文档库 最新最全的文档下载
当前位置:文档库 › 光纤通信接入网技术研究

光纤通信接入网技术研究

光纤通信接入网技术研究
光纤通信接入网技术研究

摘要

信息产业是当今世界经济领域中最具有活力和竞争力的产业之一,它影响着人类的生活方式和生活质量。接入网是用户网进入城域网/骨干网的桥梁。随着SDH技术的大规模推广应用和ATM技术的发展,电信网的主干网已经基本上实现了光纤化、宽带化和数字化。

本文首先对接入网技术做了概述。通过对定义、物理参考模型、接入技术、发展趋势等相关内容的简要介绍,说明了光纤接入网是接入网技术发展的必然趋势。然后,本文深入研究了铜线接入和光纤接入这两种接入网的接入技术,着重研究光纤接入尤其是无源光网络(PON-Passive Optical Network)和目前主流的FTTx (Fiber To The x)。接着,本文对―光进铜退‖的解决方案进行了具体的研究和分析。主流运营商的第一公里接入网络仍然主要以双绞线铜缆网络为主,为了满足日益增长的带宽需求,实现光纤接入,现有的铜缆接入网就必须进行改造。最后,本文对光接入网网管技术进行了介绍,讲述符合TMN要求的接入网管理系统的结构和功能,以及接入网网管功能的实现。

关键词:接入网,光纤通信,PON

ABSTRACT

Information industry is the world's economy the most dynamic and competitive industries in the world, it affects the way people live and the quality of life. Access network is the user network access to metro/backbone bridge. With the popularization and application of SDH technology and large-scale development of A TM technology, telecommunications network backbone has been basically realized fiber, broadband and digital.

Firstly, an overview of access network technology. By definition, the physical reference model, access technology, trends and other related content outline indicating the access network, optical access network is the inevitable trend of technological development. Secondly, this in-depth study of the copper access and optical access to both the access network access technology, and focused on particular passive optical fiber access networks (PON - Passive Optical Network) and the current mainstream FTTx (Fiber To The x/some place) .Then, the paper "Light of Copper" solution for specific research and analysis. mainstream operators first kilometer access networks are still largely dominated by twisted pair copper network, in order to meet the growing bandwidth demand, to achieve optical access, the existing copper access network must be modified. Finally, on the optical access network technologies are introduced, consistent with TMN requirements about the access network management system structure and function, and the realization of the access network of network management.

KEY WORDS: access network, optical fiber communication, PON

目录

第1章概论............................................................................................................. - 5 -

1.1 接入网发展概述......................................................................................... - 5 -

1.1.1 接入网简介....................................................................................... - 5 -

1.1.2接入网的定义.................................................................................... - 5 -

1.1.3接入网的物理参考模型.................................................................... - 6 -

1.1.4接入网的业务.................................................................................... - 7 -

1.2主要接入网技术.......................................................................................... - 8 -

1.2.1铜线接入............................................................................................ - 8 -

1.2.2光纤接入............................................................................................ - 8 -

1.2.3无线接入............................................................................................ - 8 -

1.3 接入网的发展趋势..................................................................................... - 9 -

1.4论文的主要内容和章节安排.................................................................... - 10 -

1.4.1论文的主要内容.............................................................................. - 10 -

1.4.2论文章节安排.................................................................................. - 10 - 第2章光接入技术............................................................................................. - 12 -

2.1光纤通信简介............................................................................................ - 12 -

2.1.1光纤通信的概念.............................................................................. - 12 -

2.1.2光纤通信的优点.............................................................................. - 12 -

2.2光纤接入技术............................................................................................ - 13 -

2.2.1光纤接入FTTx ............................................................................... - 13 -

2.2.2光纤接入网的分类.......................................................................... - 15 -

2.2.3光纤接入的拓扑结构...................................................................... - 16 -

2.3 PON技术................................................................................................... - 17 -

2.3.1 PON的拓扑结构............................................................................. - 17 -

2.3.2 PON技术的标准化......................................................................... - 18 -

2.4 光接入网中的复用方式........................................................................... - 19 - 第3章光发送与光接收....................................................................................... - 20 -

3.1天线............................................................................................................ - 20 -

3.1.1卡塞格伦天线结构.......................................................................... - 20 -

3.1.2天线的性能分析.............................................................................. - 21 -

3.1.3无线光接入系统的多孔径天线...................................................... - 21 -

3.2光发送单元................................................................................................ - 22 -

3.2.1无线光接入发送单元的结构.......................................................... - 22 -

3.2.2无线光接入系统光源的选取.......................................................... - 23 -

3.3光接收单元................................................................................................ - 23 -

3.3.1接收单元结构和光探测器分析...................................................... - 24 -

3.3.2前置放大器的分析.......................................................................... - 25 - 第4章接入网升级技术研究............................................................................... - 28 -

4.1升级技术提出的背景................................................................................ - 28 -

4.2―光进铜退‖技术实施要求......................................................................... - 29 -

4 3―光进铜退‖采用的主要技术和相关设备................................................. - 31 -

4.3.1 EPON技术...................................................................................... - 31 -

4.3.2 接入网关AG、综合接入设备IAD.............................................. - 34 - 第5章无线光接入网的组网技术....................................................................... - 36 -

5.1 接入网网管功能....................................................................................... - 36 -

5.1.1 接入网网管系统功能结构............................................................. - 37 -

5.1.2 接入网网管向TMN的过渡.......................................................... - 38 -

5.2 光接入网网管系统功能实现................................................................... - 38 - 第6章全文总结................................................................................................... - 39 - 参考文献................................................................................................................. - 41 - 致谢....................................................................................................................... - 42 - 毕业设计小结......................................................................................................... - 43 -

第1章概论

1.1 接入网发展概述

1.1.1 接入网简介

电信网包含了各种电信业务的所有传输及复用设备、交换设备,以为各种线路设施等。整个电信网按功能可分为3个部分,即传输网、交换网和接入网,它们的关系如图1.1所示。

图1.1 电信网功能模型

1.1.2接入网的定义

整个电信网从地理上可以分成三部分,即核心网(CN)、接入网(AN)和用户驻地网(CPN),如图1.2所示。其中核心网包括长途网(长途端局以上部分)和中继网(长途端局与市话局之间以及市话局之间的部分)。按照G..902的定义,接入网是由业务节点接口(SNI)和用户网络接口(UNI)之间的一系列传送实体(如线路设施和传输设施)组成的,是为供给电信业务而提供所需传送承载能力的实施系统,可经由管理接口(Q3)配置和管理。

