文档库 最新最全的文档下载
当前位置:文档库 › 景德镇电厂WDC阀组态逻辑说明

景德镇电厂WDC阀组态逻辑说明

景德镇电厂WDC阀组态逻辑说明
景德镇电厂WDC阀组态逻辑说明

景德镇电厂启动系统中不叫361阀,叫WDC阀。

景电分离器水位控制:

汽水分离器(WS)液位控制的目的就是通过锅炉循环水流量调节阀(BR)、储水箱液位调节阀(WDC)和锅炉再循环泵暖管疏水排放阀来维持分离器储水箱的液位低于要求值。通常在锅炉清洗和湿态方式运行期间分离器产生疏水。

361阀控制逻辑需要注意的问题:

在临界点汽与水的密度是相等的,当汽水参数向超临界过渡时,水箱水位开始上升,直到满水位,而实际上此时水箱中并没有水,这样就带来了相应的控制问题。在亚临界工况下361阀主要依据水箱水位进行控制;超临界工况下水箱测量水位不能反映真实情况,就必须在361阀控制逻辑中作相应的处理。

逻辑分为湿态时根据水位调节,干态时阀门有快关指令,还根据负荷20万,压力12来闭锁开。

景电WDC阀控制:

储水箱液位调节阀(WDC)用于控制汽水分离器储水箱液位。每一个液位调节阀有单独的控制程序(函数),使得两个调节阀的控制分别用于不同的汽水分离器水箱水位范围。通过设置各控制程序(函数)使得分离器疏水调节阀 A 开启之后才能开启分离器疏水调节阀B。

(LG是一阶惯性,FG是开环函数曲线,RL是速率限制,SG是常数,LCK是低选,ASW是选择块,L3MM05是M/A操作站,粗线是模拟信号,细线是开关量。)

由逻辑图可以看出,湿态时,分离器水位信号,经过一阶惯性函数(水位不是突变的,所以模拟成一个有延迟的函数),再经过线性开环函数(见下方解说),转换成阀门开度,还加有一个升降都是50的限速器,控制361阀自动,还有一个低选择和选择快,实现调门位置反馈,阀门可实现手自动无扰切换,另外, 361阀出口电动门已关,通过选择快实现快关,阀门开度之后还有一个开环函数,实现4到20毫安信号正负转换为20到4毫安,到实际执行器,相当于电平转换。

X 是水位,Y 是阀门开度

由函数可知,WDC 阀A 在水位为9.5米时开始开,11米时全开,WDC 阀B 则在水位为10.5米开始开,11.5米时全开,实现了先后开的逻辑功能。

润新软水机说明书课案

目录 一、产品概述 2 二、工作流程图 3 三、设备的安装和运行 5 四、设备安装示意图 6 五、FLECK5600控制器的调试步骤7 六、故障排除9

产品概述 首先感谢您使用本公司的全自动软化水设备!为着方便您的使用,我们编写了该产品的客户手册,您的认真阅读和理解一定能为产品的良好使用打下基础。 5600系列自动软水器分为时间周期型和流量周期型两种控制方式,用户可以根据当地水质及用户对于水质的要求来进行选择。 本产品广泛应用于蒸汽和热水锅炉、热交换设备、食品加工、造纸印刷、洗衣印染、家庭、宾馆饭店、医疗制药、纯水制备预处理等行业。 我公司将给用户提供完善的技术及售后服务。 自动软水器技术参数: 入口水压:0.2Mpa-0.6Mpa 工作温度:2-50℃ 电源型式:220V/50Hz AC 电源功率:3W 出口硬度:≤0.03mmol/L 再生方式:动态顺流再生或逆流再生 树脂型号:001×7强酸性阳离子交换树脂 盐耗:<160-240g/mol(根据水质情况)

FLECK5600控制器工作流程图 说明:FLECK5600和56SE 控制器的水流过程略为不同,但原理一致。 1、 工作状态 2、预清洗(5min ) 3、反洗(10min) 4、吸盐(50min ) 硬水经控制器进水口向下流过中心管、下布水器,向上流经树脂层,流出排水口,进行反洗。 硬水经控制器进水口流过树脂层,软化后经下布水器、中心管向上流出出水口,此时设备处于工作状态。 硬水经控制器进水口流过树脂层,软化后经下布水器、中心管向上流出排水口,进行预清洗。 硬水经控制器进水口,通过射流器,吸入盐液再生剂,向下流过树脂层进行再生还原,最后通过下布水器、中心管和排水口流出。

机组控制逻辑说明

江苏常熟发电有限公司 #1、#2机组烟气脱硫工程 逻辑设计说明 编制; 校核; 审核: 批准: 江苏苏源环保工程股份有限公司 2008年4月

目录 1 闭环控制系统(MCS) (1) 2 顺序控制系统(SCS) (2) 2.1烟气系统 (3) 2.1.1烟道子系统 (3) 2.1.2 升压风机系统 (4) 2.1.4 烟气系统功能组 (9) 2.2吸收塔系统 (9) 2.2.1 吸收塔供浆设备 (10) 2.2.2 循环浆泵系统 (10) 2.2.3 氧化风机系统 (12) 2.2.4 石膏排出泵系统 (13) 2.2.5 除雾器系统 (15) 2.2.6排空分系统 (17) 2.2.7 吸收塔搅拌器 (18) 2.2.8 吸收塔功能组 (18) 2.3脱水系统 (19) 2.3.1石膏旋流站分系统 (19) 2.3.2 真空皮带机分系统 (19) 2.3.3 滤液水分系统 (21) 2.3.4 废水泵分系统 (22) 2.4水系统 (23) 2.5石灰石浆液制备系统 (24) 2.6 石灰石浆液供应系统 (26)

