文档库 最新最全的文档下载
当前位置:文档库 › 中考数学专题复习数学思想方法

中考数学专题复习数学思想方法

中考数学专题复习数学思想方法
中考数学专题复习数学思想方法

数学思想方法

数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.

初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.

类型之一整体思想

例1 (2014·内江)已知1

a

+

1

2b

=3,则代数式

254

436

a a

b b

ab a b

-+

--

的值为 .

【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab之间的关系,即可解决问题.

【解答】∵1

a

+

1

2b

=3,

2

2

a b

ab

+

=3,即a+2b=6ab.

∴254

436

a a

b b

ab a b

-+

--

=

225

324

a b ab

a b ab

+-

-++

()

()

=

125

184

ab ab

ab ab

-

-+

=

7

14

ab

ab

-

=-

1

2

.

方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.

1.(2014·安徽)已知x2-2x-3=0,则2x2-4x的值为( )

A.-6

B.6

C.-2或6

D.-2或30

2.(2014·乐山)若a=2,a-2b=3,则2a2-4ab的值为 .

3.(2014·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 .

4.( 2014·菏泽)已知x2-4x+1=0,求

()

21

4

x

x

-

-

-

6

x

x

+

的值.

类型之二分类思想

例2 (2013·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .

【思路点拨】从图中看有两个直角,这两个直角都有可能是原直角三角形的直角,分两种情况将原图补充完整,即可求出原直角三角形的斜边长.

【解答】如图1,以点B为直角顶点,BD为斜边上的中线,在Rt△ABD中,可得BD=13. ∴原直角三角形纸片的斜边EF的长是213;

如图2,以点A为直角顶点,AC为斜边上的中线,在Rt△ABC中,可得AC=32.

∴原直角三角形纸片的斜边EF的长是62.

故填213或62.

方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.

1.(2014·凉山)已知⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为()

A.25cm

B.45cm

C.25cm或45cm

D.23cm或43cm

2.(2014·凉山)已知一个直角三角形的两边的长分别是3和4,则第三边长为 .

3.已知点D与点A(8,0),B(0,6),C(3,-3)是一平行四边形的顶点,则D点的坐标为 .

4.(2014·株洲调研)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为 .

5.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC ∥QN ,AM=MB=2 cm ,QM=4 cm.动点P 从点Q 出发,沿射线QN 以每秒1 cm 的速度向右移动,经过t 秒,以点P 为圆心,3

cm 为半径的圆与△ABC 的边相切(切点在边上),请写出t 可取的一切值 (单位:秒).

6.(2013·呼和浩特)在平面直角坐标系中,已知点A(4,0)、B(-6,0),点C 是y 轴上的一个动点,当∠BCA=45°时,点C 的坐标为 .

7.(2014·襄阳)在□ABCD 中,BC 边上的高为4,AB=5,AC=25,则□ABCD 的周长等于 .

类型之三 转化思想

例3 (2014·滨州)如图,点C 在⊙O 的直径AB 的延长线上,点D 在⊙O 上,AD=CD,∠ADC=120°.

(1)求证:CD 是⊙O 的切线;

(2)若⊙O 的半径为2,求图中阴影部分的面积.

【思路点拨】(1)因为D 点在圆上,连接OD ,证明OD 与CD 垂直即可;

(2)连接OD ,将图中不规则的阴影部分面积转化为三角形与扇形的面积之差. 【解答】(1)证明:连接OD.

∵AD=CD ,∠ADC=120°,∴∠A=∠C=30°. ∵OA=OD,∴∠ODA=∠A=30°, ∴∠ODC=120°-30°=90°, ∴OD ⊥CD.

又∵点D 在⊙O 上,∴CD 是⊙O 的切线. (2)∵∠ODC=90°,OD=2,∠C=30°,

∴OC=4,22

42-3

∴S △COD =

12OD ·CD=1

2

×2×33, S 扇形OCB =2602360π??=2

3

π,

∴S 阴影=S △OCD -S 扇形OCB 32

3

π.

方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.

1.(2014·泰安)如图,半径为2 cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( ) A.(

2π-1)cm 2 B.(2π+1)cm 2 C.1 cm 2 D. 2

π cm 2

2.(2013·潍坊)对于实数x,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-

3.若[

4

10

x +]=5,则x 的取值可以是( ) A.40 B.45 C.51 D.56

3.(2014·菏泽调考)将4个数a 、b 、c 、d 排成两行、两列,两边各加一条竖线段记成

a b c d

定义

a b c d

=ad-bc ,上述记号就叫做二阶行列式,若

11

x x +-

11

x x -+=8,则x= .

