y 轴上的椭圆的参数方程: 22 22y 1,b a x += 练习:已知椭圆4 92 2y x +=1,点M 是椭圆上位于第一象限的弧上一点,且∠xOM =60°。(1)求点M 的坐标;(2)如何表示椭圆在第一象限的弧? 错解:由已知可得a =3,b =2,θ=600, ∴x =acos θ=3cos60°=2 3,y =bsin θ=2sin60°=3。 从而,点M 的坐标为)3,2 3(。 正解:设点M 的坐标为(x,y),则由已知可得y =3x,与4 92 2y x +=1联立, 解得x =31316, y =9331 6。 所以点M 的坐标为(31316,9331 6)。 另解:∵∠xOM=60°,∴可设点M 的坐标为(|OM|cos60°,|OM|sin60°)。 代入椭圆方程解出|OM|,进而得到点M 的坐标(略)。 例1 求椭圆)0b a (1b y a x 22 22>>=+的内接矩形的面积及周长的最大值。 解:如图,设椭圆1b y a x 22 22=+的内接矩形在第一象限的顶点是 A )sin cos (ααb a ,)2 0(π α< <,矩形的面积和周长分别是S 、L 。 ab 22sin ab 2sin b cos a 4|EA ||FA |4S ≤α=α?α=?=, 当且仅当4 a π = 时,22max b a 4sin b 4cos a 4|)EA ||FA (|4L ab 2S +≤α+α=+==,,cos y a sin x b ? ? =?? =?

5 3 arcsin 23-π= α时,距离d 有最大值2。 例4 θ取一切实数时,连接A(4sin θ,6cos θ)和B(-4cos θ, 6sin θ)两点的线段的中点轨迹是 . A. 圆 B. 椭圆 C. 直线 D. 线段 例5 已知点A 在椭圆136y 144x 22=+上运动,点B (0,9)、点M 在线段AB 上,且2 1MB AM =, 试求动点M 的轨迹方程。 解:由题意知B (0,9),设A (ααsin 6cos 12,),并且设M (x ,y )。 则,α=+?+α=++ = cos 8211021cos 12211x 21x x B A 3sin 42 11921 sin 6211y 21y y B A +α=+ ?+α=++=, 动点M 的轨迹的参数方程是? ? ?+α=α =3sin 4y cos 8x (α是参数), 消去参数得116 )3y (64x 2 2=-+。 例6 椭圆)0b a (1b y a x 22 22>>=+与x 轴的正向相交于点A ,O 为坐标原 点,若这个椭圆上存在点P ,使得OP ⊥AP 。求该椭圆的离心率e 的取值范围。 解:设椭圆)0b a (1b y a x 22 22>>=+上的点P 的坐标是(ααsin b cos a ,)(α≠0且α≠π),A

(完整版)用“点差法”解圆锥曲线的中点弦问题

用“点差法”解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式求解,但运算量较大。若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。下面就如何用点差法计算举几个例子供大家参考。 一、 求以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((21))((21212121=-+--+y y y y x x x x ∴22 121 =--=x x y y k AB 故直线)1(21:-=-x y AB

用点差法解圆锥曲线的中点弦问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B Θ )1,2(M 为AB 的中点 ∴421=+x x 221=+y y Θ又A 、B 两点在椭圆上,则1642121=+y x ,1642 222=+y x 两式相减得0)(4)(22212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。 例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 122121=-y x ,122 222=-y x 两式相减,得 0))((2 1))((21212121=-+--+y y y y x x x x ∴22121 =--=x x y y k AB 故直线)1(21:-=-x y AB 由?? ???=--=-12)1(2122y x x y 消去y ,得03422=+-x x ∴ 08324)4(2<-=??--=? 这说明直线AB 与双曲线不相交,故被点M 平分的弦不存在,即不存在这样的直线l 。 评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的M 位置非常重要。(1)若中点M 在圆锥曲线内,则被点M 平分的弦一般存在;(2)若中点M 在圆锥曲线外,则被点M 平分的弦可能不存在。 二、 过定点的弦和平行弦的中点坐标和中点轨迹 例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线2 1=x 的交点恰为这条弦的中点M ,求点M 的坐标。