1 闭环控制系统(MCS) 1.1 升压风机入口压力控制(导叶片开度)。 将增压风机的入口原烟气压力(01HTA10CP001/2/3 三取中)的测量值和设定值相比较,偏差经过PID运算后,将锅炉负荷或引风机开度作为前馈来调节增压风机入口动叶的转角(01HTC10CG004),将增压风机的入口压力控制在设定值。 1.2 吸收塔液位控制(除雾器冲洗水)。 吸收塔液位LL时打开除雾器冲洗水的冲洗阀门(01THQ31/AA601A), 吸收塔液位M时停止补水。 1.3 石灰石浆液流量控制(烟气量、烟气SO2浓度、SO2脱除率、石膏浆液PH值)。 根据脱硫量的需要调节供给吸收塔的石灰石浆流量。通过测量原烟气流量(差压信号转换成原烟气流量)和SO2含量()而得到。由于CaCO3流量的调节影响着吸收塔反应池中浆液的pH,为了使化学反应更完全,应该将pH值保持在某一设定值;当pH值降低,所需的CaCO3流量应按某一修正系数增加。将实际测量的pH与设定值进行比较,通过pH值控制器产生一修正系数,对所需的CaCO3流量进行修正。将经pH值修正后的所需CaCO3流量与实际的CaCO3流量进行比较,通过一比例积分控制器控制石灰石浆调节阀的开度。 1.4 真空皮带机滤饼厚度控制(真空皮带机带速)。 将真空皮带机滤饼厚度(01HTZ10CL001)的测量值和设定值相比较,偏差经过PID运算后来调节真空皮带机速度变频器(01HTZ10AT001AO),将真空皮带机滤饼厚度控制在设定值。 1.6球磨机磨头工艺水加入量控制(石灰石称重皮带机)。 根据石灰石称重皮带机给料量控制球磨机磨头工艺水加入量。 1.7球磨机磨尾工艺水加入量控制(石灰石浆液循环池浆液密度)。

《控制逻辑说明修改》word版

中海油珠海天然气发电有限公司 热电联产项目 锅炉补给水处理系统 控制逻辑说明

1、控制系统概述 系统中的控制对象主要是开关量,涉及到的控制对象除了开关阀以外,主要是泵设备的控制。也就是说系统是一个以开关量控制为主的系统;所以本控制系统采用PLC控制系统完成电气和仪表部分的自动控制,同时可显示工艺过程中的主要监测指标以及系统运行状态。 2、主要控制回路 2.1 超滤系统 2.1.1 次氯酸钠计量泵和维护清洗水泵连锁; 当工作计量泵故障时,自动启动备用泵,故障报警; 当备用泵无法启动时,报警,延时3min停机。 次氯酸钠溶液箱设液位变送器,清洗水箱设液位变送器。 次氯酸钠溶液箱低液位报警。 次氯酸钠溶液箱低低液位,停泵. 次氯酸钠溶液箱的高中低液位可以在上位机上设定(操作员级)。 清洗水箱充水至高液位。 2.1.2 清水箱(净水站)设液位变送器,高低液位报警; 低于中液位,提示通知净水站启动清水箱前处理设备; 高于中液位才能启动超滤变频升压泵、自清洗过滤器及超滤装置; 低液位报警停超滤变频升压泵、自清洗过滤器及超滤装置; 清水箱高液位报警,延时15min停前段处理设备; 清水箱的高中低液位可以在上位机上设定(操作员级)。 2.1.3 超滤升压泵与超滤装置的对应关系为一一对应。 2.1.4 自清洗过滤器的反洗周期根据时间来设定,采用与超滤反洗同步进 行,当超滤运行一段时间后,开始反洗时,关闭自清洗过滤器的自动产水阀,自清洗过滤器的第一个过滤头也同时开始反洗,三个过滤头的反洗时间与超滤的反洗时间设定相同,反洗同时结束后转入正常运行。自清洗过滤器及超滤反洗时,超滤升压泵不停运,依靠变频控制进水流量(40~55m3/h)及压力(不低于3bar);(可在上位机