4.(2014·白银)如图,四边形ABCD 是菱形,O 是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 .

5.(2014·凉山)如图,圆柱形容器高为18 cm ,底面周长为24 cm ,在杯内壁离杯底 4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2 cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到达内壁B 处的最短距离为 cm.

6.(2014·枣庄)图1所示的正方体木块棱长为6 cm ,沿其相邻三个面的对角线(图中虚线)剪掉一角,得到如图2的几何体,一只蚂蚁沿着图2的几何体表面从顶点A 爬行到顶点B

的最短距离为 cm.

类型之四数形结合思想

例4 (2014·黄州模拟)如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1 cm/s,设P,Q出发t秒时,△BPQ的面积为y cm2,已知y与t的函数关系的图形如图2(曲

线OM为抛物线的一部分),则下列结论:①AD=BE=5 cm;②当0<t≤5时,y= 2

5

t2;③

直线NH的解析式为y=-5

2

t+27;④若△ABE与△QBP相似,则t=

29

4

秒.其中正确的结论

个数为( )

A.4

B.3

C.2

D.1

【解答】①根据图2可得,当点P到达点E时点Q到达点C,BC=BE,故①小题正确;

②当0<t≤5时,设y=at2,将t=5,y=10代入求得a=2

5

,故②小题正确;

③根据题意可得N(7,10),H(11,0),利用待定系数法可以求出一次函数解析式y=-5

2

t+

55

2

故③小题错误;

④∵∠A=90°,而点P在运动过程中,∠BPQ≠90°,∠PBQ≠90°,∴△ABE与△QBP相似,Q点在C点处,P点运动到CD边上,∠PQB=90°.此时分△ABE∽△QBP和△ABE∽△QPB两种

情况,当△ABE∽△QBP时,则AB

QB

=

AE

QP

可知QP=

15

4

,可得t=

29

4

,符合题意;当△ABE∽

△QPB时,AB

QP

=

AE

QB

,可知QP=

20

3

>4,不符合题意,应舍去.故④小题正确.

因此答案选B.

方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.

1.(2014·菏泽)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D,F分别在AC,BC边上,设CD的长为x,

△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是( )

2.(2014·内江)若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解为( )

A.x1=-6,x2=-1

B.x1=0,x2=5

C.x1=-3,x2=5

D.x1=-6,x2=2

3.小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行.他们的路差s(米)与小文出发时间t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③a=24;④b=480.其中正确的是( )

A.①②③

B.①②④

C.①③④

D.①②③④

4.(2014·黄石调考)如图,两个正方形的面积分别为16、9,两阴影部分的面积分别为a,b(a>b),则a-b等于( )

A.7

B.6

C.5

D.4

5.(2014·枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为( )

A.a 2

+4 B.2a 2

+4a C.3a 2

-4a-4

D.4a 2

-a-2

类型之五 方程、函数思想

例5 (2014·泰安调考)将半径为4 cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图所示),当圆柱的侧面的面积最大时,圆柱的底面半径是 cm.

【思路点拨】设圆柱的底面半径为r ,圆柱的侧面积为S ,建立S 与r 之间的函数关系式,利用函数的性质确定S 取最大值时r 的值.

【解答】∵将半径为4 cm 的半圆围成一个圆锥, ∴圆锥的母线长为4,底面圆的半径为2,高为23. 设圆柱底面圆的半径为r,高为h ,侧面积为S ,根据题意,得

2r =233

2h -,∴h=233r -. ∴S=2πr (233r -)=-23π(r-1)2

+23π.

∴当r=1时, S 取最大值为23π.

方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.

1.(2014·安徽)如图,Rt △ABC 中,AB=9,BC=6,∠B=90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( ) A.

53 B.5

2

C.4

D.5

2.(2014·武汉)如图,若双曲线y=k

x

与边长为5的等边△AOB的边OA,AB分别相交于C,D

两点,且OC=3BD,则实数k的值为 .

3.(2014·广州)若关于x的方程x2+2mx+m2+3m-2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为 .

4.(2014·鄂州)如图,正方形ABCD边长为1,当M、N分别在BC,CD上,使得△CMN的周长为2,则△AMN的面积的最小值为 .

参考答案

类型之一整体思想

1.B

2.12

3.6

4.原式=

()()()

()

2146

4

x x x x

x x

---+

-

=

2

2

424

4

x x

x x

-+

-

.

