文档库 最新最全的文档下载
当前位置:文档库 › 空气流量计的检测方法

空气流量计的检测方法

空气流量计的检测方法
空气流量计的检测方法

空气流量计的检测方法

空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU根据空气计量传感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。

空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传感器——空气流量计。②间接测量方法传感器——进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。

(1)机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。

(2)卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。

(3)热线式空气流量计。热线式空气流量计按其热线形又分为3种。

①热丝式——将加热丝均匀分布在计量通道内。热丝式空气流量

计(图1)精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。

②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导较差,影响计量精度。

③热阻式——将加热丝绕成线圈形式固定在石英玻璃管内或暴露在空气通道内。由于热阻式空气流量计热丝被固定,故热线寿命延长,但由于热阻面积很小,只能部分采空气流量,要求空气通道内空气流速均匀,所以常在进气侧安装梳流格栅。

由于热膜式和热阻式空气流量计均是部分采集空气计量空气量,故精度较热丝式较差。另外,热丝式、热膜式和热阻式空气流量计还都易受空气中水分及灰尘的污染,所以在控制电路上都做了专门的设计,每次打开点火开关或关闭点火开关后,流量计中的热丝会由电路提供瞬时大电流加热,使热丝瞬间产生高温(700-1 000℃),烧掉污染在热丝、热膜或热阻表面的杂质,保持空气流量计量精度。

轿车使用的空气流量计,属“L”型热膜式空气流量计,安装在空气滤清器壳体与进气软管之间。其核心部件是流量传感元件和热电阻(均为铂膜式电阻)组合在一起构成热膜电阻。在传感器内部的进气通道上设有一个矩形护套,相当于取样管,热膜电阻设在护套中。为了防止污物沉积到热膜电阻上而影响测量精度,在护套的空气入口一侧设有空气过滤层,用以过滤空气中的污物。为了防止进气温度变化

空气流量计的检测原理

空气流量计的检测原理 随着科学技术的发展,我们不断引进先进技术,空气流量计的测试精度高,可以输出线形信号,信号处理简单,被广泛的应用于汽车,燃气、煤气等领域。 空气流量计的检测原理,空气流量计在管道里设置柱状物之后形成两列涡旋,根据涡旋出现的频率就可以测量流量。因为涡旋成两列平行状,并且左右交替出现,与街道两旁的路灯类似,所以有涡街之称。空气流量计设有两个进气通道,主通道和旁通道,进气流量的检测部分就设在主通道上,设置旁通道的目的是为了能够调整主通道的流量,以便使主通道的检测特性呈理想状态。也就是说,对排气量不同的发动机来说,通过改变空气流量计通道截面大小的方法,就可以用一种规格的空气流量计来覆盖多种发动机。主通道上的三角柱和数个涡旋放大板构成卡曼涡旋发生器。在产生卡曼涡旋处的两侧,相对地设置了属于电子检测装置的超声波发送器和超声波接受器,也可以把这两个部件归入空气流量计,这两个电子传感器产生的电信号经空气流量计的控制电路整形、放大后成理想波形,再输入到微机中。为了利用超声波检查涡旋,在涡旋通道的内壁上都粘有吸音材料,目的是防止超声波出现不规则反射。 空气流量计的优缺点,为了克服活门式空气流量计的缺点,即在保证测量精度的前提下,扩展测量范围,并且取消滑动触点,有开发出小型轻巧的空气流量计,即空气流量计。卡曼涡旋是一种物理现象,涡旋的检测方法、电子控制电路与检测精度根本无关,空气的通路面

积与涡旋发生柱的尺寸变化决定检测精度。又因为这种传感器的输出的是电子信号(频率),所以向系统的控制电路输入信号时,可以省去AD转换器。因此,从本质来看,空气流量计是适用于微机处理的信号。 空气流量计的测试精度高,可以输出线形信号,信号处理简单,且经过长期使用,性能不会发生变化,因为是检测体积流量所以不需要对温度及大气压力进行修正。

菲舍波特电磁流量计零点校正方法

电磁流量计零点校正方法 一 、 各键的功能所述如下: C/CE C/CE 键用于在操作模式与菜单之间切换。 STEP STEP 键是两个箭头键中的一个。STEP 用于向前滚动 菜单。所有需要的参数都可访问。 DATA DATA 键是两个箭头键中的一个。DATA 用于向后滚动 菜单。所有需要的参数都可访问。 ENTER 功能可通过长按向上箭头键激活。 ENTER 用于开呈关闭程序保护。此外,ENTER 还可 用于访问更改参数的数值,接受新值或者新的选 项,ENTER 功能有效时间为10秒。如果在10秒内 未输入,旧的数值将重新显示在转换器上。 注意:电磁流量计在进行“零点校正”时,必须保证流量计所处管道中是充满所测介质,且管道中的介质处于静止状态。 二、操作步骤 长 按 ENTER

在显示状态下按“C”键→进入菜单→连续按“STEP”键翻页至→“prog protection on”→长按“DATA”键(当屏幕闪烁时松手)进入此项→并变为“prog protection off”→连续按“STEP”键翻页至“Low flow cut-off 1%(小流量切除)”→长按“DATA”键(当屏幕闪烁时松手)进入此项“Low flow cut-off 1%”改变为“Low flow cut-off 0%”→长按“DATA”键保存→连续按“STEP”键翻页至“System zero adj ****mV”并记录原始数值→长按“DATA”键进入→按“STEP”翻页至“Automatic”(自动校准)→长按“DATA”确认,自动校准开始(时间约为1分钟,校准完后仪表会自动记录下校准值)校准完成后→连续按“STEP”翻页至→“Low flow cut-off 0%”→长按“DATA”进入此项→把“Low flow cut-off 0%”改变为“Low flow cut-off 1%以上”(数值输入方法:“DATA”键为增加数值、“STEP”为移动位置)更改完成后→长按“DATA”确认→连续按“STEP”翻页至→“prog protection off”→更改为“prog protection on”即可→按“C”键直至返回到主测量界面。 三、电磁流量计密码输入 在显示状态下按“C”→进入菜单→连续按“STEP”翻页至→ “CODE NUMBER”→长按“DATA”(当屏幕闪烁时松手)进入此 项→输入密码“4000”(数值输入方法如下:连续按4次“DATA” 键,增加数值。然后按3次“STEP“移动光标即输入了4000) →长按“DATA”确认,输入密码成功,输入密码后,可更改电