圆锥曲线的参数方程练习题(带答案)

圆锥曲线的参数方程练习题 1、若点()3,P m 在以点F 为焦点的抛物线2 4{4x t y t == (t 为参数)上,则PF 等于( ) A.2 B.3 C.4 D.5 答案:C 解析:抛物线为24y x =,准线为1x =-, PF 为()3,P m 到准线1x =-的距离,即为4. 故选C. 2、参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数)所表示的曲线为( ) A.圆的一部分 B.抛物线的一部分 C.双曲线的一部分 D.椭圆的一部分 答案:B 解析:参数方程sin cos , {1sin 2x y θθθ=+=+ (θ为参数),化为普通方程为2(02)x y y =≤≤, 表示抛物线的一部分. 3、椭圆5cos ,{3sin x y ?? == (?为参数)的焦点坐标为( ) A.(5,0)± B.(4,0)± C.(3,0)± D.(0,4)± 答案:B 解析:椭圆5cos ,{3sin x y ?? == (?为参数)的普通方程为22 1259x y +=,故4c =. 又椭圆焦点在x 轴上,故焦点坐标为(4,0)±.

4、已知过曲线3cos ,{ 4sin x y θθ== (θ为参数,0θπ≤≤)上一点P 和原点O 的连线PO 的倾斜角为4 π,则P 点的坐标是( ) A.(3,4) B.1212,55??- ??? C.? D.1212,55?? ??? 答案:D 解析:直线PO 的方程是y x =,又点P 为曲线3cos ,{ 4sin x y θθ==上一点,故3cos 4sin θθ=,即3tan 4θ=,因为倾斜角为4 π,0θπ≤≤,所以曲线与直线的交点在第一象限,故3sin 5θ=,4cos 5θ=,所以125 x y ==. 5、已知O 为原点,P 为椭圆4cos ,{ x y αα== (α为参数)上第一象限内一点,OP 的倾斜角为3 π,则点P 坐标为( ) A.()2,3 B.()4,3 C.( D.( ,55 答案:D 解析:椭圆4cos , {x y αα== (α为参数)化为普通方程,得22 11612x y +=.由题意可得直线OP 的方程为y = (0x >). 由22(0), {11612y x x y =>+= 解得x y ==∴点P 的坐标为()55 .故选D. 6、参数方程cos 2sin x y θθ=??=? (θ为参数)化为普通方程为( ) A.22 14y x += B.2212y x += C.2214x y += D.2 212x y +=

