文档库 最新最全的文档下载
当前位置:文档库 › 排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)
排列组合的二十种解法(最全的排列组合方法总结)

排列组合问题的20种解法

排列组合问题的20种解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 复习巩固分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 44 3

由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆 里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有 522 522480A A A =种不同的排法 练习题: 某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场 顺序有多少种 解:分两步进行第一步排2个相声和3个独唱共有5 5A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6A 不同的方法,由分步计数原理,节目的不同顺序共有5 4 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行 排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数

排列组合问题的解题策略

排列组合问题的解题策略 排列组合问题的解题策略 一、相临问题——捆绑法 例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法? 解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。 评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。 二、不相临问题——选空插入法 例2.7名学生站成一排,甲乙互不相邻有多少不同排法? 解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 . 评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。 三、复杂问题——总体排除法 在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。 例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个. 解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.

四、特殊元素——优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种. 解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法. 例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种. 解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种. 五、多元问题——分类讨论法 对于元素多,选取情况多,可按要求进行分类讨论,最后总计。 例6.(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A.42 B.3 0 C.20 D.12 解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。 例7.(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相

排列组合(20份)

排列组合与概率总结复习 两个基本原理: 1.加法原理(分类计数原理):做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法, 在第二类办法中有2m 种不同的方法, ……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:n m m m m N +???+++=321种不同的方法. 2.乘法原理(分步计数原理): 做一件事,完成它有n 个步骤,做第一步有1m 种不同的方法, 做第二步有有2m 种不同的方法, ……, 做第n 步有n m 种不同的方法,那么完成这件事共有: n m m m m N ???????=321种不同的方法. 特别注意:分类是独立的、一次性的;分步是连续的、多次的。 三组基本概念: 1.排列 1)排列:从n 个不同元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 2)排列数:从n 个不同元素中取出m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素 中取出m 个元素的排列数。通常用m n A 表示。 特别地,当n m =时,称为全排列,当n m 时,称为选排列。 2. 组合 1)组合:从n 个不同元素中取出m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 2)组合数:从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元 素中取出m 个元素的组合数,记作m n C 。 3. 事件与概率 1)事件的分类:(1)必然事件:在一定的条件下必然要发生的事件;(2)不可能事件:在一定的条件下不可能发生的事件;(3)随机事件:在一定的条件下可能发生也可能不发生的事件。 2)一些特殊事件: (1)等可能事件:对于每次随机试验来说,只可能出现有限个不同的试验结果;另外,所有不同的试验结果,它们出现的可能性是相等的。 (2)互斥事件:不可能同时发生的两个事件,我们把它称为互斥事件。如果事件A 1,A 2,…,A n 中的任何两个都是互斥事件,那么就说事件A 1,A 2,…,A n 彼此互斥。 (3)对立事件:必有一个发生的两个互斥事件叫做对立事件。事件A 的对立事件通常记作 A 。特别地,有 B A +、B A ?的对立事件分别是B A ?、B A +,即B A B A ?=+、B A B A +=?。 (4)相互独立事件:一个事件是否发生对另一个事件发生的概率没有影响的两个事件叫做相互独立事件。 3)事件的概率:在大量重复进行同一试验时,事件A 发生的频率 n m 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。 一些重要公式: 1.排列数公式 :

[超全]排列组合二十种经典解法!

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类办法中有2m种不同1 的方法,…,在第n类办法中有 m种不同的方 n 法,那么完成这件事共有: 第 2 页共 22 页

种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步有2m种不同的方1 法,…,做第n步有 m种不同的方法,那么完 n 成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉, 第 3 页共 22 页

排列组合解题技巧归纳总结

排列组合解题技巧归纳总结 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学内容 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有34A 由分步计数原理得113 4 34288C C A =

超全超全的排列组合的二十种解法

排列有两种定义,但计算方法只有一种,凡是符合这两种定义的都用这种方法计算。定义的前提条件是m≦n,m与n均为自然数。①从n个不同元素中,任取m个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。②从n个不同元素中,取出m个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。 ③用具体的例子来理解上面的定义:4种颜色按不同颜色,进行排列,有多少种排列方法,如果是6种颜色呢。从6种颜色中取出4种进行排列呢。 解:A(4,4)=4x(4-1)x(4-2)x(4-3)x(4-4+1)=4x1x2x3x1=24。 A(6,6)=6x5x4x3x2x1=720。 A(6,4)=6!/(6-4)!=(6x5x4x3x2x1)/2=360。 [计算公式] 排列用符号A(n,m)表示,m≦n。 计算公式是:A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)! 此外规定0!=1,n!表示n(n-1)(n-2) (1) 例如:6!=6x5x4x3x2x1=720,4!=4x3x2x1=24。 组合的定义及其计算公式 1 组合的定义有两种。定义的前提条件是m≦n。 ①从n个不同元素中,任取m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。 ②从n个不同元素中,取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。 ③用例子来理解定义:从4种颜色中,取出2种颜色,能形成多少种组合。 解:C(4,2)=A(4,2)/2!={[4x(4-1)x(4-2)x(4-3)x(4-4+1)]/[2x(2-1)x(2-2+1)]}/[2x(2-1)x(2-2+1)]=[( 4x3x2x1)/2]/2=6。 [计算公式] 组合用符号C(n,m)表示,m≦n。 公式是:C(n,m)=A(n,m)/m! 或C(n,m)=C(n,n-m)。