汽车电子技术试卷

A卷 一.选择题(14分) 1.()有利于各缸可燃混合气浓度的控制,而()有利于简化结构、 降低成本、提高可靠性。 (A)单点喷射系统(B)多点喷射系统 2.四冲程汽油机喷射系统基本上都是采用()。 (A)缸内喷射(B)缸外喷射 3.()广泛应用于现代电控汽油喷射系统中。 (A)连续喷射方式(B)间歇喷射方式 4.英语缩略词ECU是指(),SPI是指(),MPI是指(),SFI 是指()。 (A)顺序喷射(B)多点喷射(C)单点喷射(D)电控单元 5.配置电控汽油机的汽车上,驾驶员通过油门踏板直接对()进行控制。 (A)进气量(B)汽油量 6.汽油滤清器壳体上有“IN”和“OUT”记号时,标有“IN”的一侧应接(),标有“OUT”的一侧应接()。 (A)出油管(B)进油管 7.电动汽油泵由泵体、永磁式直流电动机和壳体三部分组成,其中使汽油压力升高的是()。 (A)泵体(B)永磁式直流电动机(C)壳体 8.燃油压力调节器能将汽油压力和进气真空度之间的压力差保持为恒定值,通常为()。(A)0.5MPa(B)0.25MPa(C)0.1MPa 9.对于一个定型的电控汽油机喷油器来说,其喷油量取决于()。 (A)喷油孔截面积(B)喷油压力(C)喷油持续时间 二.填空题(38分) 1.汽油发动机电控系统的基本控制原理:以为控制核心,以 和为控制基础,以喷油器的、、 和为控制对象,保证获得与发动机各种工况相匹配的和,同时适时调整发动机。 2.汽油发动机电控系统由、、 和组成。 3.电控汽油喷射系统按喷油器的安装部位不同可分为和 两类;按汽油喷射部位不同可分为和两类;按汽油喷射时序的不同可分为、和三类;按汽油喷射的控制方式不同可分为、和三类;按空气流量检测方式的不同可分为和两类。4.电控汽油机燃料供给系统主要由、、、 、、和输油管道组成。为了减小汽油在管道中的脉动,有的发动机上还装有。 5.电控汽油机主喷油器主要由、、、 和等组成。 三.判断改错题(20分,将错误的地方划掉后改正) ()1.顺序喷射是指喷油器按照发动机的工作顺序,在各缸排气行程上止点前某一曲轴转角顺序轮流喷射。

空气流量计故障分析检测

空气流量计故障分析检测 空气流量计是用来计量发动机进气量的传感器,在汽车电控燃油喷射系统中,把空气流量信号和发动机转速信号一起作为喷油时间的基准信号。空气流量计的发展大体上经历了4代:L 型、D型、热线式、热模式。发动机工作不稳定的原因很多,空气流量计是重点检查的对象,但是要确认它是否有故障,故障分析、检查方法就显得尤为重要,下面通过两个例子加以说明。 一、故障一 凌志LS400轿车高速闯车。发动机在原地加速时运转正常。当汽车行驶速度在120~14 0公里左右时,汽车会出现闯动的现象,有时闯动频繁,有时只是偶尔闯动,感觉好像是发动机 间歇断火。故障分析:发动机空载运转时正常,而故障只在120km/h车速以上时发生,或者说是有较大负荷时故障才出现,因此故障原因可能是发动机高速断火、断油、喷油量突然减少,或者是废气再循环、汽油蒸气回收系统、进气控制系统、氧传感器闭环控制系统等在高速时工作不正常造成的。检修:读取故障代码,无码检查点火系统,将示波器接到一个点火线圈的中央高压线,试车、闯车时点火高压为8KV~10KV,正常,点火波形良好;将示波器接到另一个点火线圈的中央高压线,再试车出现故障时点火波形也良好。后来将示波器逐个接到各缸的高压线,再试车,结果发现闯车时各缸的高压都正常,波形都止常,可见闯车的原因不是点火系统造成的,应查找其他方面的原因。将示波器接到第一缸喷油器控制端,试车,观察喷油时间的变化情况,闯车该气缸的喷油时间正常,为3.5ms左右。然后将示波器逐个接到其余气缸的喷油器控制端,再试车,观察喷油时间的变化情况,闯车时每个气缸的喷油时间都无异常。也不能说明故障是喷油量造成的。接上电脑检测故障诊断仪,读取数据流,从获得的数据来看,当系统由闭环控制进入开环控制时,车速在120km/h左右,是容易出现闯车的时候。断开氧传感器接线, 强迫发动机常处于开环控制,接着试车,故障依旧。其他数据都正常。最后怀疑可能是某个传感器的信号不稳定,影响了发动机的动态工作,而且这个信号在诊断仪上又看不出问题。关键的传感器有曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器、空气流量计、车速传感器等。将示波器逐个接到曲轴位置传感器、凸轮轴位置传感器、节气门位置传感器,试车出现故障时这些信号都正常。将示波器接到空气流量计(涡流式)信号端,试车,出现故障时发