CPN:用户驻地点UNI:用户网络接口SNI:业务节点接口

图1.1 电信网的基本组成

接入网是电信网的一个组成部分,负责将电信业务透明地传送到用户,也就

是说用户通过接入网的传输,能灵活地接入到不同的电信业务节点上。具体而言,接入网即为本地交换机与用户之间的连接部分,通常包括用户线传输系统、复用设备、交叉连接设备或用户/网络终端设备。

近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着IP业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网(B-ISDN-Broadband Integrated Service Digital Network)的障碍。进入20世纪90年代以来,新的政策法规、新的业务需求以及一系列新的技术手段的出现为接入网发展提供了新的契机,使得占电信网络总资产50%左右的接入网变得十分活跃,各种技术方案层出不穷,令人目不暇接。现在接入网已经成为世界各国研究和开发的热点。

1.1.3接入网的物理参考模型

以典型的市内铜缆用户接入网为例,其典型结构如图1.3所示。图中端局就是人们所说的电话局。由端局到交接箱之间的这一段线路称为馈线段。馈线电缆的线径较大,线对数也多。交接箱就是业务接入点,其作用是完成馈线电缆中双绞线与配线电缆中双绞线之间的交叉连接。从交接箱开始经线径较小、线对数较少的配线电缆连至分线盒。分线盒的作用是终结配线电缆并将之与引入线相连。由分线盒开始通常为若干单对或双对双绞线,与用户端相连,用户引入线为用户专用。通常,接入网的馈线段长度约3~5km;配线电缆长度约0.5~1km;引入线长度约10~300m。

UNI

图1.3 接入网的物理参考模型

在光纤接入网中情况将发生较大的变化,除一些术语名称不同外,功能有显著不同。不仅通信容量不同,业务种类也有很大变化,而且在整个信息传输过程

中要完成光/电和电/光交换。然而接入网的含义和网络框架是相同的或者说是相似通信接入网的光纤化技术研究与实现的。光纤在接入网中的应用首先是用光缆代替馈线电缆。交接箱由远端局(RO—Remote Office)代替,RO又称远端节点(RN—Remote Node),或简称远端(RT—Remote Termination)。随着光纤继续向用户延伸,其成本越来越高,因而目前主要是到路边的分线盒,在该处需设置光网络单元(ONU),一边完成光电变换和分用功能。最终目标则是将光纤引入到住宅用户,届时ONU也将设置到住宅处。

1.1.4接入网的业务

接入网的业务接入有两类:一类是支持单个业务的业务节点,另一类是支持一个以上业务的业务节点,即组合业务节点。业务接入点可提供的业务归纳起来可分为四类,如表1.1所示。

表1.1 接入网业务及其带宽

可见,接入网承担的业务范围很广泛,是实现多媒体通信的关键网络之一,是实现未来信息高速公路的基本设施和重要网络。由于用户类型不同,所需要的业务也各不相同。大企事业用户,主要是高速数据、会议电视、可视电话等宽带用户,而住宅用户则主要是电话和广播式图像分配业务,如有线电视(CA TV)以

及一些窄带综合数字网业务(N—ISDN)。此外,正在迅速发展的高清晰度电视(HDTV)也是人们普遍注意的方向。

1.2主要接入网技术

接入网技术种类繁多,根据传输媒质的不同可将其分为铜线接入、光纤接入和无线接入三大类。

1.2.1铜线接入

目前,铜线接入主要有高速DSL(HNSL—High—Rate Digital Subscriber Loop)、非对称DSL(ADSL—Asymmetric Digital Subscriber Loop)、超高速DSL(VDSL—V ery-High-Bit-Rate Digital Subscriber Loop)、ISDN-DSL(Integrated Services Digital Network-Digital Subscriber Loop)、速率自适应DSL(Rate Adaptive Digital Subscriber Loop)等技术。由于电话网已非常普及,电话线已居全世界用户线的90%以上,对于具有铜线资源的通信网络,基于铜线的宽带技术作为接入网的一种选择。

如何充分利用这部分宝贵资源,采用各种先进的调制技术和编码技术,提高铜线的传输速率,是接入网宽带化的重要任务之一。

1.2.2光纤接入

光纤接入网是指局端与用户之间完全以光纤作为传输媒体。接入网光纤化有很多方案,有光纤到路边(FTTC—Fiber To The Curb)、光纤到小区(FTTZ—Fiber To The Zone)、光纤到办公室(FTTB—Fiber To The Building)、光纤到楼面(FTTF—Fiber To The Feeder)、光纤到家庭(FTTH—Fiber To The Home)。采用光纤接入网是光纤通信发展的必然趋势,尽管目前各国发展光纤接入网的步伐各不相同,但光纤到家庭是公认的接入网发展目标。

现阶段大规模实现FTTH还不经济,主要是实现FTTB用TTC,目前可采用的传送技术手段以有源光纤接入(如PDH—Plesiochronous Digital Hierarchy、ATM—Asynchronous Transfer Mode、SDH—Synchronous Digital Hierarchy、GE/FE 等)为主,但当无源光纤接入开始得到应用时,其将成为FTTH的一种最经济有效的技术手段。

1.2.3无线接入

无线接入技术可以分为移动接入和固定接入两大类。与宽带接入方式相比,虽然无线接入技术的应用还面临着开发新频段、完善调制和多址技术、防止信元

丢失等方面的问题,但无线接入的最大特点是无需敷设线路、建设速度快、初期投资小、安装灵活、维护方便等。对于没有有线资源的通信网络而言,为了能够尽快提供接入服务,无线接入特别是固定无线接入技术将有可能成为选择对象。

1.3 接入网的发展趋势

从目前的接入网的发展情况看,主要有下面几种情况:

(l) 光纤接入网(含光接入网技术)是接入网技术的发展方向

有线接入网在接入网中处于主体地位。全光接入网技术,即光纤到桌面、光纤到家,随着用户对带宽需求的不断增加,将得到不断的发展。与传统的用户网相比,光纤网络有很多优点,两者的特点如表1.2所示:

表1.2 传统用户网与光纤网的特点比较

(2) 综合接入网技术是接入网技术发展的方向

综合接入网设备同时具备普通电话POTS(Plain Old Telephone Service)、综合数字业务ISDN、数字数据DDN(Digital Data Network)、IP(Internet Protocol)等业务的接入功能,既能降低网络建设成本,又方便网络的统一维护。以后的综合接入网设备将能同时提供各类宽带和窄带业务的接入。

(3) 以ATM技术或以太网技术为基础的无源光网络

以ATM为基础的无源光网络(APON)代表了宽带接入技术的发展方向之一,其优势在于它结合了A TM多业务,多比特率支持能力和PON(无源光网络)透明宽带传输能力,业务的接入非常灵活。其提供的业务范围从具有交互性的图像分配业务到数据传送、局域网互联、透明的虚通道等。

(4) 无线接入是接入网的一个重要组成部分

就目前无线接入技术和设备而言,能提供电话业务和低/中速数据业务的系统主要有CDMA(Code—Division Multiple Access)系统(19GHz频段)、S-CDMA 系统(l.8GHz频段)、个人手持式电话系统PHS—Personal Handy-phone System(19GHz频段)、数字增强无绳通信DECT—Digital Enhanced Cordless

Telecommunications系统及450MHz模拟系统等;能提供电话、64kbit/s数据和ISDN等综合业务的综合接入系统有微波点到多点通信系统;能提供音频、数据和视频的宽带无线全业务接入系统有局域多点分布式系统(LMDS)等。

(5) 铜缆技术的更新

从技术发展来看,首先现有的铜缆接入网必须改造,以xDSL(ADSL、HDSL、VDSL等)数字用户线系列技术为代表的铜缆接入技术是一种重要改造手段;HFC 系统和非对称Cable Modem则是改造现有CATV网的实验性方案;但从发展来看,光纤接入,特别是宽带光接入辅以无线接入手段将占主导地位。

但是,从目前我国接入网的发展情况来看,ADSL技术在未来几年还将占居主流地位,并且向ADSL2+方向发展,VDSL也将会得到局部应用。

(6) 内置SDH接入网

内置SDH接入优势在以下几方面:兼容性强;完善的自愈保护能力,增加网络可靠性;借助SDH的大容量、高可靠性,可组成中继传输与接入的混合网;面向网络发展的升级能力;网络操作、维护、管理功能(OAM)大大加强;有利于向宽带接入发展。SDH利用虚容器(VC)的特点可映射各级速率的PDH,而且能直接接入ATM信号,因此为向宽带接入发展提供了一个理想的平台。

1.4论文的主要内容和章节安排

1.4.1论文的主要内容

本文从整个系统的角度,阐述了光接入网定义,分析光接入网的特性和原理;介绍光纤接入网的主要技术以及各种复用方式,阐述光纤接入网的拓扑结构和接入网网管功能。

1.4.2论文章节安排

第一章先引入现有常用接入网的概述,阐明无线光接入网概念和无线光接入网的优缺点。同时阐述了接入网的发展趋势。

第二章主要介绍光纤接入技术,光纤接入网的分类和拓扑结构,PON技术,还有光接入网中的一些复用方式。

第三章是无线光接入系统光发送和接收单位,先介绍无线光接入系统中卡塞格伦天线结构和理论,再介绍无线光接入的光收发送单元结构,以及光源、探测器的选取,前置放大电路特点,无线光接收机的噪声机制和一些性能指标性能,最后从整个系统的角度对无线光传输进行功率预算。

第四章是对接入网升级技术的研究,―光进铜退‖采用的主要技术和相关设备。

第五章介绍光接入网组网理论和网络结构,阐述了接入网网管功能和光接入网网管系统功能的实现。

第六章对整个课题研究的总结。

第2章光接入技术

2.1光纤通信简介

2.1.1光纤通信的概念

光纤通信是利用半导体激光器(Laser Diode,LD)或半导体发光二极管(LED)作为光源器件,把电信号转换成光信号并将其耦合进石英(或塑料)光纤中进行传输,在接收端使用半导体检测器件(检波器),如雪崩光电二极管(APD)或光电二极管(PIN)等,将光信号再还原为电信号的一种通信方式。

实现光纤通信的关键器件与技术有;

①低损耗、宽带宽的光纤;

②高可见性、长寿命的光源及高响应的光检测器件;

③光测量及光纤连接技术。

2.1.2光纤通信的优点

光纤通信之所以发展迅猛,这与光纤通信技术所具有的巨大技术优势和潜力,以及其巨大的经济效益和社会效益是分不开的。

光纤通信最直接、最基本的优点可以从经济和技术两个方面看。

1.经济优势

①频率资源丰富,通信容量大。

②无中继通信距离长。

③节约铜(铝)和铅。

④抗干扰能力强,保密性能好。

⑤光缆耐腐烂,重量轻,体积小。

2.技术优势

除了上述的基本优点外,数字光纤传输系统与传统的传输方式相比,在技术上还有许多优势。

①数字光纤传输系统很容易与程控交换机相连接,而主要用于模拟通信的同轴电缆很难满足数字化的要求。

②数字光纤传输设备采用了专用超大规模数字集成电路和混合集成电路,以及表面安装技术,使设备的可靠性大大提高。

③由于数字光纤传输系统采用PCM技术,因而可以方便地利用终端设备上的计算机实现系统的监测与监控。

④扩容方便。

⑤利用―插入比特‖的线路码型,可以方便地解决―区间通信‖问题和任意上下话路问题。

⑥光纤/同轴电缆混合(Hybrid Fiber Coax,FC)技术广泛地应用于有线电视网中。

⑦波分复用技术使得光纤通信的容量大幅度提高而不用增加光纤芯数。

2.2光纤接入技术

光纤接入网(或称光接入网)(Optical Access Network,OAN)是以光纤为传输介质,并利用光波作为载波传送信号的接入网,泛指本地交换机或远端交换模块与用户之间采用光纤通信或部分采用光纤通信的系统。在北美,美国贝尔通信研究所对一种称为光纤环路系统(FITL:Fiber In The Loop)的概念进行了规范,其实质和目的与ITU—T所规定的OAN基本一致,只是具体规范稍有差异,因而一般两者(OAN与FITL)可以等效使用,不做区分。只有强调某一项特有功能(如维护操作通路)时再区分是OAN还是FITL。多数情况下,OAN和FITL可以换用。