∵x2-4x+1=0,∴x2-4x=-1.

∴原式=

2

2

424

4

x x

x x

-+

-

=

124

1

-+

-

=-23.

类型之二分类思想

1.C

2.5或7

3.(5,9)或(11,-9)或(-5,3)

4.(3,4)或(2,4)或(8,4)

5.t=2或3≤t≤7或t=8

6.(0,12)或(0,-12)

提示:当点C在y轴的上方时,如图,作BD⊥AC于D,与y轴交于点E.

∵∠BCA=45°,

∴∠CBD=∠BCA=45°,∴BD=CD. ∵∠CDE=∠ADB=90°,∠CED=∠BEO, ∴∠ECD=∠ABD,∴△CED ≌△BAD, ∴EC=AB=10.

设OE=x ,∵∠COA=∠BOE=90°, ∴△BEO ∽△CAO, ∴

104

x +=6

x ,x=2或x=-12(舍去), ∴OC=OE+CE=2+10=12,∴点C(0,12).

当点C 在y 轴的下方时,同理可求得点C(0,-12). 故答案为(0,12)或(0,-12). 7.12或20

提示:如图1所示.

∵在□ABCD 中,BC 边上的高为4,AB=5,AC=25, ∴EC=

22AC AE -=2,AB=CD=5,BE=22AB AE -=3,

∴AD=BC=5,

∴□ABCD 的周长等于20.

如图2所示.

∵在□ABCD 中,BC 边上的高为4,AB=5,5, ∴EC=AC2-AE2=2,AB=CD=5,BE=AB2-AE2=3, ∴BC=3-2=1,

∴□ABCD 的周长等于1+1+5+5=12. 则□ABCD 的周长等于12或20. 故答案为:12或20.

类型之三 转化思想

1.A

2.C

3.2

4.12

5.20

6.(3236 提示:如图所示.

△BCD 是等腰直角三角形,△ACD 是等边三角形,

在Rt △BCD 中,CD=22

BC BD +=62(cm ),

∴BE=

1

2

CD=32 cm , 在Rt △ACE 中,AE=

22AC CE -=36(cm ),

∴从顶点A 爬行到顶点B 的最短距离为(3236+)cm. 故答案为:(3236+).

类型之四 数形结合思想

1.A

2.B

3.B

4.A

5.C

类型之五 方程、函数思想

1.C

提示:设BN=x,则依据折叠原理可得DN=AN=9-x.又D 为BC 的中点,∴BD=3.在Rt △NBD 中,

利用勾股定理,可得BN 2+BD 2=DN 2,则有32+x 2=(9-x)2

,解得x=4,即BN=4.故选择C. 2.

93

提示:过点C 作CE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,

设OC=3x ,则BD=x ,

在Rt △OCE 中,∠COE=60°, 则OE=

32x ,CE=332x ,则点C 坐标为(32x ,332

x), 在Rt △BDF 中,BD=x ,∠DBF=60°,则BF=

12x ,DF=3

2

x , 则点D 的坐标为(5-

12x ,3

2

x),

将点C的坐标代入反比例函数解析式可得k=93

x2,

将点D的坐标代入反比例函数解析式可得k=53

x-

3

x2,

则93

x2=

53

x-

3

x2,解得x1=1,x2=0(舍去),

故k=93

4

×12=

93

4

.

3.5 4

提示:由根与系数的关系得到:x1+x2=-2m,x1x2=m2+3m-2,

原式化简=3m2-3m+2=3(m-1

2

)2+

5

4

.

∵方程有实数根,∴Δ≥0,m≤23.

当m=1

2

时,3m2-3m+2的最小值为

5

4

.

4.2-1

提示:延长MB至G使GB=DN,连接AG.

∴△ADN≌△ABG.

∵CN+CM+MN=2,CN+CM+DN+BM=2,

∴MN=MG.∴△AMN≌△AMG.

要使△AMN的面积的最小,即△AGM的面积最小.

∵AB=1,所以MG最小,即MN最小.