传感器复习题

填空 1.一般在_________ 、_________ 、_________ 、________满负荷等特殊工况需采用开环控制。 2.热式空气流量计的主要元件是__热敏电阻__,可分为热线和_热膜_。 3.卡门旋涡式空气流量计按其检测方式可分为_______光学________和__________________。 4.节气门位置传感器可分为___________ 、__________和综合式三种。 5.凸轮轴位置传感器可分为____________、____________和光电式三种类型。 6.在L型电控燃油喷射系统中,由_________________测量发动机的进气量。 7.叶片式空气流量计基于__________原理对发动机进气量进行测量。 8.空气流量计分为、和三种类型。 9.如下图在测量卡门旋涡式空气流量计与 之间的电压应为2~4V。 10.进气温度传感器随着进气温度的增高,其热敏电阻的阻值。 11.L型EFI中,进气温度传感器一般安装在内。 12.车速传感器给ECU提供车速信号,用于控制和控制。 13.电磁式曲轴位置传感器的核心元件是一个________________。 14.温度传感器包括____________、_____________和 _________________。 15.发动机冷却液温度传感器信号输送给发动机控制模块,

作为____________、__________、_________和_________________的主要修正信号。 16.爆燃传感器一般安装在_________,其功用是__________________________________。 17.爆燃传感器向ECU输入爆燃信号时,电控点火系统采用__________模式。 18.装有氧传感器和三元催化转换装置的汽车,禁止使用 汽油。 判断题 1.测量进气管绝对压力传感器输出的信号电压,随着真空度增加而下降。() 2.在D型EFI中,进气温度传感器安装在空气滤清器内。() 3.空气流量计的作用是测量发动机的进气量,电脑根据空气流量计的信号确定基本喷油量。() 4.进气歧管绝对压力传感器与空气流量计的作用是相当的,所以一般车上,这两种传感器只装一种。() 5.一般氧传感器安装在排气管处,三元催化装置前面。() 6.氧传感器失效时会导致混合气过稀,不会导致混合气过浓。() 7.非加热型的氧传感器一般约5~8万公里应更换一次。() 8.当氧化锆氧传感器内外侧氧浓度差小时,两电极产生的是高电压(约1V)。() 9.氧化锆式氧传感器输出信号的强弱与工作温度无关。()8.对传感器进行振动实验时,可用万用表测量其输出信号有无异常变化。() 一、选择题 1、闭环控制系统将输出信号通过反馈环节在()信号进行比较,从而修正输出信号的控制系统称为闭环控制。 A.输入与输入 B.输入与输出 C.输出与 输出

空气流量计的检测方法

空气流量计的检测方法 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

空气流量计的检测方法空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU根据空气计量传感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传感器——空气流量计。②间接测量方法传感器——进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1)机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2)卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3)热线式空气流量计。热线式空气流量计按其热线形又分为3种。 ①热丝式——将加热丝均匀分布在计量通道内。热丝式空气流量计(图1)精度高、分布均匀,可精确计量空气量,但由于热丝很细~且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。

②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导较差,影响计量精度。 ③热阻式——将加热丝绕成线圈形式固定在石英玻璃管内或暴露在空气通道内。由于热阻式空气流量计热丝被固定,故热线寿命延长,但由于热阻面积很小,只能部分采空气流量,要求空气通道内空气流速均匀,所以常在进气侧安装梳流格栅。 由于热膜式和热阻式空气流量计均是部分采集空气计量空气量,故精度较热丝式较差。另外,热丝式、热膜式和热阻式空气流量计还都易受空气中水分及灰尘的污染,所以在控制电路上都做了专门的设计,每次打开点火开关或关闭点火开关后,流量计中的热丝会由电路提供瞬时大电流加热,使热丝瞬间产生高温(700-1 000℃),烧掉污染在热丝、热膜或热阻表面的杂质,保持空气流量计量精度。 轿车使用的空气流量计,属“L”型热膜式空气流量计,安装在空气滤清器壳体与进气软管之间。其核心部件是流量传感元件和热电阻(均为铂膜式电阻)组合在一起构成热膜电阻。在传感器内部的进气通道上设有一个矩形护套,相当于取样管,热膜电阻设在护套中。为了防止污物沉积到热膜电阻上而影响测量精度,在护套的空气入口一侧设有空气过滤层,用以过滤空气中的污物。为了防止进气温度变化使测量精度受到影响,在护套内还设有一个铂膜式温度补偿电阻,温补电阻设置在热膜电阻前面靠近空气入口一侧。温度补偿电阻和热膜电阻与传感器内部控制电路连接,

电磁流量计使用方法

电磁流量计的应用 作者:任溢 摘要:本文简要介绍了电磁流量计的测量原理、结构与分类、特点,较具体地分析了其选型及安装注意事项。 关键字:电磁流量计测量范围测量介质励磁系统衬里材料接地 电磁流量计是利用电磁感应原理造成的流量测量仪表,可用来测量导电液体体积流量(流速)。变送器几乎没有压力损失,内部无活动部件,用涂层或衬里易解决腐蚀性介质流量的测量。检测过程中不受被测量介质的温度、压力、密度、粘度及流动状态等变化的影响。没有测量滞后的现象。 1 电磁流量计的工作原理 电磁流量计是依据法拉第电磁感应定律来测量管内流体流量的测量装置。当流体在管道中流动时,相当于一根具有一定电导率的导体的切割磁力线,于是液体柱两端会产生感应电动势。它的大小与流量成正比,并通过电极将此信号引至电路转换器。 E=4BQ/πD式中:E――感应电动势;Q――流量;B――磁感应强度;D――流量计公称通径。由上式可知,管道直径D和磁感应强度B不变时,感应电势E和体积流量Q之间成正比。 sinωt,得 但是上式是在均匀直流磁场条件下导出的,由于直流磁场易使管道中的导电介质发生极化,会影响测量精度,因此工业上常采用交流磁场,B=B m sinωt Q=πDE/4B m 式中:ω――交变磁场的角频率; B ――交变磁场磁感应强度最大值。 m 由上式可知,感应电势E与被测量介质的体积流量Q成正比。但变送器输出的E是一个微弱的交流信号,其中包含有各种干扰成分,而且信号内阻变化高达几万欧姆,因此,要求转换器是一个高输入阻抗,且能抑制各种干扰成分的交流毫伏转换器,将感应电动势转换成4~20mADC的统一信号,以供显示、调节和控制,也可送到计算机进行处理。 2 电磁流量计的结构 电磁流量计一般由四部分组成:测量管、励磁系统、检测部分、变送部分。 考虑到防腐蚀的要求,测量管内部一般都加衬里材料。电磁流量计的励磁方式主要有高频励磁、低频励磁、脉冲DC励磁。由于工业的不断发展,有的厂家已经一种新的励磁方式—双频励磁,它克服了高频、低频励磁的缺点,具有“不受流量噪声影响”,“响应速度快”,“零点稳定性高”,“精度高”等优点。 检测部分主要包括电极和干扰调整部分,由于电极要和被测介质直接接触,要具有较强的抗腐蚀性。 变送器的主要作用是将传感器信号转换成与介质体积流量成正比的标准信号输出(0~20mA、4~20mA、0~10KHz)。并且要有较高的稳定性、精度和较强的抗干扰能力。 3 电磁流量计的主要性能参数和特点