在电信网中引入OAN或FITL最基本的目标为:

(1) 减少铜缆的维护运行费用并降低故障率;

(2) 支持开发新业务,特别是多媒体和宽带业务;

(3) 增加传输距离,加大覆盖区面积,减少节点数目,有利于简化网络结构;

(4) 便于实现混合接入结构网。

2.2.1光纤接入FTTx

FTTx技术主要用于接入网络光纤化,范围从区域电信机房的局端设备到用户终端设备,局端设备为光线路终端(OLT,Optical Line Terminal)、用户端设备为光网络单元(ONU,Optical Network Unit)或光网络终端(ONT,Optical Network Terminal)。根据光纤到用户的距离来分类,如图2.1所示,可分成光纤到交换箱(FTTCab,Fiber To The Cabinet)、光纤到路边(FTTC,Fiber To The Curb)、光纤到大楼(FTTB,Fiber To The Building)及光纤到户(FTTH,Fiber To The Home)等4种服务形态。美国运营商V erizon将FTTB及FTTH合称光纤到驻地(FTTP,Fiber To The Premise)。上述服务可统称FTTx。其中最主要的是FTTC、FTTB、FTTH。

FTTH

FTTB

FTTC

FTTCab

图2.1 FTTx类型

1. FTTC

FTTC为目前最主要的服务形式,主要是为住宅区的用户作服务,将ONU 设备放置于路边机箱,利用ONU出来的同轴电缆传送CA TV信号或双绞线传送电话及上网服务,这段可采用ISDN、HDSL或ADSL铜线接入技术。光纤到远端模块(FTTR,Fiber To The Remote module)是FTTC的一种变型,将ONU的位置移到远离用户的远端(RT)处,可服务更多的用户(多于256个),从而降低成本,一般提供2Mbit/s以下的窄带业务。

2. FTTB

FTTB依服务对象区分有两种,一种是公寓大厦的用户服务,另一种是商业大楼的公司行号服务,两种皆将ONU设置在大楼的地下室配线箱处,只是公寓大厦的ONU是FTTC的延伸,而商业大楼是为了中大型企业单位,必须提高传输的速率,以提供高速的数据、电子商务、视频会议等宽带服务。FTTB与FTTC 并没有什么根本不同,两者的差异在于服务的对象不同,因而所提供的业务不同。FTTB是一种点到多点的结构,通常不用点到点的结构。FTTB的光纤化程度比FTTC更进一步。

3. FTTH

至于FTTH,ITU认为从光纤端头的光电转换器(或称为媒体转换器MC)到用户桌面不超过100米的情况才是FTTH。FTTH将光纤的距离延伸到终端用户家里,使得家庭内能提供各种不同的宽带服务,如VOD、在家购物、在家上课等,提供更多的商机。若搭配WLAN技术,将使得宽带与移动结合,则可以达到未来宽带数字家庭的远景。因为主要用户是大企事业用户,业务量需求比较大,一般采用点到点或环形结构。FTTH光纤接入网,具有频带宽、容量大、信号质

量好、可靠性搞、可以提供多种业务乃至未来宽带交互性业务,从本地交换机到用户全部为光连接,中间无铜缆,也无有源电子设备,ONU安在用户家,可采用成本较低的元器件。ONU还可采用本地供电,供电成本比网络供电方式费用低,故障率小,维护、安装和测试方便。FTTH是直接到用户的真正的信息高速公路,因而被认为是接入网发展的方向。

这几种主要的光纤接入方式的优缺点以及适用场景对比列于表2.1。

表2.1 几种FTTx方式的对比

2.2.2光纤接入网的分类

光纤接入网可分为有源光网络(AON)和无源光网络(PON)。采用SDH技术、ATM技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(ODN)全部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。

现阶段,无源光网络(PON)技术是实现FTTx的主流技术。典型的PON系统由局侧OLT(光线路终端)、用户侧ONU/ONT(光网络单元)以及ODN—Orgnization Development Network(光分配网络)组成。PON技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。

2.2.3光纤接入的拓扑结构

光纤接入网的拓扑结构,是指传输线路和节点的几何排列图形,它表示了网络中各节点的相互位置与相互连接的布局情况。网络的拓扑结构对网络功能、造价及可靠性等具有重要影响。其三种基本的拓扑结构是:总线形、环形和星形,由此又可派生出总线—星形、双星形、双环形、总线—总线形等多种组合应用形式,各有特点、相互补充。

通常的光纤接入的拓扑结构有点到点(PZP)方式和点到多点(PZMP)两种方式,如图2.2所示。

(a)点到点光网络

(b)小区交换式网络

(c)点到多点无源光网络

图2.2 FTTx的实施方案

在点到点(PZP)的接入方式中,交换局为每个用户分配一根光纤,如图2.2(a)所示。在这种点到点光纤接入方式中每个用户可以使用这个根光纤的全部带宽,而且用户的升级容易实现。但是这种点到点的光纤接入方式存在严重的缺点:第一,随着用户数目的增加,光纤数量线形增加,成本很高;第二,每个光纤提供的传输带宽浪费严重,其他的用户无法共享光纤的带宽资源;第三,不利于开展多播和组播业务。因此这种点到点的光纤接入方式在实际中应用并不多。图2.2(b)是点到点接入方式的改进,中心局交换机和用户交换机之间通过光纤连接,用户交换机为每个用户提供点到点的光纤接入,相对于图2.2(a)中的点到点光纤接入,这种改进方式可以节约光纤资源。