待定系数法求解析式

待定系数法求函数解析式 【要点梳理】 一.已知三点求抛物线解析式 例1 二次函数的图象经过点(1,4),(-1,0)和(-2,5),求二次函数的解析式. 例2若抛物线经过A(-1,0)和B(3,0),且与y轴交于点(0,-3),求此抛物线的解析式及顶点坐标. 二.已知顶点坐标及另一点坐标求抛物线解析式例3 已知抛物线的顶点坐标是(-2,3)且过(-1,5),求抛物线的解析式. 三.已知两点及对称轴,求抛物线解析式 例4已知抛物线过A(1,0),B(0,-3)两点,且对称轴为直线x=2,求抛物线解析式. 四.已知x轴上两点坐标及另一点坐标求抛物线解析式 例5若抛物线经过A(-2,0)和B(4,0),且与y轴交点(0,-3),求此抛物线的解析式及顶点坐标. 五.求平移后新抛物线解析式 例6把抛物线2x y- =向左平移1个单位,然后 向上平移3个单位,求平移后新的抛物线解析式. 六.求沿坐标轴翻折后新抛物线解析式 例7 在一张纸上作出函数3 2 2+ - =x x y的图 象,沿x轴把这张纸对折,描出与函数 3 2 2+ - =x x y的图象关于x轴对称的抛物线, 并写出新抛物线解析式. 【课堂操练】 1.求下列条件下的二次函数解析式: (1)过点(-1,0),(0,2)和(4,0). (2)顶点为(2,-3),且过点(-1,15). 2.已知二次函数c bx ax y+ + =2的图象如图所 示,求它关于y轴对称的抛物线解析式. 3.已知二次函数c bx ax y+ + =2的图象如图所 示,求它关于x轴对称的抛物线解析式. 4.已知二次函数c bx x y+ + =2 2 1 的图象过点A (c,-2),,求证:这 个二次函数图象的对称轴是直线x=3,题目中横线 上方部分是被墨水污染了无法辨认的文字. (1)根据已知和结论中现有信息,你能否求出题 目中的二次函数解析式?若能,请写出解题过程; 若不能,请说明理由. (2)请你根据已有的信息,在原题中的横线上添 加一个适当的条件,把原题补充完整. 【课后巩固】 1.将抛物线2 y x =的图像向右平移3个单位,则 平移后的抛物线的解析式为___________. 2.二次函数3 4 2+ + =x x y的图象可以由二次 函数2x y=的图象平移而得到,下列平移正确的 是() A、先向左平移2个单位长度,再向上平移1个单 位长度 B、先向左平移2个单位长度,再向下平移1个单 位长度 C、先向右平移2个单位长度,再向上平移1个单 位长度 D、先向右平移2个单位长度,再向下平移1个单 位长度 3.已知2 y ax bx c =++的图象过(-2,-6)、 (2,10)和(3,24)三点,求函数解析式. 4.已知函数2 y ax bx c =++,当x=1时,有最 大值-6,且经过点(2,-8),求出此抛物线的 解析式. 5.已知二次函数的图象与x轴的交点横坐标分别 为2和3,与y轴交点的纵坐标是72,求它的解 析式.

圆锥曲线的参数方程

二 圆锥曲线的参数方程 [学习目标] 1.掌握椭圆的参数方程及应用. 2.了解双曲线、抛物线的参数方程. 3.能够利用圆锥曲线的参数方程解决最值、有关点的轨迹问题. [知识链接] 1.椭圆的参数方程中,参数φ是OM 的旋转角吗? 提示 椭圆的参数方程???x =a cos φ, y =b sin φ(φ为参数)中的参数φ不是动点M (x ,y ) 的旋转角,它是点M 所对应的圆的半径OA (或OB )的旋转角,称为离心角,不是 OM 的旋转角. 2.双曲线的参数方程中,参数φ的三角函数sec φ的意义是什么? 提示 sec φ=1cos φ,其中φ∈[0,2π)且φ≠π2,φ≠3 2π. 3.类比y 2=2px (p >0),你能得到x 2=2py (p >0)的参数方程吗? 提示 ???x =2pt , y =2pt 2 (p >0,t 为参数,t ∈R .) [预习导引] 1.椭圆的参数方程

2.双曲线的参数方程 3.抛物线的参数方程 (1)抛物线y 2 =2px 的参数方程是???x =2pt 2 ,y =2pt (t ∈R ,t 为参数). (2)参数t 表示抛物线上除顶点外的任意一点与原点连线的斜率的倒数.

要点一 椭圆参数方程的应用 例1 已知A 、B 分别是椭圆 x 236 +y 2 9 =1的右顶点和上顶点,动点C 在该椭圆上运动,求△ABC 重心G 的轨迹的普通方程. 解 由题意知A (6,0),B (0,3).由于动点C 在椭圆上运动,故可设动点C 的坐标为(6cos θ,3sin θ),点G 的坐标为(x ,y ),由三角形重心的坐标公式可得?????x =6+0+6cos θ3,y = 0+3+3sin θ3(θ为参数),即?? ?x =2+2cos θ, y =1+sin θ. 故重心G 的轨迹的参数方程为???x =2+2cos θ,y =1+sin θ (θ为参数). 规律方法 本题的解法体现了椭圆的参数方程对于解决相关问题的优越性.运用参数方程显得很简单,运算更简便. 跟踪演练1 已知曲线C 1:???x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:x 264+y 2 9=1. (1)化C 1为普通方程,C 2为参数方程;并说明它们分别表示什么曲线? (2)若C 1上的点P 对应的参数为t = π 2 ,Q 为C 2上的动点,求PQ 中点M 到直线C 3:x -2y -7=0距离的最小值. 解 (1)由???x =-4+cos t ,y =3+sin t ,得???cos t =x +4, sin t =y -3. ∴曲线C 1:(x +4)2+(y -3)2=1, C 1表示圆心是(-4,3),半径是1的圆.