空气流量计的检测方法

空气流量计的检测方法 空气流量计基本结构及性能特点随着对发动机汽车尾气排放要求的提高,越来越多的发动机采用精密的空气计量传感器计量进入发动机的空气量,发动机ECU 根据空气计量传 感器信号初步设定基本供油量,以满足发动机各种工况空燃比,进而保证发动机各种工况对混合气的要求。 空气流量计分类:按测量空气流量的方法可分为两种:①直接测量方法传 感器一一空气流量计。②间接测量方法传感器一一进气歧管压力传感器(负压传感器)。直接测量方法传感器按其测量信号转化形式又可分为3种。 (1) 机械式空气流量计,即可动叶片式空气流量计。其特点是将燃油泵控制开关、空气温度传感器、CO 调节器及空气流量计等功能融为一体,结构较复杂,但精度较高。不过由于叶片具有弹簧阻力增加了进气阻力,使它对发动机在急加速时的响应不够理想,故现在很少使用。 (2) 卡尔曼涡流式空气流量计。它是通过采集涡流频率完成空气流速测量,主要是通过光电(如丰田车型)和超声波采集(如韩国现代、日本三菱等)进气涡流,具有进气阻力小、计量准确的特点,但因其结构复杂、不耐振动且造价高,现已逐步被热线式空气流量计取代。 (3) 热线式空气流量计。热线式空气流量计按其热线形又分为 3 种。 ①热丝式一一将加热丝均匀分布在计量通道内。热丝式空气流量计(图1) 精度高、分布均匀,可精确计量空气量,但由于热丝很细(0.01~0.05mm)且暴露在空气中,在空气高速流动时,空气中的沙粒很容易击断热丝。 ②热膜式——将加热丝印刷在一块线路板上,并将线路板固定在空气通道中间。由 于热丝被固定且受到保护膜的保护,寿命提高,但由于保护膜热传导 较差,影响计量精度。

进气管中总各种空气流量计工作原理

一、进气系统的各种空气流量计 现代汽车电子控制燃油喷射系统中,空气流量传感器用于测量发动机吸入的空气量,它是决定电控系统控制精度的主要部件之一。 空气流量传感器又叫空气流量计,它获得的进气量信号是控制单元ECU计算喷油时间和点火时间的主要依据。在多点燃油喷射系统中,检测进气量的方法,在“D”型和“L”型两种燃油喷射系统中各不相同。 “D”型燃油喷射控制系统中,发动机进气量的测量是通过间接 测量法,即利用压力传感器检测进气支管内的空气压力来测量吸入发动机气缸内的进气量。“D”型燃油喷射控制系统的测量精度不高,但成本低。 “L”型燃油喷射控制系统中,进气量的测量是通过直接测量法,即利用空气流量进气支管内被吸入发动机气缸内的空气量,因此,这种检测空气流量方法的精度较高,但成本也高。 目前,现代汽车燃油喷射控制系统所采用的空气流量计有体积流量式和质量流量式。其中,常用的体积流量传感器有翼片式、卡门旋涡式、和量心式流量传感器;质量传感器有热线式和热膜式传感器。 北门交通运输实验室实验台使用的空气流量计有:翼片式(本田实验台)、卡门旋涡式(本田实验台)、热线式(日产实验台)、热膜 式(桑塔纳2000实验台)、D型(本田实验台)等。

1.翼片式空气流量计 翼片式空气流量计 工作原理:翼片式空气流量计主要由叶片部分和电位计部分组成,当空气通过传感器的通道时,叶片将受到气流压力和回位弹簧的弹力作用,而回位弹簧连接有电位器,翼片和电位计的滑动臂是同轴转动的,这就把翼片开启的角度变化量转换成电阻值的变化量。而电位计是通过是通过ECU、连接器还有导线连接起来的。ECU可以测量出发动机的进气量是决定于作用在它上面的电压的变化的大小以及电位计的电阻的变化。发动机工作时,进气的气流推动翼片,使其旋转起来。翼片的开启量是视其轴上的回位弹簧的弹力平衡状况以及进气的气流对翼片的推力大小而定的。当进气量大时,气流对翼片的作用推力相应的就会增大,翼片开启的角度也会变大。 在流量计里面,还有一个进气的温度传感器,它是用来测量

空气流量计 空气流量计的作用原理简述

空气流量计空气流量计的作用原理简述 空气流量计的作用原理简述 在探头后部孕育发生一个低压散布区,颠末传感器在流体中所制作生的差压发展流量丈量。精度高,并压迫由管线振动引起的侵害;安装用度低,仪表参数能且则稳定。输出一个分稳定、无脉动的差压信号。压力略高于管道静压,流体在管道静压感召下,当流体流过探头时,可以或是直接丈量出饱与蒸汽的温度并计算出压力传感手艺不但是仪器仪表实现检测的基础底细高压分布区的压力略高于管道的静压。Take the children of ultra-low power single-chip microputer technology, you can directly measure the temperature of the saturated steam and care about the pressure, as the “equipment” of scientific instruments are often carried out with the renovation of the birth of an important ponent of science and technology renovation、 The existence of rectification, travel velocity and velocity distribution of multiple probation tering, and the input pulse signal or current signal and puter working、流体流过探头时速度减速,并被动实时跟踪补偿和缩短因子修改;蒸汽流量计输出的脉冲频次信号不受流体物性和组分更换的影响,采纳双检测技术可无效地前进检测信号强度,管道永世压损低绕道而行,探头高压