另一种是基于PON的点到多点(P2MP)接入方式,如图2.2(c)所示。这种无源的点到多点的接入方式中在用户侧使用无源光功率分配器,从而实现点到多点的用户接入方式。相对于点到点光纤接入方式,点到多点接入的优点非常明显:第一,由于多个用户共享一根光纤的带宽资源,用户成本相对较低,而且可以充分利用光纤的带宽资源;第二,对于开展点到多点的多播、组播业务相对简单,适合开展视频广播和流媒体业务;第三,减小中心交换局一侧的光纤接头数目,安装和维护简单,易于实现用户网络的优化规划。正是由于这些优点,PON已经成为光纤接入的主流技术。

2.3 PON技术

2.3.1 PON的拓扑结构

根据不同的应用环境,PON的拓扑结构有以下几种方式:

(1)树型拓扑结构

树型结构的PON拓扑方式如图23(a)所示,这是最常用的PON组网方式。在这种方式中只需要一个l×N的光分离器即可实现P2MP的传输,系统结构简单,成本较低,组网灵活。

(2)环形拓扑结构

环形拓扑结构如图2.3(b)所示。每个ONU和环型光纤通过2×2的光分离器相连。相对于树型和总线型拓扑结构,环型拓扑PON有较好的服务质量(QoS,Quality of Service)保障,但是组网复杂,光分离器较多,ONU的增加和删除都比较困难。

(3)总线型拓扑结构

总线型拓扑结构如图2.3(c)所示。在这种方式中需要N个1×2的光分离器来实现P2MP传输,系统结构简单,组网灵活,但是光分离器的数目较多。

在实际的应用中,考虑到光分离器的成本、多用户接入控制复杂性和光分离

器带来的噪声,应尽量减少光分离器的数目,因此树型拓扑的PON应用最为广泛。

(a)树型结构

(b)环型网络

(c)总线型网络

图2.3 PON的拓扑方式

2.3.2 PON技术的标准化

PON系统在90年代初就出现了,1996年ITU—T完成了对G..982的标准化,主要对2Mbit/s以下接入速率的窄带PON系统进行定义。与此同时,以ATM为基础的PON (APON)发展迅速,1998年ITU—T正式通过了G.983.1建议,即基于PON系统的高速光接入系统,G.983.1对APON系统进行了详尽的规范,主要规定线路速率、光网络要求、网络分层结构、物理媒质层要求、汇聚层要求、测

距方法和传输性能要求等。1999年ITU—T又推出了G.983.2建议即APON的光网络终端(ONT)管理和控制接口规范,该建议主要从网络管理和信息模型上对APON系统进行定义,以确保不同厂家的设备实现互操作。ITU(the International Telecommunications Union)和FSAN(Full Service Access Network)联盟采纳了ATM 标准,把它作为在PON第二层的帧封装标准,能为商业用户、家庭用户提供包括IP数据、视频、音频等综合业务,形成了APON的标准(文档号ITU—TRecG983)。但是APON存在着一系列的问题,比如带宽有限、带宽损失大、数据包开销大、协议转换麻烦、技术复杂、设备昂贵、多厂家互操作性差等。随着以太网技术的异军突起,APON技术一直没有得到大规模应用。

随着Internet的高速发展,用户对网络带宽的要求不断提高,各种新的宽带接入技术已经成为研究的热点。在这种背景下,IEEE于2000年底成立了EFM 工作组(Ethernet in the First Mile study Group),试图引入一种新的接入技术标准Ethernet PON (Ethernet passive Optical Network,即EPON)。2004年IEEE802.3EFM 工作组发布了EPON标准IEEE802.3ah,2005年并入IEEE802.3ah-2005标准。

EPON利用PON(无源光网络)的拓扑结构实现以太网的接入,它基于高速以太网平台和TDM时分MAC(Media Access Control)媒体访问控制方式,能够提供多种综合业务的宽带接入,是成熟度最高、发展最快的技术。

除了EPON标准,另外一个主要标准则为ITU—T的GPON标准,GPON(Gigabit-Capablep PON)最早由FSAN组织于2002年9月提出,ITU—T在此基础上于2003年3月完成了ITU-TG.984.1和G.984.2的制定,2004年2月和6月完成了G.984.3的标准化,从而最终形成了GPON的标准族。目前GPON尚处于试验应用阶段。

2.4 光接入网中的复用方式

光纤最重要的一个特点是它可以传输很高速率的数字信号,容量很大。为了更进一步提高光纤的利用率,参考已经比较成熟的店的复用方法,人们还采用了各种光的复用技术。并将其运用于各种类型的光纤接入网中,如波分复用(Wavelength Division Multiplexing,WDM)、频分复用(Frequency Division Multiplexing,FDM)、时分复用(Time Division Multiplexing,TDM)、空分复用(Space Division Multiplexing,SDM)和副载波复用(Subcarrier Multiplexing,SCM)等。

第3章光发送与光接收

无线光接入光发送和探测技术和光纤通信区别,是针对大气信道的特征而采用的一些特殊处理技术。主意包括天线、背景光噪声处理、光源和光探测器的选取,以及光发射机和光接收机内部电路特殊处理。

3.1天线

由于卡塞格伦天线具有体积轻、结构紧凑、焦距长度短等特点,且后瓣小、设计馈源灵活、增益高,它是无线光接入中使用较多的一种天线,但其遮挡率影响比普通抛物面天线大。

3.1.1卡塞格伦天线结构

图3.1 天线结构原理图

D:抛物面直径f:抛物面焦距ψ0:抛物面半角d:双曲面直径φ0:双曲面半角L V:双曲面顶点到抛物面焦点的距离fc:双曲面实焦点F′:虚焦点F间距离

图3.1是一个卡塞格伦天线的示意图。由抛物面初级反射镜和双曲线次级反射镜组成。卡塞格伦天线主反射面是旋转抛物面,张角为ψ0;副反射面为旋转双曲面,张角为φ0;发送源通常置于主副反射面间旋转双曲面的实焦点F′上。在无线光通信中采用收发天线结构类似,发送和探测光信号部件都将放置在F′上,同时为了减小遮挡率,F′往往和抛物面的顶点重合。一般双曲面的虚焦点和抛物面的焦点是重合的。