用点差法解圆锥曲线问题

用点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、 以定点为中点的弦所在直线的方程 例1、过椭圆 14 16 2 2 =+ y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线 的方程。 解:设直线与椭圆的交点为),(11y x A 、),(22y x B )1,2(M 为AB 的中点 ∴421=+x x 221=+y y 又A 、B 两点在椭圆上,则1642 12 1=+y x ,1642 22 2=+y x 两式相减得0)(4)(2 2212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴ 2 12 44) (421212 121- =?- =++-=--y y x x x x y y 即2 1- =AB k ,故所求直线的方程为)2(2 11-- =-x y ,即042=-+y x 。 例2、已知双曲线12 2 2 =- y x , 经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设 的条件。本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、),(22y x B 则221=+x x ,221=+y y 12 2 12 1=- y x ,1 2 2 22 2=- y x

用待定系数法求数解析式

用待定系数法求数解析式

————————————————————————————————作者:————————————————————————————————日期:

用待定系数法求二次函数解析式 二次函数是初中数学主要内容之一,也是联系高中数学的重要纽带。它是初中《代数》中“函数及其图象”中的难点,求二次函数的解析式又是重点。求二次函数的解析式,要观察题目中给出的条件,灵活选用方法。一般地,有三个点且点不是特殊点时,一般采用一般式;若有三个点,且有二点为函数图像与x 轴交点时,采用交点式;若有顶点时,一般采用顶点式。同时,在采用交点式时,要注意二次项系数a 不能漏掉。应根据题目的特点灵活选用二次函数解析式的形式,运用待定系数法求解。即:根据已知条件列出关于a 、b 、c 或h 、k 及x 1、x 2的方程(注意有几个未知数就列出几个方程);解方程组求出待定的系数;写出解析式,要化为一般式. (1)一般式:y=ax 2+bx+c(a ≠0) ⑵顶点式:y=a(x-h)2+k(a ≠0),(h,k )是抛物线顶点坐标。 (3)交点式:y=a(x-x 1)(x-x 2)(a ≠0),x 1,x 2分别是抛物线与x 轴的两个交点的横坐标. 思路1、已知图象过三点,求二次函数的解析式,一般用它的一般形式: 较方便。 例1 图像过A(0,1),B(1,2),C(2,-1)三点,求这个二次函数的关系式. 解:分析:因为图像过三点,且三个点不属于特殊点。因此,只能采用一般式求解。 设函数解析式为y=ax 2+bx+c ∵抛物线过(0,1),(1,2),(2,-1) c=1 ∴ a+b+c=2 4a+2b+c=-1 解之得a=-2,b=3,c=1; ∴函数解析式为y=-2x 2+3x+1 小结:此题是典型的根据三点坐标求其解析式,关键是:(1)熟悉待定系数法;(2)点在函数图象上时,点的坐标满足此函数的解析式;(3)会解简单的三元一次方程组。 思路2、已知顶点坐标,对称轴、最大值或最小值,求二次函数解析式,一般用它的顶点式 较方便。 例2 已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式. 分析 因为这个二次函数的图象的顶点是(8,9),因此,可以设函数关系式为y =a (x -8)2+9. 根据它的图象过点(0,1),容易确定a 的值. 小结:此题利用顶点式求解较易,用一般式也可以求出,但仍要利用顶点坐标公式。试一试,比较一下。 思路3、已知图象与 轴两交点坐标,可用交点 的形式,其中x 1、x 2, 为抛物线与 轴的交点的横坐标,也是一元二次方程 的两个根。 一般地,函数y =ax 2+bx +c 的图象与x 轴交点的横坐标即为方程ax 2+bx +c =0的解;当二次函数y =ax 2+bx +c 的函数值为0时,相应的自变量的值即为方程ax 2+bx +c =0的解,这一结论反映了二次函数与一元二次方程的关系。所以,已知抛物线与x 轴的两个交点坐标时,可选用二次函数的交点式:y =a(x -x 1)(x -x 2),其中x 1 ,x 2 为两交点的横坐标。 例3已知二次函数的图象过(-2,0)、(4,0)、(0,3)三点,求这个二次函数的关系式. 解 设所求二次函数为,y=a(x+2)(x-4),由于这个函数的图象过(0,3),可以得到a(0+2)×(0-4)=3 解这个方程组,得a= -38 所以: y= -38(x+2)(x-4)= 233 384 x x -++. 所以,所求二次函数的关系式是y= 233 384 x x -++. 思路4、已知图象与 轴两交点间距离 ,求解析式,可用︱x 1-x 2︱2=(x 1+x 2)2 -2x 1x 2的形式来求,其中︱x 1-x 2︱ 为两交点之间的距离, x 1、x 2为图象与 轴相交的交点的横坐标。 4、二次函数的图象与 轴两交点之间的距离是2,且过(2,1)、(-1,-8)两点,求此二次函数的解析式。 思路5、由已知图象的平移求解析式,一般是把已知图象的解析式写成y=a(x-h)2+k 的形式,若图象向左(右)移动m 个单位,括号里-h 的值就加(减)m 个单位;若图象向上(下)平移 n