中水回用自控逻辑说明

一、自控逻辑总说明 整个水处理系统由多个子工艺单元构成,各子工艺单元之间设置有缓冲水池,因此各子工艺单元可独立运行。整个水处理系统的控制逻辑在结构上分为3个层次,依次是主控制逻辑、单元控制逻辑和控制步序。 主控制逻辑:规定了某个子工艺单元内所有设备的运行状态与其前后缓冲水池液位之间的逻辑关系或映射关系,比如:子单元XXX在进水池液位H时需要启动几套设备,在液位LL时需要停止几套设备等,所有这些映射关系都由主控制逻辑决定。根据缓冲水池的不同液位,主控制逻辑会向单元内的设备发出不同逻辑指令,这些逻辑指令会被单元控制逻辑所识别并接收,逻辑指令像系统变量一样会影响单元控制逻辑。 单元控制逻辑:规定了子单元内的单套设备是如何进入某种受控状态并如何在不同的受控状态之间进行转换的,单元控制逻辑主要由不同的受控状态之间转换关系构成,它可以接受主控制逻辑发出的逻辑指令,也可以在自身逻辑内加入变量判断,从而控制设备在不同受控状态之间进行切换。 控制步序:规定了设备进入某种受控状态的具体步骤及每一步骤的确认条件,只有达成该步骤的确认条件控制步序才可以进行下一步骤,否则控制步序将停止执行并发出报警或进入故障状态。多个控制步序通常会包含在一个单元控制逻辑内,用来描述一个工艺过程或多个工艺过程及其之间的关系。 主控制逻辑、单元控制逻辑和控制步序之间的关系描述如下:与主控制逻辑相关的系统变量(液位、压力或流量等)发生改变后,主控制逻辑会向单元控制逻辑发出逻辑指令,在该指令作用下,单元控制逻辑内的受控状态发生改变。受控状态之间转换需要按照控制步序所规定的步骤执行。另外在某些系统的控制逻辑里,设备的单元控制逻辑内受控状态的改变也会成为主控制逻辑的相关变量,从而在它们之间形成相互影响的关系,视具体情况而定。 二、控制结构 2.1 模式定义 设备的受控状态主要有以下4种: ①空闲(IDLE):可用单元等待操作人员或自动程序启动。启动命令可将单元由空闲模式转换成运行模式。处于空闲模式的单元应该使用空闲计时器跟踪。当处于运行模式时,空闲计时器暂停。在一些程序中,空闲计时需要重置。 ②运行(RUNNING):单元运行一个程序,并且设备由一个控制步序所控制。 ③停止(STOP):在单元运行期间,停止命令由操作人员手动实施。单元将中断正在运行的程序。执行停止程序,进入停止模式。停止模式需要手动复位。停止程序取决于运行的程序。操作人员手动复位停止模式后,单元进入空闲模式。 ④故障(FAULT):单元出现故障/报警,处于运行模式的单元将中断正在运行的程序,执行故障程序,进入故障模式。故障模式需要手动复位。HMI上发出的警报需要操作人员介入。故障程序取决于故障时刻正在运行的程序。在空闲或停止模式的单元可以直接进入故障模式。手动复位后,单元进入空闲模式。 受控状态关系图表 除了上述受控状态模式外,逻辑单元还有以下两种控制模式: A 自动控制模式 在自动控制模式下,主控制逻辑、单元控制逻辑和控制步序都参 与系统单元的自动控制,程序允许工艺单元自动启动。 B 手动控制模式 在手动控制模式下,只有单元控制逻辑和控制步序参与单元控 制,且需要操作人员手动选择发出RUNNING或其它逻辑指令来激 活单元控制逻辑,主控制逻辑中的所有限制条件均不对工艺单元 产生影响,但保护性限制条件会始终起作用,比如:水泵的LL液 位保护、HH液位保护、温度的HH保护等。 2.2 逻辑单元 整个水处理系统由多个逻辑单元组成,每个单元之间的控制相对 独立。整个系统内的所有逻辑单元通过主控制逻辑联动运行。每 一个逻辑单元能够运行数个控制步序。一些逻辑单元和控制步序 的运行可能会调用其它逻辑单元。 系统内主要定义了如下逻辑单元: 原水超滤单元 RO1单元 除盐水单元 RO2高密度沉淀池单元 RO2过滤/离子交换单元 RO2单元 中和池单元 超滤化学清洗单元 反渗透化学清洗单元 氢氧化钠加药单元 硫酸加药单元 盐酸加药单元 次氯酸钠加药单元 阻垢剂加药单元 还原剂加药单元 非氧化杀菌剂加药单元 树脂再生单元 碳酸钠加药单元 PFS加药单元 PAM加药单元 盐酸储存/卸料单元 碱储存/卸料单元 空压机单元 2.3 设备控制 所有的过程控制仪表(流量、液位、压力等)和分析仪表(PH、 ORP、浊度等)都应该设置HH、H、L和LL值。当需要时,可增加 控制点以满足控制需要。 2.4 故障/报警 阀门和电机应该随时可以报警,对于仪表检测超出限定的情况, 同样如此。 对于每一个报警,应该在PLC中设置固定的延时。通常,某个单元 控制逻辑中的设备发出报警后,应当将所有相关逻辑单元的设备 进入故障模式,并且不设计转入下一程序步骤功能。故障模式是 一个特殊阶段,其包含一个故障程序。报警必须手动复位,需要 操作人员在HMI上操作。 三、工艺单元控制逻辑 3.1 原水加热单元 3.1.2 过程及分析仪表设定点说明 (仪表设定点见文件“过程仪表及分析仪表设定说明.xlsx”。)

减压阀规范、标准

水用减压阀 第一部分 1.0概要 1.1应用 水用减压阀主要应用于降低配水系统中静态与动态(流动)水压。 1.2 适用范围 1.21 类型描述 本标准中的水用减压阀为独立、直动(直接动作)、单膜片式。允许内附过滤网,或在减压阀入口处连接一个独立的过滤装置,或者也可以不安装过滤网及过滤装置。减压阀可以内附旁通阀(by-pass relief valve)装置,也可以不附加旁通阀。 1.22 尺寸范围 连接管路通径的范围为 DN15, DN20,DN25,DN32,DN40,DN50,DN65 和DN80。依据美国国家螺纹管标准ASME B1.20.1,对应的管螺纹为(1/2 NPT,5/8NPT,1-1/4NPT,1-1/2NPT,2NPT,2-1/2NPT 和3NPT) 1.23 压力范围 水用减压阀最小工作压力为1724 kPa(250 psi) 1.24 温度范围 水用减压阀设计的最小温度范围为:0.6°C (33°F)至 60°C(140°F) 1.3 设计限制 1.31 减压阀中的各个部件能够抵抗由特定水压试验产生的应力,不出现永久变形。并且也可以抵御 在水压不平衡的特殊工作条件下,由工作水压力所产生的应力。见3.6节。 1.32 机械性能 1.3. 2.1 可修复性 (a)减压阀的内部零件或者滤网(如果内附其中)应易于检查、清洗、维修或更换。做上述检查或维 修时,无需从管路中拆卸下减压阀。 (b)减压阀中可更换的零件,必须保证,同型号同尺寸的零件具有可互换性。 1.4 参考标准 参考 ANSI、ASTM、ASME 和 ISO最新版本的标准。 第二部分 2.0 试样 2.1 提交测试的样本 每种规格要提供三个样品。任意挑选其中的一个进行测试。 2.2 样本测试 测评机构将选取每一种类型,每一种规格的减压阀,分别进行全部试验。 2.3 图纸 装配图和其他必要的数据,以及产品安装图纸,要随样品一起提交给测试机构,保证测试机构可以判断样品是否符合标准。 2.4 不合格样品 选中样品若未通过测试试验,则认为同类型同规格的产品为不合格品,直到制造商提供改正后的新样品重新进行测试试验。 第三部分 3.0 性能符合性测试 3.1 耐压试验#1(静压内漏测试)

先导式安全阀操作规程

编号:CZ-GC-01067 ( 操作规程) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 先导式安全阀操作规程 Operating procedures for pilot operated safety valves