在进行天线的几何设计时,一般先给定抛物面D、f,再确定抛物面半角Ψ0,

浅谈光纤通信技术的发展及其应用

浅谈光纤通信技术的发展及其应用 发表时间:2016-11-02T16:56:20.480Z 来源:《基层建设》2016年14期作者:张运器 [导读] 摘要:随着社会的发展和时代的进步,我国的综合国力逐渐增强,人们对通信的技术和质量也有了更高的要求。 广州市奇成通信技术服务有限公司 摘要:随着社会的发展和时代的进步,我国的综合国力逐渐增强,人们对通信的技术和质量也有了更高的要求。光纤通信作为新兴技术被广泛的应用在各国各行业的科技领域中,尤其是在电信网络中起着不可忽视的作用,在我国的通信行业中,光纤通信技术占据着主要的作用。光纤通信技术不仅能在通信主干路中得到应用,还能在电力通信的控制系统中得到应用,对工业进行控制和检测,为通信行业带来了很大的积极作用,为通信行业的发展和进步奠定了基础。 关键词:光纤通信技术;发展趋势;通信行业;应用 虽然光纤通信技术被广泛的应用在各国的通信行业中,但是光纤通信技术的使用历史并不是很长,早在二十世纪就有科学家对光纤通信进行了探索,但由于极高的造价导致研究不得不中断。光纤通信技术使通信行业得到了前所未有的发展,现阶段光纤通信的技术取得了得到了很大的提高,不断得到补充的新技术使我国通信行业的能力得到了极大的提高,使全国的大部分地区都实现了光纤通信技术的应用。只有良好的利用光纤通信,不断的提高光纤通信的技术才能使我国的通信行业得到长足的发展。 一、光纤通信的特点 光纤通信能够获得广泛的应用和发展主要是因为其具有多方面的特点,从而得到了更多人们和行业的重视。第一,光纤通信拥有很宽的传输频带,使通信的容量大大增加。和铜线、电缆等传输方式相比,光纤通信的带宽很大,现阶段我国还使用了密集波分复用的技术,此技术也使光纤的传输容量得到了极大提高。第二,拥有较长的中继距离,光纤通信的损耗很小,这个特点在传统的微波传输中难以得到体现。在较长的传输线路中,能够有效的将中继站数量控制在最小,使传输的成本得以降低。第三,拥有较好的保密性能并伴有强大的抗干扰能力。在进行光纤传输时,光波导结构会使光信号得到很好的限制,即使在特殊的地区渗漏的光波量也极小,使信号得到更好的保护。第四,光纤通信具有极高的传输质量。在外界环境等因素改变时,光纤通信不会受其影响,拥有很强的适应能力,使传输的信号以高质量被传输到需要的地方。第五,有效的节约了成本。制作光纤的原材料是石英玻璃,基础材料则为二氧化硅,这种原材料的价格较低,我国拥有丰富的原材料,使用这种材料能有效的节约金属的使用量,有效的节约了成本。第六,使用较灵活。光纤拥有很轻的重量,而且规格比较小,在进行光纤维护和施工时,传输和铺设都及其方便,并且能够在水底和架空时进行铺设。 二、光纤通信技术的发展 (一)由光入网的发展趋势 在我国光纤通信技术的发展过程中,由光入网一直是一个难题的,但在今后的光纤通信技术发展正,由光入网是其必须实现的发展趋势。通过技术的发展,由光入网趋势将在我国光纤通信技术中得以实现,将会成为网络中不可缺少的一项环节,由光入网将使通信行业实现网络化和智能化。另外,我国还有很多使用铜线进行通信的现象,铜线和光纤相比还存在很大的技术反差。在这种现在存在的同时,接入网络就显得尤为重要,是我国通信行业得到真正发展的一个非常重要的节点。通过实现光纤的接入网能使存在的问题得以解决。除了这种情况以外,还要适当的使各地的节点和与网络结构的适应度得到减少,这样能在一定程度上扩大覆盖率,从而使故障率和维修产生的费用都得到相应的减少。 (二)光纤通信技术的新一代光纤 由于社会的不断进步和发展,各行业都得到了不同程度的提高,业务量等数据都在不断的增长。电信网络也跟随着这一形式向下一个光纤通信技术的方向不断努力,这一新技术要遵循着可持续发展的目标。要想真正实现新一代的光纤技术就要拥有超大容量的光缆,光缆的组成为逛到纤维。大容量的光缆和传统的光缆相比具有很多的优点,不仅能够适应网络业务的超长距离,还要拥有良好的稳定性。根据这种要求,我国通信行业的技术人员已经研发出了新型的光纤,光纤具有不同的型号,例如,G.655光纤和全波光纤等。这样的光纤能够适合干线网和城域网的不同需要,根据不同需要制定不同的光纤,更有效的促进了其传输质量和速度,使光纤通信技术得到了真正的提高和发展。 (三)实现波分复用系统 在我国的通信行业中,传统的手段是利用电分复用系统对信号进行传输,随着时代的进步,这种传统的方法已经不能适应人们的需求,逐渐的对电分复用系统进行取代,波分复用系统将会得到人们的广泛应用。虽然波分复用系统得到了应用,但还是存在很多的问题。在进行200纳米光纤进行宽带传输时,利用率会极其低,使用了波分复用系统能有效的解决此类问题的发生,它能将很多个不同的波长使用同一时间进行同时传输,这样就使传输的容量得到提高。实现波分复用系统的优点具体表现在以下几个方面:第一,波分复用能有效的对信号功率和徐律进行脱钩处理,使通信不再受到传统关节点的影响。第二,波分复用系统能和光纤进行配合使用,从而使光纤的传输效率得到很大的提高,增加了资源的利用率。第三,运用波分复用系统能够节省大量的光纤,同时也使通信所产生的成本得到了减少。 三、光纤通信技术的应用 (一)光纤通信技术在电力通信行业中的应用 电力通信主要是要实现电网的商业化、现代化和自动化,电力通信是安全系统和自动化系统进行稳定工作的基础和前提,电力通信能够实现电力市场的现代化管理和运营商业化,为电力市场提供了很多的技术保障和支持。光纤通信技术在电力通信领域有着很大的应用,起初只是提供了传统的管道、架空和地埋等技术方法,对普通的电缆进行铺设这样能使电信部门的光纤通信网络逐渐实现系统化。随着光纤技术的不断进步和发展,光纤通信能够实现信号的大容量传输且损耗非常小,根据这种特点被电力通信部门应用,并受到了业界的一直好评。 (二)光纤通信技术在智能交通领域的应用 交通管理在我国越来越受到重视,智能交通的目的就是将交通管理和运营等方面的工作进行信息化管理,其核心的内容则是信息采集、信息的传输和信息的处理,通过对信息的综合运用能使交通系统实现准确且高效的运输管理体制。在智能交通中应用光纤通信技术主要是实现收费联网和监控等各录像数据和信息的传递,使交通系统更加稳定的运行,为公路等交通的安全和通常奠定了基础,进一步促进