《圆锥曲线的参数方程》教学案

2.3《圆锥曲线的参数方程》教学案 一、教学目标: 知识与技能:了解圆锥曲线的参数方程及参数的意义 过程与方法:能选取适当的参数,求简单曲线的参数方程 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识. 二、重难点: 教学重点:圆锥曲线参数方程的定义及方法 教学难点:选择适当的参数写出曲线的参数方程. 三、教学方法: 启发、诱导发现教学. 四、教学过程: (一)、复习引入: 1.写出圆方程的标准式和对应的参数方程. (1)圆222r y x =+参数方程?? ?==θ θ sin cos r y r x (θ为参数) (2)圆2 2 02 0r y y x x =+-)\()(参数方程为:?? ?+=+=θ θ sin cos r y y r x x 00 (θ为参数) 2.写出椭圆、双曲线和抛物线的标准方程. 3.能模仿圆参数方程的推导,写出圆锥曲线的参数方程吗? (二)、讲解新课: 1.椭圆的参数方程推导:椭圆 12 22 2=+ b y a x 参数方程 ?? ?==θ θ sin cos b y a x (θ为参数),参数θ的几何意义是以a 为半径所作圆上一点和椭圆中心的连线与X 轴正半轴的夹角 2.双曲线的参数方程的推导:双曲线12 22 2=- b y a x 参数方程 ?? ?==θ θ tan sec b y a x (θ为参数)

. 3.抛物线的参数方程:抛物线Px y 22 =参数方程?? ?==Pt y Pt x 222 (t 为参数),t 为以抛物线上一点(X ,Y)与其顶点连线斜率的倒数. (1)、关于参数几点说明: A.参数方程中参数可以是有物理意义,几何意义,也可以没有明显意义. B.同一曲线选取的参数不同,曲线的参数方程形式也不一样 C.在实际问题中要确定参数的取值范围 (2)、参数方程的意义: 参数方程是曲线点的位置的另一种表示形式,它借助于中间变量把曲线上的动点的两个坐标间接地联系起来,参数方程与变通方程同等地描述,了解曲线,参数方程实际上是一个方程组,其中x ,y 分别为曲线上点M 的横坐标和纵坐标. (3)、参数方程求法:(A)建立直角坐标系,设曲线上任一点P 坐标为),(y x ;(B)选取适当的参数;(C)根据已知条件和图形的几何性质,物理意义,建立点P 坐标与参数的函数式;(D)证明这个参数方程就是所由于的曲线的方程 (4)、关于参数方程中参数的选取:选取参数的原则是曲线上任一点坐标当参数的关系比较明显关系相对简单.与运动有关的问题选取时间t 做参数;与旋转的有关问题选取角θ做参数;或选取有向线段的数量、长度、直线的倾斜斜角、斜率等. 4、椭圆的参数方程常见形式:(1)、椭圆122 22=+b y a x 参数方程 ?? ?==θ θsin cos b y a x (θ 为参数);椭圆 2 2 221(0)y x b a b a +=>>的参数方程是 c o s s i n (2x b y a θθθθ==≤≤π? 为参数,且0). (2)、以0 ( ,)y x 为中心焦点的连线平行于x 轴的椭圆的参数方程是 00 cos sin ({x a y b x y θθ θ= +=+为参数). (3)在利用???==θθ sin cos b y a x 研究椭圆问题时,椭圆上的点的坐标可记作(acos θ,bsin θ). (三)、巩固训练