先导式安全阀操作规程 操作备注:安全操作规程是要求员工在日常工作中必须遵照执行的一种保证安全的规定程序。忽视操作规程在生产工作中的重要作用,就有可能导致出现各类安全事故,给公司和员工带来经济损失和人身伤害,严重的会危及生命安全,造成终身无法弥补遗憾。 操作细节 1先导式安全阀的重新调试操作 1.1关闭安全阀上游的切断阀门。 1.2拆下导阀下端过滤器与主阀连接处的管道。 1.3在导阀进口处接上空气或氮气气源。 1.4旋转导阀调节螺丝以压紧(或松开)弹簧,使导阀开启压力达到设定压力。 1.5连接好导阀与主阀之间的管道。 1.6打开安全阀前的切断阀门。 1.7用新鲜肥皂水检查各连接部位有无漏气。 1.8控制安全阀前压力,使安全阀启跳,排放和回座,反复测试几次,观察并记录开启压力,排放压力和回座压力值,每次排放压力和回座压力与整定压力(开启压力)之差应在规定的精度范围

内。 1.9调试完毕后,固定好锁紧螺母。 2操作注意事项 2.1发现安全阀动作不灵敏,起跳压力和回座压力与设定值偏离较多时,应进行检查维修。 2.2定期检查运行中的安全阀是否泄漏、卡阻及弹簧锈蚀等不正常现象,并注意观察调节螺套及调节圈紧定螺钉的锁紧螺母是否有松动,若发现问题应及时采取适当措施。 2.3应定期将安全阀拆下进行全面清洗,检查并重新定压后方可重新使用。 2.4安装在室外的安全阀要采取适当的防护措施,以防止雨雾、尘埃、锈污等脏物侵入安全阀及排放管道,当环境低于摄氏零度时,还应采取必要的防冻措施以保证安全阀动作的可靠性。 2.5重新调试完后初运行阶段,应仔细观察安全阀的运行情况。 2.6对安全阀进行操作时除遵守本规程外,还应遵守《压力容器安全技术监察规程》和《安全阀安全技术监察规程》

机房群控系统控制逻辑说明书.

瑞虹新城三期群控系统方案说明 麦克维尔中央空调有限公司 系统控制部 日期Date:2016-06-16

1.工程及系统概况 (4) 1.1系统概况 (4) 1.2控制点表 (3) 1.3群控设计 (4) 2.群控系统主要控制功能 (5) 2.1冷水机组与辅设的联动控制 (5) 2.2依据温度的机组台数控制 (7) 2.3冷却塔风机控制 (9) 2.4冷冻水泵的频率控制 (10) 3.节能策略 (12) 3.1机组台数&顺序启停控制 (15) 3.2冷冻水温度重置(基于总供回水温差) (15) 3.3供回水管流量控制 (16) 3.4机组启动/停机时间优化 (18) 3.5CSM ECO?其它控制策略 (18) 4.集中控制管理站 (20) 4.1M C Q UAY W EB用户界面 (20) 4.2与第三方集成 (22)

5.相关案例 (17)

1.工程及系统概况 本项目共1个冷冻机房系统,系统配置为一套群控系统及一套管理软件。群控系统对系统内的相关设备实现分散控制集中管理,可以实现联动控制、台数控制、轮换控制、故障切换等自动功能;系统管理工作站可以直观动态的浏览和控制机房内的相关设备,实现高效管理、节能运行。 1.1系统概况 1)机房冷源系统设备概况 ?4台离心式水冷冷水机组 ?1台热交换器 ?4台冷水机冷冻侧电动阀 ?4台冷水机冷却侧电动阀 ?5台变频冷冻泵 ?5台定频冷却泵 ?1个冷冻水压差旁通阀 ?8个冷却塔共8个高低速风机 ?8个冷却塔进出水电动阀 ?相关温度、压力、流量、液位、室外温湿度监测 ?加药装置、补水装置监测 1.2控制点表

活塞式减压阀使用说明

Y43H-16C活塞式减压阀使用说明 本阀适用于蒸汽介质管路上,通过调节将进口压力降低至某一需要的出口压力,当进口压力与流量有变化时,靠介质本身能量可自动保持出口压力在一定范围内,但进口压力和出口压力之差必须≥0.2MPa/cm2。 一、安装与使用 1.安装减压阀之前必须对管路系统进行冲洗清理,以防焊渣、氧化皮等赃物流入阀内,影响阀门正常工作。 2.减压阀应安装在便于操作和维修的地方,并且必须直立安装在水平管路上,应注意管路中介质的流向与阀体上箭头所示方向一 致,切勿装反。 3.减压阀在安装使用时,应先把旁通管路上的截止阀打开,排除管路中的冷凝水和汽水混合物,以防减压阀开启时产生水击现象 损坏减压阀;当无异常现象后,按顺时针方向缓慢旋转调节螺钉,将出口压力调至所需压力(以阀后表为准),调整好后,将锁紧螺母背面,拧上防护罩。 4.减压阀前应安装过滤器,以防止介质中的杂质进入减压阀,影响其性能。 5.安装的减压阀前后应有一段直管,阀前直管长度约为600mm,阀后直管长度约为1000mm。 二、维护与检修 1.减压阀应存放在干燥的室内,通路两端必须用盲板堵塞,不准堆置存放。 2.长期存放的减压阀应定期检查,清洗污垢,在各运动部位及加工面上应涂以防锈剂,防止生锈。

三、故障与消除方法

四、如出口压力高于所需压力,需要重新设定,方法如下: ①关闭上游隔离阀; ②把出后压力泄掉; ③将导阀调节螺钉逆时针旋松,使调节弹簧处于自由状态; ④慢慢开启上游隔离阀至全开; ⑤顺时针慢慢向下拧紧导阀调节螺钉,出后压力逐步升高,直到设定值时将调节螺母锁定; ⑥如果调压过头,须从第一步开始重新调节,即只能从低压往高压调。