科隆电磁流量计检测过程报告

电磁流量计首先要满足的要求:①满管②流态稳定原理:法拉第电磁感应定律 传感器的检查方法 1、励磁线圈(7-8)阻值30-170欧姆。少于此范围,接线错误,高于此范围接线断路。 2、励磁线圈(7、8)对地1的绝缘电阻>20M 欧姆,用兆欧表。 3、1-2和1-3间电阻的阻值1K-1M欧姆。两阻值应当大致相等,偏差10%。少于此范围,排出管内流体再次测量,如果仍然很低,电极线路短路。高于此范围,电极接线断路或电极污损。如果极大差异,电极接线断路或电极污损。 工具:万用表、兆欧表 注意点: 1、记录下接线的位置 7 紫色 8 绿色 9 黄色 1 黑色 2 白色 3 红色 2、测量阻值前万用表、兆欧表调零 3、有时需线1、2、3搭一起放电 4、拆卸信号输出线时,防止接线头搭在一起,可能烧坏PLC 5、打开箱、壳体时要断电 转换器的检查方法 X=Q100%*7074/GK*DN2,通过比例算出理论值,根据档位测出实际值,算出偏差, 误差在1%以内为正常。(GS8A) 工具:GS8A\GS6A模拟信号发生器 注意点: 1、记录下转换器上仪表的信息: 仪表的编号 瞬时流量 累计流量 2、在C菜单的1.1.X中查看: 励磁频率 GK GKL 3、C菜单的5.3.3中查看: 量程

4、在打档位前GS8A/GS6A调零。 实例: 1:温岭市供水有限公司。将励磁频率由1/6改为1/18后,瞬时流量由开始300m3/h 左右,降到275m3/h左右,原流量计瞬时流量在275m3/h左右时,存在25m3/h 左右的偏差,现已正常。 2:温州绿地污水处理有限公司。正负波动4000~5000m3/h。对仪表传感器进行检查,发现流量波动是由信号干扰引起,没充分接地,将转换器外壳接地后,波动消失。

电磁流量计传感器的检查方法

电磁流量计传感器的检查方法流量系统0003.10 电磁流量计传感器的检查方法 1 适用范围 该方法适用于上海威尔泰工业自动化股份有限公司生产的分体型或一体型电磁流量计 传感器的检查.该检查仅针对传感器正常工作的物理参数,不涉及安装条件,流体条件等使 用条件. 2 术语和定义 2.1 励磁线圈 传感器中用于产生励磁工作磁场的部件. 2.2 信号电极 传感器中用于感应流量信号的部件. 3 测试设备 万用表(数字式) 兆欧表(500V) 4 测试条件 温度:室温 相对湿度:45%~85% 5 技术要求 5.1 目测传感器外观良好,无断裂,碰撞等明显机械损伤. 5.2 励磁线圈(M1,M2)阻值大于5.5欧姆,小于110欧姆. 5.3 励磁线圈(M1,M2)对地(3)的绝缘电阻>20M欧姆. 5.3 流体充满管路时,两信号电极(1,2)对地(3)电阻阻值分别大于500欧姆,小于2M 欧姆,且两值之比不超过10;传感器拆离管道清洁干燥后该值大于20M欧姆. 6 测量及记录 6.1 依据用户现场情况,选择合适的测试点进行测量. 6.2 符合要求可不必记录,对不符合要求的项目记录测量项目及测量值. 7 测量注意事项 7.1 技术要求的阻值为通常条件下值,边界条件时应考虑温度补偿. 7.2 测量时接线盒处保持干燥,同时考虑空气湿度对测量的影响. 7.3 对运行无明显异常的在用仪表或已作灌封处理的,建议从转换器断开处仅测量信号电极 的对地电阻. 8处置 8.1 符合技术要求的传感器可以正常使用. 8.2 超出技术要求时,应充分考虑第7条的测量注意事项,综合现场因素采取现场修复,现 场补充等措施,如电极清洗,可靠接地等,尽量避免更换传感器给用户造成的再次施工的不

汽车电子控制技术习题选择题

1. 将电动汽油泵置于汽油箱内部的目的是() A.便于控制 B.降低噪声 C.防止气阻 D.维修方便 2. 检测电控汽车电子元件要使用数字式万用表,这是因为数字式万用表() A.具有高阻抗 B.具有低阻抗 C.测量精确 D.价格便宜 3. 属于质量流量型的空气流量计是() A.叶片式空气流量计 B.热膜式空气流量计 C.卡门旋涡式空气流量计 D.热线式空气流量计 4. 当结构确定后,电磁喷油器的喷油量主要决定于() A.喷油脉宽 B.点火提前角 C.工作温度 D.汽油质量 5. 发动机水温高于多少摄氏度?冷起动喷油器不工作() A.20~30 B.30~40 C.40~50 D.20~40 6. 通常采用顺序喷射方式的是() A.机械式汽油喷射系统 B.电控汽油喷射系统 C.节气门体汽油喷射系统 D.缸内直接喷射系统 7. 启动发动机前如果点火开关位于“ON”位置,电动汽油泵() A.持续运转 B.不运转 C.运转10s后停止 D.运转2s后停止 8. 氧化锆只有在多少以上的温度时才能正常工作() A.90℃ B.40℃ C.815℃ D.500℃ 9. 废气再循环的作用是抑制() A.碳氢化化合物的产生 B.碳氧化合物的产生 C.氮氧化合物的产生 D.有害气体的产生 10.采用电控点火系统时,发动机实际点火提前角与理想点火提前角关系为() A.大于 B.等于 C.小于 D.接近 11.起动时点火提前角是固定的,一般为() A.15°左右 B.10°左右 C.30°左右 D.20°左右 12.发动机工作时,随冷却液温度提高,爆燃倾向() A.不变 B.增大 C.减小 D.与温度无关 13.点火闭合角主要是通过() A.通电电流加以控制的 B.通电时间加以控制的 C.通电电压加以控制的 D.通电速度加以控制的 14.一般来说电子点火系将不能点火,如果缺少了() A.进气量信号 B.水温信号 C.转速信号 D.上止点信号 15.电子控制点火系统由() A.ECU直接驱动点火线圈进行点火 B.点火控制器直接驱动点火线圈进行点火 C.分电器直接驱动点火线圈进行点火 D.转速信号直接驱动点火线圈进行点火 16.某汽油喷射系统的汽油压力过高,正确的原因是() A.电动汽油泵的电刷接触不良 B.回油管堵塞 C.汽油压力调节器密封不严 D.以上都正确 17.汽油喷射发动机的怠速通常是由() A.自动阻风门控制的 B.怠速调整螺钉控制的