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

待定系数法求函数的解析式

一次函数的解析式 1、把y=kx+b (k ≠0,b 为常数)叫做一次函数的标准解析式,简称标准式。 直线过()11,y x , ()22,y x =>2121x x y y k --=,或1212x x y y k --= b:与y 轴交点的刻度( 纵坐标) 1:若点A (2,4)在直线y=kx-2上,则k=( ) A .2 B .3 C .4 D .0 2:一条直线通过A (2,6),B (-1,3)两点,求此直线的解析式。 3:一条直线通过A (1,6),B (0,3)两点,求此直线的解析式。 4:若A (0,2),B (-2,1),C (6,a )三点在同一条直线上,则a 的值为( ) A .-2 B .-5 C .2 D .5 5.已知点M (4,3)和N (1,-2),点P 在y 轴上,且PM+PN 最短,则点P 的坐标是( ) A .(0,0) B .(0,1) C .(0,-1) D .(-1,0) 6.如图,已知一次函数y=kx+b 的图象经过A (0,1)和B (2,0),当x >0时,y 的取值范围是( ) A .y <1 B .y <0 C .y >1 D .y <2 7.已知一次函数y=kx+b 的图象如图所示 (1)当x <0时,y 的取值范围是______。 (2)求k ,b 的值.

用待定系数法求二次函数解析式 二次函数的解析式有三种基本形式: 1、一般式:y=ax2+bx+c (a≠0)。 C:与y轴交点刻度(纵坐标) 2、顶点式:y=a(x-h)2+k (a≠0),其中点(h,k)为顶点,对称轴为x=h。 3、交点式:y=a(x-x 1)(x-x 2 ) (a≠0),其中x 1 ,x 2 是抛物线与x轴的交点 的横坐标。 1.已知一个二次函数的图象过点(0,-3)(4,5),(-1, 0)三点,求这个函数的解析式? 2.已知二次函数的图象经过点)4 ,0( ), 5 ,1 (- - -和)1,1(.求这个二次函数的解析式. 3. 已知抛物线的顶点为(1,-4),且过点(0,-3),求抛物线的解析式? 4.过点(2,4),且当x=1时,y有最值为6;求抛物线的解析式? 5.. 已知一个二次函数的图象过点(0,-3)(4,5),对称轴为直线x=1,求这个函数的解析式? 6.如图,已知两点A(-8,0),(2,0),与y轴正半轴交于点C(0、4)。求经过A、B、C 三点的抛物线的解析式。

利用待定系数法求函数解析式练习题

20.已知点A( 1,)、B 、O(0,0),试说明A、O、B三点在同一条直线上。 22.为缓解用电紧张矛盾,某电力公司特制定了新的用电收费标准,每月用电量x(度)与应付电费y(元)的关系如图所示.分别求出当0≤x≤50和x>50时,y与x的函数关系式; 23.已知一个正比例函数和一个一次函数,它们的图象都经过点P(-2,1),且一次函数图象与y轴交于点Q(0,3)。 (1)求出这两个函数的解析式; (2)在同一个坐标系内,分别画出这两个函数的图象。 24..若一次函数的图象与直线y=-3x+2交y轴于同一点,且过点(2,-6),求此函数解析式25、某一次函数的图像与直线y=6-x交于点A(5,k),且与直线y=2x-3无交点,求此函数的解析式. 26、已知直线y=kx+b在y轴上的截距为-2,且过点(-2,3). (1)求函数y的解析式;(2)求直线与x轴交点坐标;(3)x取何值时,y>0; 27、直线x-2y+1=0 在y轴上的截距为______. 28.一次函数y=kx+b(k≠0)的自变量的取值范围是-3≤x≤6相应函数值的范围是-5≤y≤-2,求这个函数的解析式. 29. 一次函数y=kx+b的图象过点(-2,5),并且与y轴相交于点P,直线y=-1/2x+3与y轴相交于点Q,点Q与点P关于x轴对称,求这个一次函数解析式 30、正比例函数y=k1x与一次函数y=k2x+b的图象如图所示,它们的交点A的坐标为(3,4),并且OB=5 (1)求△OAB的面积 (2)求这两个函数的解析式 3)3 ,1 (- -