在Rt△CMN中,周长一定,当△CMN为等腰直角三角形时,斜边MN最小.设CM=x,则2,

∴2∴22

∴△AMN2

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

2020年中考数学专题复习1新情境应用问题

中考数学专题复习1:新情境应用问题 Ⅰ、综合问题精讲: 以现实生活问题为背景的应用问题,是中考的热点,这类问题取材新颖,立意巧妙,有利于对考生应用能力、阅读理解能力。问题转化能力的考查,让考生在变化的情境中解题,既没有现成的模式可套用,也不可能靠知识的简单重复来实现,更多的是需要思考和分析,新情境应用问题有以下特点:(1)提供的背景材料新,提出的问题新;(2)注重考查阅读理解能力,许多中考试题中涉及的数学知识并不难,但是读懂和理解背景材料成了一道“关”;(3)注重考查问题的转化能力.解应用题的难点是能否将实际问题转化为数学问题,这也是应用能力的核心. Ⅱ、典型例题剖析 【例1】(2005,宜宾)如图(8),在某海滨城市O 附近海面有一股台风,据监测,当前台风中心位于该城市的东偏南70°方向200千米的海面P处,并以20千米/ 时的速度向西偏北25°的PQ的方向移动,台风侵袭范围是一个圆形区域,当前半径为60千米,且圆的半径以10千米/ 时速度不断扩张. (1)当台风中心移动4小时时,受台风侵袭的圆形区域

半径增大到千米;又台风中心移动t小时时,受 台风侵袭的圆形区域半径增大到千米. (2)当台风中心移动到与城市O距离最近时,这股台风 是否侵袭这座海滨城市?请说明理由(参考数据2 1.41 ≈,≈). 3 1.73 解:(1)100;(2)(6010)t +; ⑶作OH PQ OH=(千米),设经⊥于点H,可算得1002141 过t小时时,台风中心从P移动到H,则 t=(小时),此时,受 ==52 PH t 201002 台风侵袭地区的圆的半径为:601052130.5 +? (千米)<141(千米) ∴城市O不会受到侵袭。 点拨:对于此类问题常常要构造直角三角形.利用三角函数知识来解决,也可借助于方程. 【例2】如图2-1-5所示,人民海关缉私巡逻艇在东

中考数学方案设计试题分类汇编

中考数学方案设计试题分类汇编 一、图案设计 1、(2007四川乐山)认真观察图(10.1)的4个图中阴影部分构成的图案,回答下列问题: (1)请写出这四个图案都具有的两个共同特征. 特征1:_________________________________________________; 特征2:_________________________________________________. (2)请在图(10.2 )中设计出你心中最美丽的图案,使它也具备你所写出的上述特征 解:(1)特征 1:都是轴对称图形;特征2:都是中心对称图形;特征3 :这些图形的面积都等于4个单位面积;等 ····························· 6分 (2)满足条件的图形有很多,只要画正确一个,都可以得满分. ······· 9分 2、(2007福建福州)为创建绿色校园,学校决定对一块正方形的空地进行种植花草,现向学生征集设计图案.图案要求只能用圆弧在正方形内加以设计,使正方形和所画的图弧构成的图案,既是轴对称图形又是中心对称图形.种植花草部分用阴影表示.请你在图③、图④、图⑤中画出三种不同的的设计图案. 提示:在两个图案中,只有半径变化而圆心不变的图案属于同一种,例如:图①、图②只能算一种. 解:以下为不同情形下的部分正确画法,答案不唯一.(满分8 分) 3、(2007 哈尔滨)现将三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为 1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、 图(10.1) 图(10.2) ① ② ③ ④ ⑤

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

中考数学专题复习方案设计问题

方案设计问题 方案设计型题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求判断哪个方案较优.它包括测量方案设计、作图方案设计和经济类方案设计等. 题型之一 利用方程、不等式进行方案设计 例1 (2014·益阳)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风销售时段 销售数量 销售收入 A 种型号 B 种型号 第一周 3台 5台 1 800元 第二周 4台 10台 3 100元 (进价、售价均保持不变,利润=销售收入-进货成本) (1)求A 、B 两种型号的电风扇的销售单价; (2)若超市准备用不多于5 400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台? (3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1 400元的目标,若能,请给出相应的采购方案;若不能,请说明理由. 【思路点拨】(1)根据“3台A 型+5台B 型”的销售收入=1 800以及“4台A 型+10台B 型”的销售收入=3 100,列方程组得各自售价; (2)设购进A 型a 台,则B 型(30-a)台,利用金额不超过5 400建立不等式求解; (3)根据(2)中30台得利润为为1 400,建立方程,求解. 【解答】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元.依题意,得 35 1 800,410 3 100x y x y +=+=?? ?.解得250, 210. x y ==??? 答:A 、B 两种型号电风扇的销售单价分别为250元、210元. (2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a)台.依题意,得 200a+170(30-a)≤5 400,解得a ≤10. 答:超市最多采购A 种型号电风扇10台时,采购金额不多于5 400元. (3)依题意有: (250-200)a+(210-170)(30-a)=1 400,解得a=20, 此时,a>10. 即在(2)的条件下超市不能实现利润1 400元的目标. 方法归纳:列方程(组)或不等式组设计方案问题的关键是找到题目中的等量关系或者不等关系,然后根据结果设计方案. 1.(2013·自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满. (1)求该校的大小寝室每间各住多少人?