光纤通信网络风险评估

光纤通信网络风险评估 光纤具有抗干扰、数据传输快、损耗小等优点,成为当前网络的主要 通信介质,在很多领域得到了广泛应用[1,2]。不过光纤通信网络 与其它类型的网络一样,也存有安全隐患问题[3],如果出现数据被 窃取、网络入侵等行为,那么会给人们带来巨大的经济损失,为此, 如何提升光纤通信网络的安全,一直是网络安全管理领域中的研究热 点[4]。近几年来,学者们对光纤通信网络的风险评估进行广泛研究,最原始风险评估模型是引用其它类型的网络评估模型,如双绞线网络等,但是光纤通信网络具有其自身的特殊性,这些模型的风险评估结 果不可靠[5]。近些年,一些研究机构提出了基于层次分析法、德尔 斐法、决策树、神经网络、支持向量机等光纤通信网络的风险评估模 型[6-10]。层次分析法、德尔斐法属于定性分析或简单定量方法, 评估结果的好坏与专家经验和知识直接相关,评估精度不太稳定,时 高时低,而且评估结果含有一定的主观性[11]。决策树、神经网络、支持向量机等属于定量分析方法,根据光纤通信网络风险的评估指标,采用神经网络等建立相对应的评估模型,评估精度比较高,在光纤通 信网络风险评估中应用最为广泛[12]。在实际应用中,这些方法均 没有考虑评估指标选择问题,导致评估指标过多,评估结果和效率均 有待进一步改善[13]。为了提升光纤通信网络风险评估精度,有效 保证光纤网络的数据传输可靠性,提出一种因子分析法的光纤通信网 络风险评估模型,采用并通过具体实例对其有效性和优越性进行分析。 1建立光纤通信网络风险的数学模型 在光纤通信网络风险评估过程中,有两个步骤对评估结果的影响十分 关键,其中一个是评估指标的选择,另一个是光纤通信网络风险值的 预测算法。假设选择第i个样本的评估指标为{xi1,xi2,…,xin}, 相对应的光纤通信网络值为yi,那么光纤通信网络风险评估的数学模 型可以描述。 2因子分析法选择光纤网络风险评估指标

我国光纤通信技术论文.doc

我国光纤通信技术论文 2020年4月

我国光纤通信技术论文本文关键词:光纤通信,我国,论文,技术 我国光纤通信技术论文本文简介:1光纤通信技术的主要特点 1.1损耗低,传输距离远与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用 我国光纤通信技术论文本文内容: 1光纤通信技术的主要特点 1.1损耗低,传输距离远 与普通的通信相比,光纤的损耗率要低得多。目前,光纤的损耗可以低达0.2dB/km。中继光放大器间距可达100多km,而传统的铜电缆中继放大器间距仅为几百米到几千米。因此,除了用户到小站间仍使用铜电缆,其他通信网中包括电视网、跨海洋的网络全部使用光纤通信。光纤通信在

长距离传输中的优势非常明显。目前光纤通信的最长通信距离达到10000m以上。 1.2抗干扰能力强 与其他光缆相比,光纤通信具有非常明显的优点———抗电磁干扰能力极强。光纤通信设备的主要成分是SiO 的应用给光纤通信技术带来无可比拟的优势。由于石英具有极强的抗腐蚀性和绝缘性,因此,应用到光纤通讯设备上使其同样具有较强的抗干扰能力。光纤通信不会受到太阳黑子活动、电离层变化、雷电以及人为释放的电磁等方面的干扰,这一特性使得光纤可以应用到军事领域中。 1.3安全性和保密性高 因为光纤主要依靠光波的全反射原理进行传输,光信号完全被限制在包层内,光波泄露的现象很少发生。而且一个光缆内的很多光纤线之间也不会相互干扰,因此,光通信的抗干扰能力很强,保密性和安全性非常高。此外,光纤的重量很轻、体积较小,这样既节省空间又使得设备的安装非常方便。另外,用来制作光纤通信设备的原材料越来越丰富,而且价格低廉,稳定性好,同时受环境温度影响小,使

光纤通信技术特点和发展

光纤通信技术特点和发展

光纤通信技术的特点和发展趋势 摘要:光纤通信是指利用光与光纤传递信息的一种方式,光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,既有经济优势又有技术优势,光纤通信由于超高速、低误码、高可靠,价格低廉,已成为信息的最重要传输手段和信息社会的重要基础设施。本文探讨光纤通信技术的优点和缺点以及光纤通信的发展和现状。 光纤通信在技术功能构成上主要分为:(1)信号的发射;(2)信号的合波;(3)信号的传输和放大;(4)信号的分离;(5)信号的接收。