高三数学排列组合20种解题方法汇总含例题及解析

排列组合解法 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同 的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排 列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪, 4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列 数除以这几个元素之间的全排列数,则共有不同排法种数是:73 73/A A

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2 m 种不同的方法,…,在第n 类办法中有m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有 1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有34A

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

排列组合方法归纳大全

排列组合方法归纳大全 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为

四.定序问题倍缩空位插入策略 例人排队,其中甲乙丙3人顺序一定共有多少不同的排法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 练习题: 1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法练习题:6颗颜色不同的钻石,可穿成几种钻石圈 七.多排问题直排策略 例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进 行自排。由分步计数原理可得共有种不同的排法 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列. 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入

排列组合的二十种解法(最全的排列组合方法总结)

教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方 法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有3 4A 由分步计数原理得113 434288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有 多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522 522480A A A =种不同的 排法

排列组合问题的解题方法与技巧的总结(完整版)

学员数学科目第次个性化教案 授课时间教师姓名备课时间 学员年级高二课题名称排列组合问题的解题策略 课时总数共课时教育顾问学管邱老师 教学目标1、两个计数原理的掌握与应用; 2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握; 3、运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题) 教学重点1、两个计数原理的掌握与应用; 2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握; 教学难点运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题) 教学过程 教师活动 一、作业检查与评价(第一次课程) 二、复习导入 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 三、内容讲解 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 1 m种不同的方法,在第2类办法中有 2 m种不同的 方法,…,在第n类办法中有 n m种不同的方法,那么完成这件事共有: 12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 1 m种不同的方法,做第2步有 2 m种不同的方法,…, 做第n步有 n m种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 排列组合问题的解题策略

高考数学排列组合解题技巧总结

高考数学排列组合解题技巧总结 一、定义 排列:一般地,从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中任取m个元素的一个排列. 组合:一般地,从n个不同元素中任取m(m≤n)个元素,并成一组,叫做从n个不同元素中任取m个元素的一个排列. 二、学习指导 1、排列组合的本质区别在于对所取出的元素是作有序排列还是无序排列。组合问题可理解为把元素取出后放到某一集合中去,集合中的元素是无序的. 2、较复杂的排列组合问题一般是先分组,再排列。必须完成所有的分组再排列,不能边分组边排列. 3、排列组合问题的常见错误是重复和遗漏。弄清问题的实质,适当的分类,合理的分步是解决这个错误的关键,采用不同的思路检验结果是否一致是解决这个错误的技巧. 4、“正难则反”是处理问题常用的策略. 三、常用方法 1、合理选择主元 例1. 公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法?例2. 公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?分析:例1中将5名乘客看作5个元素,3个空位看作3个位置,则问题变为从5个不同的元素中任选3个元素放在3个位置上,共有$A_5^3$种不同坐法。例2中再把乘客看作元素问题就变得比较复杂,将5个空位看作元素,而将乘客看作位置,则例2变成了例1,所以在解决排列组合问题时,合理选择主元,就是选择合适解题方法的突破口。 2、“至少”型组合问题用隔板法 对于“至少”型组合问题,先转化为“至少一个”型组合问题,再用n个隔板插在元素的空隙(不包括首尾)中,将元素分成n+1份。 例5. 4名学生分6本相同的书,每人至少1本,有多少种不同分法? 解:将6本书分成4份,先把书排成一排,插入3个隔板,6本书中间有5个空隙,则分法有:$C_5^3$(种) 3、注意合理分类 元素(或位置)的“地位”不相同时,不可直接用排列组合数公式,则要根据元素(或位置)

排列组合问题常用方法(二十种)

解排列组合问题常用方法(二十种) 一、定位问题优先法(特殊元素和特殊位置优先法) 例1、由01,2,3,4,5, 可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。末位和首位有特殊要求。先排末位,从1,3,5三个数中任选一个共有1 3C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有1 4C 种组合;最后 排中间三个数,从剩余四个数中任选三个共有3 4A 种排列。由分步计数原理得113 344288C C A =。 变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多 少不同的种法? 分析:先种两种不同的葵花在不受限制的四个花盒中共有2 4A 种排列,再种其它葵花有5 5A 种排列。由 分步计数原理得25451440A A =。 二、相邻问题捆绑法 例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法? 分析:分三步。先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。由分步计数原理得 522522480A A A =。 变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。 分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有2 5A 种排列。 三、相离问题插空法 例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种? 分析:相离问题即不相邻问题。分两步。第一步排2个相声和3个独唱共有5 5A 种排列,第二步将4个 舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有4 6A 种排列,由分步计数原理得 545643200A A =。 变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节 目插入原节目单中且不相邻,那么不同插法的种数为 。 分析:将2个新节目插入原定5个节目排好后形成的6个空位中(包含首尾两个空位)共有2 6A 种排列, 由分步计数原理得2 630A =。 四、定序问题除序(去重复)、空位、插入法 例4、7人排队,其中甲、乙、丙3人顺序一定,共有多少种不同的排法? 分析:(除序法)除序法也就是倍缩法或缩倍法。对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数。共有不同排法种数为: 77 33 840A A =。 (空位法)设想有7把椅子,让除甲、乙、丙以外的四人就坐,共有4 7A 种坐法;甲、乙、丙坐 其余的三个位置,共有1种坐法。总共有4 7840A =种排法。 思考:可以先让甲乙丙就坐吗?(可以) (插入法)先选三个座位让甲、乙、丙三人坐下,共有3 7C 种选法;余下四个空座位让其余四人 就坐,共有4 4A 种坐法。总共有3474840C A =种排法。 变式4、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少种不同的 排法? 分析:10人身高各不相等且从左至右身高逐渐增加,说明顺序一定。若排成一排,则只有一种排法; 现排成前后两排,因此共有5 10252C =种排法。