可调式减压阀说明书

可调式减压阀说明书 Prepared on 22 November 2020

Y X 741X - 可调式减压阀 使 用 说 明 书 株洲南方阀门股份有限公司 一、用途 安装在供水管网上,将较高的上游压力降为符合使用要求的下游工作压力。无论上游压力和流量如何改变,预定的下游压力都能保持恒定不变。 二、特点 1、减压稳压效果好。外设独立的压力反馈系统,利用液压原理进行控制。出口压力不受进口压力及流量变化的影响,既可减动压,又可减静压。 2、操作维护方便。只需调节先导阀的调节螺栓,就能获得精确稳定的出口压力,关键零件均采用优质材料,基本无需维护。 3、过流面积大,阻力损失小。采用流线型、宽阀体设计。 4、在压力降低较大的场所下,可采用特殊阀板设计,减少噪声和振动。 三、技术参数 1、公称压力: 2、出口压力:调节范围 ~ 调节范围 ~ 调节范围 ~ 调节范围 ~ 3、适用介质:清水 4、适用温度:0~80℃ 四、结构示意图 减压阀是由主阀和导阀控制系统组成。主阀由阀体、膜片、阀杆、阀板等主要零件组成;导阀控制系统由闸阀、减压导阀、过滤器、压力表、调节阀、附管组成。 图一 结构原理图 1、闸阀 2、过滤器 3、先导阀 4、压力表 五、工作原理 可调式减压阀是通过出口压力的变化反馈到导阀上,再由导阀来控制主阀板的开度,使预定的下游压力保持不变。 10 16 25 40

当出口压力大于导阀的设定值时,出口压力水从控制管进入导阀膜片下腔内,推动导阀阀杆上移,导阀阀板开度减小,从而导致从控制管进入导阀再到主阀控制室上腔的压力水的压力升高,推动阀杆下移,主阀板的开度随之减小,阀后压力降低。 当出口压力小于导阀的设定值时,导阀膜片下腔的压力降低,导阀阀杆下移,其阀板开度增大,进口压力水从控制管进入导阀再到出口端,使主阀上腔压力降低,主阀板的开度随之增大,阀后压力增高。 六、安装注意事项 1、安装前需冲洗管道。 2、阀体的箭头必须与管内的实际流动方向一致。 3、最佳阀门安装——卧式或其它可接受的方式。 4、先导式减压阀前后须装隔离阀(检修阀)。 5、留出足够的工作空间。 6、当减压比大于4:1时,建议二级串联减压,减小气蚀延长寿命。 7、要求在阀前加装过滤器,定期清洗。 8、当阀前后压差小于时请用户在合同上说明。 七、调试步骤(见安装示意图) 1、关闭上下游隔离阀1、3。 2、打开控制管上的闸阀5。 3、将减压阀2上的先导阀调节螺栓完全拧松,并打开上、下腔排气阀4。 4、缓慢打开上游隔离阀1,逐渐排尽上、下腔气体,关闭上腔排气阀,检查阀后压力是否为零。 5、如下腔一直出水,阀后压力不为零,则将先导阀下端微调螺栓拧松数圈并打开下游隔离阀3,直到阀后压力为零,关闭下游隔离阀3。 6、将先导阀下端微调螺栓紧到底再退1~圈。 7、将减压阀2上的先导阀调节螺栓逐渐拧紧,同时观察阀后压力达到要求为止。(如调过头则从步骤3重调)。 8、缓慢打开下游隔离阀3,检查阀后压力,如压力降低则适当拧紧先导阀调节螺栓,反之则适当拧松先导阀调节螺栓,直到动压与调定静压相符为止。 9、缓慢关闭下游隔离阀3,检查阀后压力,如压力高于原调定压力,则将减压阀2上先导阀的调节螺栓退到底,再打开下游隔离阀3,阀后压力为零后,关闭下游隔离阀3,从步骤7开始重调。 10、总之,要在静态时从低往高调。

典型逻辑控制图例

典型逻辑控制图例 随着现代科技的进步,社会的发展,单机容量不断提高,机组所需控制的设备和监测参数越来越多,自动化程度越来越高,手动控制已不能满足现代机组的控制要求,分散控制系统(DCS)已开始得到广泛应用。 DCS控制系统工程软件基本是由一些标准结构的软件模块即功能块组成,如与非门、函数块、PID调节块等,各基本单元简单而标准化,复杂功能的实现通过用标准基本单元的复杂连接而完成,这使得DCS环境下的控制系统具有可任意组态的特点。但因现代火电机组单机容量大,控制参数多,由功能块搭接的控制回路较为复杂,给电厂热控维护人员及时进行事故分析带来不便,或容易造成故障。为此,如何既能满足电厂设备的复杂性控制要求,又能保证维护人员对控制逻辑一目了然,是各个DCS厂家发展和提高的目标。 1 典型逻辑控制图例的必要性 在单元机组控制设备中,电机、阀门等设备一般较多,且逻辑控制模式基本相同,所不 同的是联锁保护、启动条件等外在因素,因此,这些设备的逻辑控制可采用典型逻辑图例的控制方法,即固化一个逻辑图,将外在限制条件分别添加后即可形成不同的设备控制,可极大地节省工程人员的重复劳动。 OV A TION控制系统为美国西屋公司产品,其前身为WDPF控制系统,在河北省南部电网的电厂有应用,但因其逻辑控制界面为梯形图,在设计和检查方面都有诸多不便且容易出错。新推出的OV A TION控制系统则采用了功能块的搭接模式,不仅简化了设计,减少了工程人员的工作量,更为电厂维护人员的事故分析、逻辑检查提供了便利条件。 2 典型逻辑控制图例的分析 OV A TION控制系统中对典型逻辑图例的设计可分为手操键盘、启停允许、启停请求、 启停命令和故障报警5部分,下面逐项进行分析。 2.1 手操键盘 现代电厂自动化程度均较高,但手动操作必不可少。OV A TION系统典型逻辑控制中,均配备有手操键盘,该手操键盘包括8个手操键PK1~PK8。其中PK1、PK2分别用于设备的启、停,但选中该键后必须经PK8确认才有效,这样有利于防止操作员的误操作;PK7为当设备启、停出现故障时,画面设备颜色变黄,设备不允许启动,待设备故障消除后,用此键确认恢复原态,以便重新操作;PK6为设备跳闸后的确认,便于再次启动;PK5作用比较特殊,因有些设备的停止具有条件限制,当出现紧急情况需停止设备时,正常停止PK2键可能不起作用,此时可采用PK5键跨过限制条件强制执行,保护机组或设备不受大的损坏;PK3、PK4键为请求备用和解除备用请求键,一般用于2台或3台相同的电机设备,便于运行电机出力不够或故障停后,备用电机联启,保证机组稳定运行。在阀门设备中一般不使用PK3、PK4键。 2.2 启停允许 启允许包括以下4项条件。 a.设备本身启动所需条件限制一般设备的启动都具有条件限制,尤其电机等大的动力设备,如轴承温度、水位、压力、电气保护等,这些条件不满足,不允许设备启动。 b.联锁停命令限制当所需启动设备有联锁停命令时,如果强制启动,很可能造成关联设备损坏或受影响,因此,停命令存在,亦不允许设备的启动。