空气流量计检测

空气流量计在电喷轿车上的重要作用,它是喷油控制的基本信号,也是决定信号。此信号的好坏将影响混合气的配比,也直接影响发动机的动力性、稳定性及污染性。当空气流量计信号发生故障时,电控单元将故障码存贮的同时,也将进气量的测量权交于节气门位置信号替代,这是电控单元的一大功能,即失效保护功能。可想而知,好的空气流量计信号与节气门位置信号有着一定的差距。前者精度高,发动机各工况均好,后者精度差,相比之下,发动机各工况的控制稍有差别。当空气流量计信号出现偏差(不准确)时,电控单元将按错误信号进行控制喷油,使混合气浓了或是稀了,造成发动机转速不稳及动力不足。此种故障在我国国产车型上经常发生,特别是大众车系,更换空气流量计的工作是普遍现象。由于热膜式空气流量计不设自洁功能,常常被脏物影响,同样造成信号不准确。信号不准确的传感器比损坏的传感器危害更大。为了准确有效的检测空气流量计是好是坏还是信号偏差,我们通过理论的探讨及实际经验的积累而总结出一套行而有效的检查方法,供大家参考。 如:一辆大众车系的轿车怠速不稳,加速不良,怀疑热膜式空气流量计信号有问题。可以在发动机运转的状况下拔下空气流量计的插头,观察发动机的变化情况,将会出现以下三种情况。 (1)故障消失。说明此空气流量计信号有偏差,并没有损坏,电控单元一直按有偏差的错误信号进行控制喷油。由于混合比失调。发动机燃烧不正常,将会出现发动机转速不稳或动力不良现象。当拔下空气流量计插头时,电控单元检测不到进气信号,便会立即进入失效保护功能,以节气门位置传感器信号替代空气流量计信号,使发动机继续以替代值进行工作。拔下流量计插头,故障消失,正是说明了拔插头前信号不正确,拔插头后信号正确,故障消失。 一般情况下,故障现象可以表明混合气的浓度。为了确认,我们用检测的方法,以数据说话。在插头的信号端测量动态信号电压,怠速工况下,标准电压为0.8~1.4V;加速到全负荷时,电压信号可接近4V。此车实测值.怠速时为0.3V,加速到满负荷时只有3V。由此可以确认,空气流量计有问题,信号电压整体偏低,故障原因有两种能:①零件质量问题,应更换。②脏污问题,只要用清洗剂清洗即可恢复。 (2)故障依旧。说明此空气流量计早已损坏或线路不良,造成电控单元根本没收到信号或收到的是超值信号,电控单元确认空气流量计信号不良,进入到失效保护功能,同时将故障码存入存贮器,故障指示灯闪烁(指装有指示灯的发动机)。此时拔下空气流量计插头与不拔插头结果是一样的,故障现象不会发生变化。那么当前的故障不应是流量计信号不良所影响的,而是由其他原因所致。当真正的原因找到后,务必更换空气流量计。 (3)故障现象稍有变化。说明此空气流量计是好的。拔下空气流量计插头前,电控单元根据空气流量计信号进行控制,喷油量准确,发动机各工况均好;当拔下空气流量计插头时,电控单元根据节气门位置传感器信号进行控制,喷油量有差异(可从数据流中读出这微小的变化值),发动机工况相对稍差。

卡门漩涡式空气流量计

卡门漩涡式空气流量计 ·卡门旋涡式空气流量计的构造是怎么样的呢? 图2-6卡门旋涡式空气流量计结构图 ·卡门旋涡式空气流量计是怎么工作的呢? ·主要设置在空气通道中央的锥状卡门旋涡发生器和相应的旋涡检测装置等组成、当空气流过卡门旋涡发生器时,在其后部将会不断产生卡门旋涡、在单位时间内产生的卡门旋涡的个数(既发生频率)与气流的速度有关,只要测出卡门旋涡的发生频率,即可知道空气流量的大小。 检测卡门旋涡频率有几种方法:两种 1.反光镜检测方式 2.超声波检测方式 ·(1)反光镜检测法 反光镜检测方式的旋涡检测装置由反光镜、发光二极管和光敏晶体管、板弹簧等组成,如图2-7所示

·反光镜检测法原理是什么呢? ·当空气流过卡门旋涡发生器时,受卡门旋涡的影响,发生器两侧压力也交替发生变化。用导压孔把旋涡发生器两侧的压力引到薄金属制成的反光镜背面,反光镜将产生与旋涡发生频率相同的偏转振动,如图2-8所示。在反光镜产生偏转振动的同时,发光二极管投射到反光镜上的反射光束的方向也以相同的频率变化。当发射光束发射到光敏晶体管上时,光敏晶体管输出高电平,反之则为低电平。对应连续产生的卡门旋涡,光敏晶体管输出与之对应的脉冲数,通过对光敏晶体管发出的电脉冲计数,即可算出旋涡的发生频率,进而算出空气的流速和体积流量。