常见的数学思想方法

x y 2= 常见的数学思想方法 一、中考考点: 1.方程(组)是解决应用题、实际问题和许多方面数学问题的重要基础知识。在解决问题时,把某个未知量设为未知数,根据有关的性质、定理或公式,建立起未知数和已知数间的等量关系,列出方程(组)来解决,这就是方程思想。 2. 数形结合思想是一种重要的数学思想方法。通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。 3. 所谓化归思想就是化未知为已知、化繁为简、化难为易.通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机。 二、基础练习: (一)整体思想 1.如果代数式 1322+-x x 的值为2, 那么代数式x x 322 -的值等于( )A .2 1 B .3 C .6 D .9 2.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿( ) A .图(1)需要的材料多 B .图(2)需要的材料多 C .图(1)、图(2)需要的材料一样多 D .无法确定 (二)方程思想 的图象在第一象限内的交点, 3.如图,已知点A 是一次函数x y =的图象与反比例函数 点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( )A .2 B .2 2 C .2 D .22 (三)数形结合思想 4.如图,A 是硬币圆周上一点,硬币与数轴相切于原点OA (A 与O 点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A′重合,则点A′对应的实数是___________. 5.函数)0(≠= k x k y 的图象如图所示,那么函数k kx y -=的图象大致是( ) (四)化归思想 6.如图,当半径为30cm 的转动轮转过60°角时,传送带上的物体A 移动的距离为________cm .(计算结果不取近似值) 7.将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两面三刀周时,正方形的顶点A 所经过的路线的长是__________cm . 8.在图中,所有多边形的每条边的长都大于2,每个扇形的半径都是1.则第n 个多边形中,所有扇形的面积之和是__________. (五)数学建模思想 9.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角.在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长.(结果保留根号) (六)函数思想 10.某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表: 煤的价格为400元/吨.生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生 产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的关第式; (2)写出y 与x 的函数表达式(不要求写自变量的范围); (3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大最大利润是多少 (七)统计思想 11.某地区有一条长100千米,宽千米的防护林.有关部门为统计该防护林的树木量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木树量如下(单位:棵):65100、63200、64600、64700、67400.那么根据以上数据估算这一防护林总共约有_________棵树. 12.甲袋中放着19只红球和6只黑球、乙袋则放着170只红球、67只黑球和13只白球,这些球

中考数学总复习 教学案 3.5 函数的综合运用

3-6 函数的综合运用 知识考点: 会综合运用函数、方程、几何等知识解决与函数有关的综合题以及函数应用问题。 精典例题: 【例1】如图,一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A 、B 两点,与y 轴交于C 点,与x 轴交于D 点,OB =10,tan ∠DOB = 3 1 。 (1)求反比例函数的解析式; (2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 之间的函数关系式;并写出自变量m 的取值范围。 (3)当△OCD 的面积等于2 S 时,试判断过A 、B 两点的抛物线 在x 轴上截得的线段长能否等于3?如果能,求出此时抛物线的解析式;如果不能,请说明理由。 解析:(1)x y 3 = (2)A (m ,m 3),直线AB :m m x m y -+=31 D (3-m ,0) )31(321m m S S S ADO BDO +?-=+=?? 易得:30<

中考数学专题方案 设计问题

中考数学专题————方案设计问题 1、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地与该农 (1y(元),求y与x间的函数关系式,并写出x的取值范围; (2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来; (3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议. 2.今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,一种货车可装荔枝香蕉各2吨; (1)该果农按排甲、乙两种货车时有几种方案?请你帮助设计出来, (2)甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选哪种方案?使运费最少?最少运费是多少元? 3、某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所 (2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案? 4、我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下 (1)设装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,求y与x之间的函数关系 式; (2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案; (3)若要使此次销售获利最大,应采哪种安排方案?并求出最大利润的值.