冷机群控控制逻辑说明.doc

一正常供冷 正常供冷时,冷机群控模块会根据需求开启相应的冷水机组, 主机接到开机指令后, 主机会发出水泵需求指令, 控制器接到水泵需求指令后, 开启相应冷水机组冷凝器和蒸发器侧的 出水电动蝶阀,以及冷却塔上的进出水电动蝶阀,同时开启冷冻水泵, 冷却水泵 , 冷却塔风机 . 冷冻水泵以及冷却水泵的数量与主机开启的数量是一致的, 冷却塔风机最少开启的数量是主 机的两倍, 如果冷却塔冷却后的温度还高于设定值 1 度以上含 1 度 , 并维持 5 分钟以上, 则加一组冷却塔, 以此类推, 一直加到没有可加冷却塔为止. 具体如下: (1)冷冻水侧逻辑 当主机接到开机指令时, 延时一定时间后会发出一个水泵需求指令给相应的控制器 , 控制器接到指令后, 会开启相应冷水机组蒸发器侧的出水电动蝶阀, 同时会开 启相应数量的冷冻水泵. 1.冷冻水泵切换条件如下 : 1.1 冷冻水泵有故障 ; 1.2 冷冻水泵检测不到自动状态, 既冷冻水泵强电控制柜上的手自动没转到”自 动”时 , 电脑上显示”本地”时期 1.3 当冷冻水泵接到了开泵指令后 , 延时 8 秒钟后 , 控制器还没检测到水泵运行状态开启 时 , 程序会认为此水泵开启失败 . 以上三个条件只要有一个,冷冻水泵就会切换到另一台水泵. 相应的 , 水泵能开 启 的条件就是 : 水泵无故障 , 手自动转换开关打到”自动”档, 水泵无开启失败.水泵 切换时 , 会自动选择同时满足以上三点并运行时间最少的冷冻水泵. 2.冷冻水泵的频率调节是根据冷冻水供回水压力差值及冷冻水供回水压差设定值比 较,PID 调节冷冻水泵频率 . 供回水压力差值越小 , 频率越高 ; 冷冻水泵最小频率目前设 定 38Hz.

控制系统逻辑图分析

重庆电力高等专科学校 控制系统逻辑图分析报告 专业:工业热工控制技术 班级:热控0812班 学号:31号 姓名:王海光 指导教师:向贤兵、曾蓉 重庆电力高等专科学校动力工程系 二〇一一年五月

重庆电力高等专科学校《课程设计》任务书 课程名称:控制系统逻辑图分析 教研室:控制工程指导教师:曾蓉向贤兵 说明:1、此表一式三份,系、学生各一份,报送实践部一份。 2、学生那份任务书要求装订到课程设计报告前面。

目录 0.前言 (1) 1.火电厂协调控制系统分析 (1) 1.1协调控制系统的任务 (1) 1.2对象的动态特性 (1) 1.3控制原理逻辑图分析 (3) 2.火电厂汽包炉给水控制系统分析 (7) 2.1给水控制系统的任务 (7) 2.2对象的动态特性 (7) 2.3控制系统原理逻辑图分析 (10) 3.火电厂汽温控制系统分析 (11) 3.1 气温系统的任务 (11) 3.2 对象的动态特性 (11) 3.3 控制原理逻辑图分析 (13) 4. FSSS控制逻辑图分析 (14) 参考文献 (17)

0.前言 广安发电厂机组简介: 广安发电厂设计规划总容量为240万千瓦,一期工程两台30千瓦燃煤机组分别于1999年10月28日和2000年2月7日建成投产。两台机组均采用美国贝利公司北京分公司研发的计算机集散OV A TION控制系统,自动化程度居国内同类型机组领先水平。公司坚持以效益为中心,以市场为导向,两个文明同步发展,取得显著成效。先后荣获"四川省文明单位"、"四川省园林式单位"、"四川省社会治安综合治理模范单位"等光荣称号。其环抱设施工程质量经国家环保总局、中国环境检测总站等检查验收,均为优良,各项环保指标均符合国家规定标准。 1.火电厂协调控制系统分析 1.1协调控制系统的任务 1.1.1接受电网中心调度所的负荷自动调度指令ADS、运行操作人员的负荷给定指令和电网频差信号△f,及时响应负荷请求,使机组具有一定的电网调峰、调频能力,适应电网负荷变化的需要。 1.1.2协调锅炉、汽轮机发电机的运行,在负荷变化率较大时,能维持两者之间的能量平衡,保证主蒸汽压力稳定。 1.1.3协调机组内部各子控制系统(燃料、送风、炉膛压力、给水、气温等控制系统)的控制作用,在负荷变化过程中使机组的主要运行参数在允许的工作范围内,以确保机组有较高的效率和可靠的安全性。 1.1.4协调外部负荷请求与主、辅设备实际能力的关系。在机组主、辅设备能力受到限制的异常情况下,能根据实际情况,限制或强迫改变机组负荷。 1.1.5具有多种可供运行人员选择的控制系统与运行方式。协调控制系统必须满足机组各种工况运行方式的要求,提供可供运行人员选择或联锁自动切换的相应控制方式,具有在各种工况(正常运行、启动、低负荷或局部故障)条件下,都能投入自动的适应能力。 1.1.6 消除各种工况扰动的影响,稳定机组运行。协调控制系统能消除机组运行中各种内、外扰动的影响。通过闭环系统输入端引入的扰动,如燃料扰动,称为内部扰动,通过开环系统的其他环节影响到系统输出的扰动,如负荷扰动,称为外部扰动。 1.2对象的动态特性 单元机组负荷控制有下列四种方式: 1.2.1基本控制方式 在某些特殊条件下,机炉主控制器全部解除自动控制,转为手动控制,主控指令由操作员手动改变,各自维持各子系统的运行参数稳定,而不参与机组输出功率和汽压的自动控制,负荷自动控制系统相当于被切除,这种方式称为基本控制方式(或手动方式)。 1.2.2锅炉跟随方式 (1)机炉控制分工:锅炉自动控制主汽压力,汽轮机手动控制机组负荷。 (2)特点:在扰动初期能较快适应负荷,但汽压变动较大。