·超声波检测法构造是怎么样的呢? ·超声波检测方式的检测装置由超声波信号发生器、超声波接收器等组成。它是利用卡门旋涡的存在,会使通道横截面空气密度发生变化这一现象来测量旋涡的发生频率]超声波信号发生器安装在空气流动的垂直方向,在它的对面安装超声波接收器,如图2-9所示。

如何验证电磁流量计

如何验证电磁流量计 由于电磁流量计必须是在线连续使用,几乎不可能拆除再运输到国家计量检测中心进行检定。因此,对于现场使用的大口径电磁流量计的精度验证是很有必要的。电磁流量计的精度验证对于电磁流量计的管理,保证其精确度和可靠性,积累原始的比对数据,做日后的验证和核对也是非常有用的。电磁流量计的精度验证可利用清水池容积和电磁流量计校验设备。对电磁流量计精度进行全面验证,以确定电磁流量计在水厂应用过程中的精度,确保计量数据真实可信或是否更换电磁流量计。 1.采用目测法和仪表法,用GS8 检查传感器的励磁线圈阻值、信号线之间的绝缘电阻、接地电阻等项目是否符合出厂前的标准,电磁流量计转换器零点、输出电流等是否满足精度要求。具体检测方法为:(1)测量励磁线圈阻值判断励磁线圈是否有匝间短路现象(测线号“7”与“8”之间的电阻值),电阻值应在30 欧~170 欧之间。若电阻与出厂记录相同,则认为线圈良好,进而间接评估电磁流量计传感器的磁场强度未发生变化。(2)测量励磁线圈对地(测线号“1”和“7”或“8”)绝缘电阻来判断传感器是否受潮,电阻 值应大于20 兆欧。(3)测量电极与液体接触电阻值(测线号“1”和“2”及“1”和“3”),间接评估电极、衬里层表面大体状况。如电极表面和衬里层是否附着沉积层,沉积层是具有导电性还是绝缘性。它们之间的电阻值应在1 千欧~1 兆欧之间,并且线号“1”和“2”及“1”和“3”的电阻值应大致对称。(4)关闭管路上的阀门,检查电磁流量计在充满液体且液体无流动的情况下的整机零点。视情况作适当的调整。(5)检查信号电缆、励磁电缆各芯线的绝缘电阻,检查屏蔽层是否完好。 (6)使用GS8 校验仪器,测试转换器的输出电流。当给定零流量时,输出电流应为:4.00mA;当给定100%流量时,输出电流应为:20.00mA。输出电流值的误差应优于1.5%。(7)测试励磁电流值(转换器端子“7”和“8”之间),励磁电

消防智能电磁流量计流量检测系统设计

消防智能电磁流量计流量检测系统设计 发表时间:2015-02-06T13:52:59.297Z 来源:《科学与技术》2014年第12期下供稿作者:焦宏伟 [导读] 通过面向对象的编程和调试,为社会、企业创造财富与工作方便。智能水枪流量测试系统将提高社会、企业的工作效率。 上海第二工业大学城市建设与环境工程学院焦宏伟 摘要:消防专用的传统水泵由于缺少水流量、泡沫流量的检测,以及缺少相关体系的自动化报表,使得相关企业对于检测水流量、泡沫流量需求很高。基于企业需求,本项目设计了一套消防智能电磁流量计流量检测系统。由于流量检测数据量大,对于数据处理提出了更高的要求。需要做到方便、安全、准确、可靠地讲数据进行处理。人机界面的设计理念避免了检测人员大量操作各种文档、以及大量表格。 关键词:电磁流量计;人机界面;检测1.1 研究意义企业对于检测系统需求高涨,可以在误差允许范围内检测水流量、泡沫流量。方便检测人员工作,提高检测效率。可以在电脑上进行管理员操作并且可以实现对检测数据各种操作,比如存储、查询、显示、删除、打印、动态曲线展示等功能,从而缩短检测周期,提高社会劳动效率。 1.2 国内外研究现状:国外的西尼尔公司等生产的电磁流量计已经很成熟,但是国内还缺少相关的可以花较低代价实现集成系统,即做到消防智能电磁流量计流量检测系统。 2.1 设计目标设计以一套可以对水流量、泡沫流量进行自动检测,并且可以实现对检测数据的存储、查询、显示、删除、打印、动态曲线展示等功能。 2.2 研究内容:2.2.1 环境监测多传感器融合算法设计和实现消防智能电磁流量计流量检测系统具有5 电磁流量计和5 个转换器。分别是:AMF-4-1010 是一款直径为4 毫米的泡沫液电磁流量计,常用的流量范围是0.075~11L/M ;SE11-FR15EF1A1T01G00 是一款直径是15 毫米泡沫液电磁流量计,常用的流量范围是5~100L/M;SE11-FT50EF1A1T01G00是一款直径50 毫米的水流量电磁流量计,常用流量50~1000L/M;SE11-FT1HEE1A1T01G00 是一款直径100 毫米的水流量电磁流量检测计,常用流量200~4000L/M ;SV21- W2A010BNT02K00 是一款直径100 毫米的空气压缩机电磁流量检测计,常用流量范围500~7500L/M。当有水或泡沫等流体充满管道从管道里通过时,SE11-FR15EF1A1T01G00、SE11-FT50EF1A1T01G00 、SE11-FT50EF1A1T01G00 、SE11-FT1HEE1A1T01G00 会输出标准的工业信号4~20 毫安电流,当输出电流为4 毫安时流量计的流量为0,当输出20 毫安时,流量计对应最大流量。而SV21- W2A010BNT02K00 回输出1.54~20 毫安电流,同理,当输出电流为1.54 毫安时流量计的流量为0,当输出20 毫安时,流量计对应最大流量。 3.1 实验步骤1.理论分析,通过软件模拟实现设计要求采用是微软公司推出的开发环境是目前最流行的Windows平台应用程序开发环境,同时带来了 NET Framework 4.0、Microsoft Visual Studio 2010 CTP( Community TechnologyPreview--CTP),并且支持开发面向Windows 7 的应用程序。除了Microsoft SQL Server,它还支持IBM DB2 和Oracle 数据库。 2.优化算法,提高设计要求ModBus 网络只是一个主机,所有通信都由他发出。网络可支持247 个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC 可以和中心主机交换信息而不影响各PC 执行本身的控制任务。由于ModBus通讯协议通讯安全可靠,所以选择数据通讯协议是ModBus 通讯协议。所选硬件设备是研华科技有限公司的数据采集卡—ADAM4117。由于电脑接口都是USB 接口,所以通过485通讯转换成USB 通讯协议转换器,将电脑和采集卡连接起来。 3.最终设计产品,实战检验通过测试,数据误差在千分之八左右。 3.2 分清楚给单元职能,然后进行设计。 4.1 设计任务的完成登陆界面输入登录用户名与密码,即可进入消防智能电磁流量计流量检测系统,进行检测操作。下图是主界面的展示,利用TBCONTRAL 控件组成的多界面人机界面交互界面。分别是主界面、4 毫米泡沫动态流量界面、15 毫米水流量动态界面、100 毫米水流量动态界面、100 毫米空气压缩动态界面。 AMF-4-1010 的转换器接上220 伏特的电压,这只好转换器;SE11-FR15EF1A1T01G00 的转换器接上220 伏特的电压,同时按第一个键和第四个键,按第四个键,出现00000 输入009454 后,同时按第一个和第四个键,出现语言,一直按第三键找到空管报警允许,按第四键,把允许修改为禁止后,按最后一个键不松直到返回页面。同时按第一个键和第四个键,找到设置,输入09454 密码,然后同时按第一个和第四个键,显示语言,按第三键翻页,一直找到需要的东西,按第四个键后,按第三个键修改,修改后,返回按第四个键不松5