6.一次函数y=kx+b中,kb>0,且y随x的增大而减小,则它的图象大致为() 8.下面是y=k1x+k2与y=k2x在同一直角坐标系中的大致图象,其中正确的是( )

高中数学解题方法系列:解析几何中的点差法解中点弦问题

高中数学解题方法系列:点差法解圆锥曲线的中点弦问题 与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题。 解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。 若设直线与圆锥曲线的交点(弦的端点)坐标为),(11y x A 、),(22y x B ,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。 一、以定点为中点的弦所在直线的方程 例1、过椭圆14 162 2=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。解:设直线与椭圆的交点为),(11y x A 、) ,(22y x B )1,2(M 为AB 的中点∴4 21=+x x 221=+y y 又A 、B 两点在椭圆上,则1642121=+y x ,16 42222=+y x 两式相减得0 )(4)(2 2212221=-+-y y x x 于是0))((4))((21212121=-++-+y y y y x x x x ∴2 1244)(421212121-=?-=++-=--y y x x x x y y 即21-=AB k ,故所求直线的方程为)2(2 11--=-x y ,即042=-+y x 。例2、已知双曲线12 2 2=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。若存在这样的直线l ,求出它的方程,若不存在,说明理由。 策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。 本题属于中点弦问题,应考虑点差法或韦达定理。 解:设存在被点M 平分的弦AB ,且),(11y x A 、) ,(22y x B 则221=+x x ,221=+y y

待定系数法求解析式

19,2 待定系数法求一次函数解析式 在经历探索求一次函数解析式的过程中感悟数学中的数与形的结合 解决抽象的函数问题 【学习过程】 一, 1 一次函数的一般形式是什么? 2当b=0时,一次函数y=kx +b(常数k不为0),也叫做什么函数? 3 你知道它们的图像是什么? 二,想一想 由一次函数y=kx+b的图象如何确定k、b的符号 图略 三,练一练 画出函数y= 2 x与y= -1.5 x +3的图象 图略 你在作这两个函数图象时,分别描了几个点?你为何选取这几个点?可以有不同取法吗? 四,应用举例 已知一次函数的图象经过点(3,5)与(-4,-9),求这个一次函数的表达式。

解:设这个一次函数的解析式为y=kx+b 。 因为y=kx+b 的图象过点(3,5)与(-4,-9), 所以 解得 这个一次函数的解析式为y=2x-1 先设出函数解析式,再根据条件确定解析式中未知数,从而具体写出边个式子的方法,叫做待定系数法. 五,归纳 用待定系数法确定一次函数表达式的一般步骤 (1) 设函数表达式为y=kx+b ; (2) 将已知点的坐标代入函数表达式; (3) 解方程(组); (4) 写出函数表达式。 六,数形结合流程 函数解析式y=kx+b 满足条件的两定点(x1,y1)与(x2,y2) 一次函数的图象 七,用待定系数法求一次函数的解析式的步骤 解:设一次函数的解析式为y=kx+b 把(__ ,__)(__ ,__)代入函数解析式 得 ???-=+-=+9453b k b k ???- ==12b k

解得 这个一次函数的解析式为y=__x+__ 八,拓展举例 已知一次函数y=kx+b的图象如图所示,求函数表达式. 九,课堂练习 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.十,作业与小结 习题19·2 第5题、第6题,第7题 本节课你学到了什么?

相关文档
相关文档 最新文档