先导式操纵阀的工作原理

先导操纵的工作原理,如图5-8 所示。控制系统中设有独立的控制液压泵 1,控制油液经两位阀7和单向阀5流入先导阀2的A腔,图示位置时A腔与B 腔相通,油液由A腔、B腔沿着控制油路流到主回路换向阀6,推动换向阀杆,操纵某个机构动作。与此同时,控制油液沿着先导单向阀流到阀芯 3 的底部 D 腔,对阀芯产生向上压力p 0。控制液压泵输出的油液还经过单向阀流入蓄能器 &若先导阀A腔闭塞,蓄能器压力增大到一定值时推动两位阀阀芯上移,使控制液压泵输出的控制油经两位阀流回油箱,控制液压泵卸荷。在主回路换向阀杆弹簧9 的作用下,先导阀 A、B、D腔的压力升高,使其阀芯下部推力增大,推动阀芯上移,堵住了A腔与B腔的通路,使B腔与C腔相通,控制油液沿C腔流回油箱。若手柄操纵力继续作用在先导阀上,力P通过弹簧4迫使阀芯3下移,使A腔与B腔相通。 因此随着主回路换向阀弹簧的压缩,先导阀D腔中油液对阀芯的推力增大。为了克服推力,需要相应地增大作用在弹簧4上的力P,从而得到与手柄行程成比例增长的二次压力,而使换向阀的行程与操纵手柄的行程保持比例关系,驾驶员可以进行有感觉的操纵。 先导操纵有两种操纵回路: 直接作用式和减压阀式,如图5-9 所示。1)直接作用式先导阀操纵的操纵回路。发动机 3 驱动主液压泵 2 和控制液压泵 1 ,控制油液进入先导阀 4 后流到主回路换向阀5的右侧,推动阀杆左移,使液压缸6工作。控制油液的压力取决开先导阀手柄7控制的阀芯移动行程,而主回路换向阀的行程又取决于控制油液的压力,这样换向阀行程与先导阀行程之间保持着近似的比例关系。 该操纵回路在大型液压挖掘机上应用较多,驾驶员手柄操纵力可低于 10N,而且一个先阀可以操纵一个换向阀的左、右双向运动。 2)减压阀式先导阀操纵回路。控制液压泵1 输出的油液进入减压阀式先导阀4 后流向主回路换向阀5,推动阀杆左、右移动,使液压马达8 工作。其特点是,利用控制油液的压力反馈使手柄行程与换向阀行程成比例关系,保证了操纵的灵敏度及可靠性;先导阀通常有两个相同的小阀9和10,分别操纵换向阀的左、右单向

润新软水机说明书

目录 一、产品概述2 二、工作流程图 3 三、设备的安装和运行5 四、设备安装示意图6 五、FLECK5600控制器的调试步骤7 六、故障排除 9【 \

产品概述 首先感谢您使用本公司的全自动软化水设备!为着方便您的使用,我们编写了该产品的客户手册,您的认真阅读和理解一定能为产品的良好使用打下基础。 5600系列自动软水器分为时间周期型和流量周期型两种控制方式,用户可以根据当地水质及用户对于水质的要求来进行选择。 》 本产品广泛应用于蒸汽和热水锅炉、热交换设备、食品加工、造纸印刷、洗衣印染、家庭、宾馆饭店、医疗制药、纯水制备预处理等行业。 我公司将给用户提供完善的技术及售后服务。 自动软水器技术参数: 入口水压:工作温度:2-50℃ 电源型式:220V/50Hz AC 电源功率:3W 出口硬度:≤L 再生方式:动态顺流再生或逆流再生 树脂型号:001×7强酸性阳离子交换树脂 盐耗:<160-240g/mol(根据水质情况) .

FLECK5600控制器工作流程图 。 说明:FLECK5600和56SE 控制器的水流过程略为不同,但原理一致。 1、 工作状态 2、预清洗(5min ) 3、反洗(10min) 4、吸盐(50min ) @ 硬水经控制器进水口流过树脂层,软化后经下布水器、中心管向上流出出水口,此时设备处于工作状态。 硬水经控制器进水口流过树脂层,软化后经下布水器、中心管向上流出排水口,进行预清洗。

5、慢洗 6、快洗 } 7、稳层清洗 8、盐箱充水 硬水经控制器进水口向下流过中心管、下布水器,向上流经树脂层,流出排水口,进行反洗。 硬水经控制器进水口,通过射流器,吸入盐液再生剂,向下流过树脂层进行再生还原,最后通过下布水器、中心管和排水口流出。 吸盐完成后,空气止回阀会将吸盐口封住,防止空气的进入,硬水继续经控制器进水口,通过射流器,向下流过树脂层,最后通过下布水器、中心管和排水口流出。 硬水经控制器进水口,向下通过中心管、下布水器,然后向上流过树脂层,最后通过排水口流出。