空气流量计作用介绍

空气流量计的种类分为很多种,如果常见的空气流量计大家都会知道个一二。但是膜式空气流量计可能不用的朋友就不是很了解了,具体膜式空气流量计有由什么组成,膜式空气流量计是什么样的工作原理,膜式空气流量计应用于那个行业都是我们想知道的。别着急,答案就在下面。我们慢慢来了解。 空气流量计广泛应用 膜式空气流量计因广泛应用于城市家用煤气、天然气、液化石油气等燃气消耗量的计量,故习惯.上又称家用煤气表。但实际上家用煤气表只是膜式空气流量计系列中的一部分,系列中用于厂矿企业中计量工业用煤气的大规格仪表称为工业煤气表。膜式气体流童计的工作原理由“皿”字形隔膜(皮膜)制成的能自由伸缩的计量室1,2,3,4以及能与之联动的滑阀组成流量测量元件,在薄膜伸缩及滑阀的作用下,可连续地将气体从流量计人口送至出口。只要测出薄膜的动作的循环次数,就可获得通过流量计的气体体积总量。膜式空气流量计测量范围度极宽,一般可达100:1,测量精度一般为士2%一土3%R。 空气流量计作用介绍 空气流量计就是这样的,其实就是我们家用可以常见的膜式空气流量计。可能我们在使用的时候都没有注意过膜式空气流量计的作用,但是今天我们了解了,也知道了膜式空气流量计的作用。在今后在遇到膜式空气流量计就会知道它是什么流量计,这样也可以和家人讲讲,更能加深我们对膜式空气流量计的了解。 希望这样的介绍能给大家带来帮助!!相信伴随着新材料、新工艺和新技术的应用,湿饱和蒸汽两相流量计的性能更趋完善也能够满足人们小型化、多功能性的综合要求。相信随着纳米技术、薄膜技术等新材料研制成功,微机械与微电子技术、计算机技术等的综合应用,具备多种气体监测功能的高性能智能化湿饱和蒸汽两相流量计将会在不远的将来出现在我们身边。

空气流量计系统原理介绍

空气流量计系统原理介绍 空气流量计传感器的使用范围还是很广泛的,各行业的发展也是在不断的更新。那么空气流量计现如今在这个科学发展迅速的时候,是呈现着一种什么样的状态呢? 空气流量计传感器电控系统介绍 空气流量计传感器作为汽油机电控喷油系统中一个不可缺少的元件,它的发展和整个电控喷油系统的发展密切相关。1967年,最先开发出了燃油喷射系统,采用进气管的压力感应作为控制喷油量的主要因素,它在汽车突然制动或下坡节气门关闭时,以及大气状态有较大的变化时,有加速反映不良的缺点;喷油系统是在公司D型的基础上改进而来的。于1973年开始使用,是目前应用仍较广泛的电控喷油系统,它以叶片式空气流量计代替D型中的进气管压力传感器,提高了喷油量的控制精确度;系统是L型的改型与进一步发展,这种系统是1981年开发的,不同之处是它用热线式空气流量计取代了L 型中的叶片式空气流量计,其优点是测量结果与大气压无关,测量精度明显提高;热膜式空气流量计是在热线式的基础上发展起来的新一代热式空气流量计,两者测量原理基本相同,它采用板式热电阻取代热线式空气流量计中的铂丝,延长了使用寿命。 空气流量计气量检测 总之,发动机进气量的检测从60年代最早应用的速度密度方式,经过70年代的叶片式流量计,到了80年代的热线式流量计,空气流量的检测技术渐趋成熟。当前,国外汽油机电控喷油系统正向多功能、

应用更新型的传感器、采用更先进的控制理论方向发展。我国的对汽油机电控喷油系统的研究是从80年代初期开始的。由于工业基础整体比较薄弱,国内在这方面的科研,仍处于电控喷油系统部件的引进、消化吸收阶段,空气流量传感器、喷油器等汽油喷射系统的零部件与控制元件多数还需要完善和可靠性考核,距实用还有相当一段距离。尤其是要立足于国内制造,还需要解决传感器的研制与配套、制造工艺与试验方法、以及可靠性和使用寿命等方面的问题。 空气流量计传感器在控制系统方面需要进一步的学些和掌握一定的知识原理,这样也是非常有助于我们在使用空气流量计的时候能达到一定的使用效果。

相关文档