[专题]高考数学轻松搞定排列组合难题二十一种方法

[专题]高考数学轻松搞定排列组合难题二十一种方法高考数学轻松搞定排列组合难题二十一种方法教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,BWCB保温沥青泵在第n类办法中有种不同的方法,那么完成这件事共有:种不同的方法( 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第n步有种不同的方法,那么完成这件事共有: 种不同的方法, 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事。

2.怎样做才能完成所要做的事, 3GR三螺杆泵即采取分步还是分类,戒是分步与分 类同时进行,确定分多少步及多少类。 3.确定每一步戒每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求, YHB齿轮润滑油泵应该优先安排,以免不合要求的元素占了这两个位置. 先排末位共有 然后排首位共有 最后排其它位置共有 由分步计数原理得 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,ZYB增压燃油泵同时对相邻元素内部进行自排。

(好)高中数学排列组合问题常用的解题方法

排列组合常用的解题方法 一、相邻问题捆绑法 题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.例1五人并排站成一排,如果甲、乙必须相邻且乙在甲的右边,那么例外的排法种数有种。 分析:把甲、乙视为一人,并且乙不变在甲的右边,则本题相当于4人4 的全排列,A 424种。 二、相离问题插空法 元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定相离的几个元素插入上述几个元素间的空位和两端. 例2七个人并排站成一行,如果甲乙两个必须不相邻,那么例外排法的种数是。 52分析:除甲乙外,其余5个排列数为A 5种,再用甲乙去插6个空位有A 652 种,例外的排法种数是A 5A 63600种。 三、定序问题缩倍法 在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法. 例3 A、B、C、D、E五个人并排站成一排,如果B必须站A的右边(A、B 可不相邻),那么例外的排法种数有。

分析:B在A的右边与B在A的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即1 5 A 560种。 2 四、标号排位问题分步法 把元素排到指定号码的位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有。 分析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数 字,只有一种填法,共有3×3×1=9种填法。 五、有序分配问题逐分法 有序分配问题是指把元素按要求分成若干组,可用逐步下量分组法。 例5有甲、乙、丙三项任务,甲需2人承担,乙丙各需1人承担,从10人中选出4人承担这三项任务,例外的选法总数有。 分析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,例外的选法共211 有C 10C 8C

排列组合全部20种方法

排列组合解法 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 练习、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的 花盆里,问有多少不同的种法

二.相邻元素捆绑策略 2、7人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 练习、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 三.不相邻问题插空策略 3、一个晚会的节目有4个舞蹈,2个相声,3个独 唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种 练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 四.定序问题倍缩空位插入策略 4、7人排队,其中甲乙丙3人顺序一定共有多少

不同的排法 练习、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法 五.重排问题求幂策略 5、把6名实习生分配到7个车间实习,共有多少种不同的分法 练习 1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 六.环排问题线排策略 6、8人围桌而坐,共有多少种坐法 一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m

排列组合基础知识及解题技巧

排列组合基础知识及习题分析 在介绍排列组合方法之前 我们先来了解一下基本的运算公式! 35C =(5×4×3)/(3×2×1)26 C =(6×5)/(2×1) 通过这2个例子 看出 n m C 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。 以取值N 的阶层作为分母 35P =5×4×3 66P =6×5×4×3×2×1 通过这2个例子 n m P =从M 开始与自身连续N 个自然数的降序乘积 当N =M 时 即M 的阶层 排列、组合的本质是研究“从n 个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”. 解答排列、组合问题的思维模式有二: 其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”; 其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”. 分 类:“做一件事,完成它可以有n 类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个 标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法. 分步:“做一件事,完成它需要分成n 个步骤”,这是说完成这件事的任何一种方法,都要分成n 个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n 个步骤后,这件事才算最终完成. 两 个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n 类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完 成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n 个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个 步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理. 在解决排列与组合的应用题时应注意以下几点: 1.有限制条件的排列问题常见命题形式: “在”与“不在” “邻”与“不邻” 在解决问题时要掌握基本的解题思想和方法: ⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.

相关文档
相关文档 最新文档