方案设计-2020年中考数学学霸专题(答案版)

第40章方案设计 1. 在“五个重庆”建设中, 为了提高市民的宜居环境, 某区规划修建一个文化广场 ( 平面 图形如图所示), 其中四边形ABCD 是矩形 , 分别以AB、BC、CD、DA边为直径向外作半圆,若整个广场的周长为628米,高矩形的边长AB=y米,BC=x米.(注:取π=3.14) (1)试用含x的代数式表示y; (2)现计划在矩形ABCD区域上种植花草和铺设鹅卵石等,平均每平方米造价为428元,在四个半圆的区域上种植草坪及铺设花岗岩,平均每平方米造价为400元; ①设该工程的总造价为W元,求W关于x的函数关系式; ②若该工程政府投入1千万元,问能否完成该工程的建设任务?若能,请列出设计方案,若不能,请说明理由? ③若该工程在政府投入1千万元的基础上,又增加企业募捐资金64·82万元,但要求矩形的边BC的长不超过AB长的三分之二,且建设广场恰好用完所有资金,问:能还完成该工程的建设任务?若能,请列出所有可能的设计方案,若不能,请说明理由· 【答案】(1)由题意得πy+πx=6·28 ∵π=3.14 ∴3.14y+3.14x=628. ∴x+y=200.则 y=200-x; (2) ①w=428xy+400π( 2 y )2+400π( 2 x )2 =428x(200-x)+400×3.14× 4 ) 200 (2 x - +400×3.14× 4 2 x =200x2-40000x+12560000; ②仅靠政府投入的1千万不能完成该工程的建设任务,其理由如下: 由①知 w=200(x-100)2+1.056×107>107, 所以不能; ③由题意得x≤ 3 2 y, 即x≤ 3 2 (200-x) 解之得x≤80 ∴0≤x≤80. 又根据题意得 w=200(x-100)2+1.056×107=107+6.482×105 A B C D 第1题图

中考专题复习专题五 数学思想方法(一)

2019-2020年中考专题复习专题五数学思想方法(一) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点一:整体思想 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 例1 (xx?吉林)若a-2b=3,则2a-4b-5= . 思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可. 解:2a-4b-5=2(a-2b)-5=2×3-5=1. 故答案是:1. 点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值. 对应训练 1.(xx?福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3?(a-b)3的值是.1.1000 考点二:转化思想 转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。 例2 (xx?东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).

中考数学专题:例+练——第5课时 方案设计题(含答案)

第5课时方案设计题 方案设计型题是通过设置一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的技能和方法,进行设计和操作,寻求恰当的解决方案。有时也给出几个不同的解决方案,要求判断哪个方案较优。它包括测量方案设计、作图方案设计和经济类方案设计。 (一)测量方案设计题,一般限定条件、限定测量工具,让同学们设计一个可行的方案,对某一物体的长度进行测量并计算,要注意的是设计出来的方案要有可操作性。 (二)作图、拼图方案设计题,它摆脱了传统的简单作图,它把作图的技能考查放在一个实际生活的大背景下,考查学生的综合创新能力,它给同学们的创造性思维提供广阔的空间与平台。此类题常以某些规则的图形,如等腰三角形、菱形、矩形、圆等,通过某些辅助线,将面积分割或分割后拼出符合某些条件的图形。 (三)经济类方案设计题,一般有较多种供选择的解决问题的方案,但在实施中要考虑到经济因素,此类问题类似于求最大值或最小值的问题,但解决的方法较多。 方案设计题贴近生活,具有较强的操作性和实践性,解决此类问题时要慎于思考,并能在实践中对所有可能的方案进行罗列与分析,得出符合要求的一种或几种方案。 类型之一设计图形型问题 图形设计问题通常是先给出一个图形(这个图形可能是规则的,也有可能不规则),然后让你用直线、线段等把该图形分割成面积相同、形状相同的几部分或者分割成形状相同的图形。解决这类问题的时候可以借助对称的性质、角度大小、面积公式等进行分割。 1.(莆田市)某市要在一块平行四边形ABCD的空地上建造一个四边形花园,要求花园所占面积是 ABCD面积的一半,并且四边形花园的四个顶点作为出人口,要求分别在ABCD的四条边上,请你设计两种方案: 方案(1):如图(1)所示,两个出入口E、F已确定,请在图(1)上画出符合要求的四边形花园,并简要说明画法; 方案(2):如图(2)所示,一个出入口M已确定,请在图(2)上画出符合要求的梯形花园,并简 要说明画法.