减压阀英文说明书

The Piston-type Steam pressure reducing valve Instruction manual Configurations: Main performance and uses: Y43H is principally used in steam pipe, it can reduce the inlet pressure to a certain outlet pressure you need by adjusting the spring, when the flow and the pressure of the inlet varies, the outlet pressure can also remain within a certain range by the strength of the medium itself, but the differential pressure of the inlet and outlet must be equal or greater than 0.2MPa. Technical parameter: Working principal:

When the pressure reducing valve leaves the factory, the adjusting spring is in uncompressed state, the main valve disc and secondary valve disc is in close position. When you want to use it, you can turn the adjusting screw clockwise; this can compress the adjusting spring, move the diaphragm down and then open the secondary valve disc, the medium also enters above the main valve seat through “a”hole to “b”hole, make the main valve disc open and then enters under the diaphragm through “c” hole. But when the downstream pressure is exceed the set pressure, the medium moves the diaphragm up and compresses adjusting spring, and then the secondary valve disc closes slowly, because the flow reduces, the downstream pressure get a new balance, on the other hand, when the downstream pressure is less than the set pressure, the gap between the main valve disc and the main valve seat increases and then the flow increases too and then make the downstream pressure get a new balance. Installation and maintenance: 1.Clean the valve and the pipe line and remove the dirt before installation, at the same time the valve must be installed in horizontal direction, bracket is needed when the valve deadweight is heavy or vibration exists at the site. 2.While installing, make sure the flow direction and the

溢流阀使用说明书

DB型先导式溢流阀使用说明书 DB型先导式溢流阀稳定性好,启闭性较好,在DEH系统的供油装置中作为安全阀使用,防止液压系统过载。 1 结构及工作原理 DB型先导式溢流阀是由先导阀和主阀组成。如图1所示。 1-主阀芯2、3-阻尼器4、5、10、12-通道6-锥阀7-先导阀9-弹簧腔 11-排口 图1 先导阀用于调节主阀上腔的液压力。主阀芯在其上腔液压作用力和弹簧力的共同作用下与下腔液压作用力相平衡。当导阀前腔液压作用力低于其调定弹簧力时,导阀和主阀阀口均处于关闭状态,溢流口无液体流出。当导阀前腔液压作用力超过其调定弹簧力时,导阀开启,此时阻尼孔中有液体流动,主阀上下腔产生压力差,若此压差对主阀芯所产生的作用力小于主阀弹簧力,则主阀口仍处于关闭状态;若此压差对主阀芯所产生的作用力大于主阀弹簧力,就会使主阀开启并溢流。主阀弹簧力随其开口量的增大而增大,直至与主阀芯上的液压作用力相平衡。 2性能参数 ●调压范围——在通过额定流量时,调压手轮从全开至全关状态下,溢流阀进 油口的压力变化范围。 ●压力振摆——在稳定状态下调定压力的被动值。 ●压力偏移——在规定时间内调定压力的偏移量。 ●开启率——开启压力与调定压力的百分比。 ●闭合率——闭合压力与调定压力的百分比。 ●建压时间——从泄荷状态回升至调定压力稳定时所需的时间。 ●卸荷时间——从调定压力状态至完全卸荷时所需的时间。 ●压力超调量——瞬态过程中,峰值压力与调定压力的差值。

●压力超调率——压力超调量与调定压力的百分率。 3 性能要求 对溢流阀的主要性能要求是: ●调压范围大,压力振摆和偏移小; ●等压力特性好,开启率和闭合率高; ●过流能力大,压力损失和内泄漏量小; ●瞬态恢复时间短,建压和泄荷时间短,压力超调率低; ●动作灵敏,噪声小。 5 1.最大流量;100L/min 2.最大工作压力:31.5MPa 3.背压:31.5MPa

机房群控系统控制逻辑说明.

1 ECO PD 501-01CN COPYRIGHT?MCQUAY CHINA 瑞虹新城三期群控系统方案说明 麦克维尔中央空调有限公司 系统控制部 日期Date:2016-06-16

1.工程及系统概况 (3) 1.1系统概况 (3) 1.2控制点表 (3) 1.3群控设计 (4) 2.群控系统主要控制功能 (5) 2.1冷水机组与辅设的联动控制 (5) 2.2依据温度的机组台数控制 (7) 2.3冷却塔风机控制 (9) 2.4冷冻水泵的频率控制 (10) 3.节能策略 (12) 3.1机组台数&顺序启停控制 (13) 3.2冷冻水温度重置(基于总供回水温差) (13) 3.3供回水管流量控制 (14) 3.4机组启动/停机时间优化 (15) 3.5CSM ECO?其它控制策略 (15) 4.集中控制管理站 (16) 4.1M C Q UAY W EB用户界面 (16) 4.2与第三方集成 (17) 5.相关案例 (17) 2 │ECO PD 502-01 CN 麦克维尔系统控制解决方案

ECO PD 502-01 CN 麦克维尔系统控制解决方案 │ 3 1. 工程及系统概况 本项目共1个冷冻机房系统,系统配置为一套群控系统及一套管理软件。群控系统对系统内的相关设备实现分散控制集中管理,可以实现联动控制、台数控制、轮换控制、故障切换等自动功能;系统管理工作站可以直观动态的浏览和控制机房内的相关设备,实现高效管理、节能运行。 1.1 系统概况 1) 机房冷源系统设备概况 4台离心式水冷冷水机组 1台热交换器 4台冷水机冷冻侧电动阀 4台冷水机冷却侧电动阀 5台变频冷冻泵 5台定频冷却泵 1个冷冻水压差旁通阀 8个冷却塔共8个高低速风机 8个冷却塔进出水电动阀 相关温度、压力、流量、液位、室外温湿度监测 加药装置、补水装置监测 1.2 控制点表

相关文档