初中数学解题思想方法全部内容

初中数学解题思想方法全部内容 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法

中考数学创新题方案设计

中考数学创新题——方案设计 知能训练: 1.(2004年青海省湟中县)请用几何图形“△”、“‖”、“”(一个三角形,两条平 行线,一个半圆)作为构件,尽可能构思独特且有意义的图形,并写上一两句贴切,诙谐的解说词.(至少两幅图) 吊灯2.(2005年青岛市)小明和小刚想要利用如图的两个转盘玩游戏,请你帮助他们设计 一个游戏,使游戏的规则对双方是公平的。 3.(2005年湖北省宜昌市)质检员为控制盒装饮料产品质量,需每天不定时的30次 去检测生产线上的产品.若把从0时到24时的每十分钟作为一个时间段(共计144个时间段),请你设计一种随机抽取30个时间段的方法:使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取. (要求写出具体的操作步骤) 4.(2005年内江市)李红和张明正在玩掷骰子游戏,两人各掷一枚骰子。 ⑴当两枚骰子点数之积为奇数时,李红得3分,否则,张明得1分,这个游戏公平吗? 为什么? ⑵当两枚骰子的点数之和大于7时,李红得1分,否则张明得1分,这个游戏公平吗? 为什么?如果不公平,请你提出一个对双方公平的意见。 (2005年大连市)有一个抛两枚硬币的游戏,规则是:若出现两个正面,则甲赢;若出现一正一反,则乙赢;若出现两个反面,则甲、乙都不赢。这个游戏是否公平?请说明理由; 5.如果你认为这个游戏不公平,那么请你改变游戏规则,设计一个 公平的游戏;如果你认为这个游戏公平,那么请你改变游戏规则, 设计一个不公平的游戏。 6.(2005年茂名)如图所示,转盘被等分成六个扇形,在上面依次写上数字1、2、3、

4、5、6; (1) 若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少? (2) 请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率 为3 2 。 7. (2005年安徽)两人袄去某风景区游玩, 每天某一时段开往该风景区有三辆汽车(票 价相同),但是他们不知道这些车的舒适程度, 也不知道汽车开过来的顺序. 两人采用了不同的乘车方案: (1) 甲无论如何总是上开来的第一辆车. 而乙则是先观察后上车, 当第一辆车开来时, 他不上车, 而是子痫观察车的舒适状况, 如果第二辆车的舒适程度比第一辆好, 他就上第二辆车; 如果第二辆车不比第一辆好, 他就上第三辆车. (2) 如果把这三辆车的舒适程度分为上、中、下三等, 请尝试着解决下面的问题: (3) 三辆车按出现的先后顺序工有哪几种不同的可能? (4) 你认为甲、乙采用的方案, 哪一种方案使自己乘上等车的可能性大? 为什么? 8. (2004年四省(区))在湖的两岸A 、B 间建一座观赏桥,由于条件限制,无法直接度量 A 、 B 两点间的距离。请你用学过的数学知识按以下要求设计一测量方案。 (1) 画出测量图案; (2) 写出测量步骤(测量数据用字母表示); (3) 计算AB 的距离(写出求解或推理过程,结果用字母表示)。 9. (2005年河南省)有一块梯形状的土地,现要平均分给两个农户种植(即将梯形的面 积两等分),试设计两种方案(平分方案画在备用图上),并给予合理的解释。 10. (2005年河南省)如图是一条河,点A 为对岸一棵大树,点B 是该岸一根标杆,且 AB 与河岸大致垂直,现有如下器材:一个卷尺,若干根标杆,根据所学的数学知识,设计出一个测量A 、B 两点间距离的方案,在图上画出图形,写出测量方法。 A B C D 备用图(2) A B C D 备用图(1)

中考数学专题复习数学思想方法

数学思想方法 数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台. 初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化. 类型之一整体思想 例1 (2014·内江)已知1 a + 1 2b =3,则代数式 254 436 a a b b ab a b -+ -- 的值为 . 【思路点拨】要求分式的值,必须要知道分式中所有字母的取值,从条件看无法解决;观察分式的结构发现分子与分母都是m(a+2b)+n(ab)的形式,所以从条件中找出(a+2b)与ab之间的关系,即可解决问题. 【解答】∵1 a + 1 2b =3, ∴ 2 2 a b ab + =3,即a+2b=6ab. ∴254 436 a a b b ab a b -+ -- = 225 324 a b ab a b ab +- -++ () () = 125 184 ab ab ab ab - -+ = 7 14 ab ab - =- 1 2 . 方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的. 1.(2014·安徽)已知x2-2x-3=0,则2x2-4x的值为( ) A.-6 B.6 C.-2或6 D.-2或30 2.(2014·乐山)若a=2,a-2b=3,则2a2-4ab的值为 . 3.(2014·宿迁)已知实数a,b满足ab=3,a-b=2,则a2b-ab2的值是 . 4.( 2014·菏泽)已知x2-4x+1=0,求 () 21 4 x x - - - 6 x x + 的值. 类型之二分类思想 例2 (2013·襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是 .

2011年中考数学专题复习教学案--方案设计型(附答案)

方案设计型 ㈠应用方程(组)不等式(组)解决方案设计型 例1.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本. (1)求每支钢笔和每本笔记本的价格; (2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出. 解析:此类试题一般涉及二元一次方程组、不等式组在实际问题中的应用.,以两人的用的总钱数为等量关系,可以列出方程组.第二问注意“不少”的含义可以根据总钱数和钢笔与笔记本的数量关系列出不等式组. 解:(1)设每支钢笔x 元,每本笔记本y 元,依题意得:???=+=+3152183y x y x 解得:? ??==53 y x 所以,每支钢笔3元,每本笔记本5元 (2)设买a 支钢笔,则买笔记本(48-a )本 依题意得:?? ?≥-≤-+a a a a 48200 )48(53,解得:2420≤≤a ,所以,一共有5种方案 即购买钢笔、笔记本的数量分别为:20,28; 21,27; 22,26; 23,25; 24,24. 点评:解决问题的基本思想是从实际问题中构建数学模型,寻找题目中的等量关系,(或不等关系)列出相应的方程(或不等式组). 同步检测: 1 (2009·安顺)在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图),试根据图中的信息,解答下列问题: (1)小明他们一共去了几个成人,几个学生? (2)请你帮助小明算一算,用哪种方式购票更省钱? 说明理由. 2.(2009·益阳)开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.

初中数学常用思想方法专题讲解

初中数学常用思想方法专题讲解 引入语 数学思想方法是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识和技能的灵魂.正确运用数学思想方法是在中考数学中取得好成绩的关键. 解中考题时常用的数学思想方法有:整体思想、分类讨论思想、方程思想、转化的思想、数形结合思想、归纳与猜想的思想等. 中考解读 数学思想是解决数学问题的灵魂,它在学习和运用数学知识的过程中起着关键性的指导作用.数学思想方法是中考考查的重点内容之一,还因为它是解决数学问题的根本策略,也是学生数学素养的重要组成部分.数学思想总是在解决问题的过程中体现出来,在中考中不会出现单纯的数学思想题目,这就增加了数学思想的掌握和训练的难度,但它也是有规律的,只要勤于思考和总结,经过适当的训练,相信你一定能够掌握初中数学常用的思想方法.回顾近年全国各地的中考题,不难发现数学思想方法的考查频率越来越高,涉及的知识点也越来越多.预计2009年中考,对数学思想方法的考查可能呈现以下趋势:需要利用数学思想求解的题目稳中有增,涉及的知识点更加分散.其中,函数与方程思想的考查,很可能集中体现在应用题中;数形结合思想的考查以选择和填空为主;分类讨论思想的考查主要在求解函数、不等式、空间与图形、概率等问题中出现;……,总之,数学思想的掌握和训练应引起同学们的重视. 复习策略 由于数学思想总是渗透在问题中,所以复习中要抓关键类型,突出重点知识和方法,比如方程思想与函数思想的联合复习等;要注意挖掘课本例、习题的潜在功能,以题思法,推敲其中的思想方法,多角度多侧面探讨条件的加强与弱化、结论的开放与变换、蕴含的思想方法、及与其他试题的联系和区别等,提高复习的效率. 题型归类 一、整体的思想 整体思想是将问题看成一个完整的整体,把注意力和着眼点放在问题的整体结构和结构改造上,从整体上把握问题的内容和解题的方向与策略.运用整体思想解题,往往能为许多中考题找到简便的解法. 例1 (苏州市)若220 x x --= 2 ) A . 3 B . 3 C D 或 3 分析:已知条件是一个一元二次方程,通过求出方程的解再代入计算,当然可以得到结果,但是显然很繁.注意到,条件可以转化为22 x x -=,而且要求值的代数式中的未知部分都是2x x -,所以可以整体代入. 解:由条件得:22 x x -= 21 3 .故应选A.

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题 【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3.几何论证题主要考查学生综合应用所学几何知识的能力. 4.解几何综合题应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线作法; (4)注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题 1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.

相关文档
相关文档 最新文档