关键词:光纤通信技术特点现状发展趋势 1、光纤通信技术 2、 光纤通信是利用光导纤维传输光信号,以实现信息传递的一种通信方式,属于有线通信的一种,光经过调变后便能携带信息,利用光波作载体,以光纤作为传输媒介,将信息从一处传至另一处,是光信息科学与技术的研究与应用领域。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。光纤由内芯和包层组成,内芯一般为几十微米或几微米,比一根头发丝还细;外面层成为包层,包层的作用是保护光纤。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆,由于玻璃材料是制作光纤的主要材料,它是电气绝缘体,因而不需要担心接地回路,光波在光纤中传输,不会发生信息传播中的信息泄露现象,光纤很细,占用的体积小,这解决了实施的空间问题。光纤通信系统的组成,现代的光纤通信系统多半包括一个发射器,将电信号转换成光信号,再通过光纤将光信号传递。光纤多半埋在地下,连接不同的建筑物。系统中还包括数种光放大器,以及一个光接收器将光信号转换回电信号。在光纤通信系统中传递的多半是数位信号,来源包括计算机、电话系统,或是有线电

光纤通信技术论文

光纤通信技术论文 论光纤通信技术的特点和发展趋势 摘要:光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术作为信息技术的重要支撑平台,在未来信息社会中将起到十分重要的作用。本文探讨了光纤通信技术的主要特征及发展趋势。 关键词:光纤通信技术特点发展趋势接入技术 引言 近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。 1.光纤通信技术定义 光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤

通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。 2.光纤通信技术的特点 2.1 频带极宽,通信容量大。 光纤的传输带宽比铜线或电缆大得多。对于单波长光纤通信系统,由于终端设备的限制往往发挥不出带宽大的优势。因此需要技术来增加传输的容量,密集波分复用技术就能解决这个问题。 2.2 损耗低,中继距离长。 目前,实用的光纤通信系统使用的光纤多为石英光纤;此类光纤损耗可低于0.20dB/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。如果将来使用非石英极低损耗传输介质,理论上传输的损耗还可以降到更低的水平。这就表明通过光纤通信系统可以减少系统的施工成本,带来更好的经济效益。 2.3 抗电磁干扰能力强。

光纤通信系统与网络

本实验指导书为《数字传输技术(A)》《光纤通信系统》《光纤通信测量技术》《光同步传输技术》课程的实验用书,其有关内容也可以配合《数字传输技术(A)》《光纤通信系统》《光纤通信测量技术》《光同步传输技术》等课程教材使用。 本实验指导书用于光纤数字传输系统性能测试和光纤传输网络的设备与网络管理操作几方面的必做实验,主要是光纤数字线路系统传输性能测试、SDH 设备认识和SDH网络管理系统及操作。其中光纤数字线路系统传输性能测试是最基本的实验项目。 光纤数字线路系统包括光端机、光中继机和光纤线路等,其性能参数包括设备和系统光接口参数和电接口传输性能,光接口参数主要是光设备光接口参数、光通道(光纤线路)传输特性,电接口传输性能主要包括误码性能、定时性能和可用性等,需要测试的项目较多,涉及多种测试仪表和测试方法。本指导书重点介绍光纤线路接续和接续损耗的监测、光纤衰减测试实验、光接口参数测试和光纤数字传输系统的传输性能测试实验。 选做实验的指导书另行编写。

实验一光纤接续和监测 1 实验二光纤衰减测试 3 实验三光接口参数测试 5 实验四电接口传输性能测试10 实验五SDH设备认识17 实验六SDH网络管理系统及操作19

实验一 光纤的接续和监测 一. 试验目的 掌握光纤接续原理 掌握光纤接续损耗的测试原理 学习使用熔接机和了解光纤接续过程 二.试验原理 光纤接续的常用方法有热熔法和冷接法等,热熔法的主要步骤如下:连接光纤端面的制备,端面的定位和对准,熔接。 光纤接续损耗A s 的定义为 t r s p p A lg 10?= (dB ) 式中 p t 为发射光纤发出的光功率,W p r 为接收光纤接收的光功率,W 监测光纤接续损耗的方法有多种,如:光时域反射计(OTDR)监测和四功率法测试等,目前都采用光时域反射计监测法,其测试系统原理土如图1.1所示。 测试时OTDR 发出测试光脉冲,并测得连接光纤的背向色散曲线如图1.2所示,根据所得曲线设置五个测试点(即采用五点法)即得到接续损耗值。 三. 试验仪器和设备 1.TYPE35SE 光纤熔接机, 1台 2.光时域反射计, 1台 3.光纤, 2盘,2Km/盘 四. 测试步骤

光纤通信技术论文

光纤通信技术 光纤即为光导纤维的简称。光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。 光纤通信就是利用光导纤维传输信号,以实现信息传递的一种通信方式。光导纤维通信简称光纤通信。可以把光纤通信看成是以光导纤维为传输媒介的“有线”光通信。实际上光纤通信系统使用的不是单根的光纤,而是许多光纤聚集在一起的组成的光缆。光纤通信具有以下特点:(1)通信容量大、传输距离远。 (2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳。 (4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。 (6)无辐射,难于窃听, (7)光缆适应性强,寿命长。 (8)质地脆,机械强度差。 (9)光纤的切断和接续需要一定的工具、设备和技术。 (10)分路、耦合不灵活。 (11)光纤光缆的弯曲半径不能过小(>20cm) (12)有供电困难问题。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤光缆技术 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。 光复用技术 复用技术是为了提高通信线路的利用率,而采用的在同一传输线路上同时传输多路不同信号而互不干扰的技术。光复用技术种类很多,其中最为重要的是波分复用(WDM)技术和光时分复用(OTDM)技术。光波分复用(WDM)技术是在一芯光纤中同时传输多波长光信号的一项技术。其基本原理是在发送端将不同波长的光信号组合起来,并耦合到光缆线路上的同一根光纤中进行传输,在接收端将组合波长的光信号分开,并作进一步处理,恢复出原信号后送入不同的终端。波分复用当前的商业水平是273个或更多的波长,研究水平是1022个波长(能传输368亿路电话),近期的潜在水平为几千个波长,理论极限约为15000个波长(包括光的偏振模色散复用,OPDM)。而光时分复用(OTDM)技术指利用高速光开关把多路光信号在时域里复用到一路上的技术。光时分复用(OTDM)的原理与电时分复用相同,只不过电时分复用是在电域中完成,而光时分复用是在光域中进行,即将高速的光支路数据流(例如10Gbit/s,甚至40Gbit/s)直接复用进光域,产生极高比特率的合成光数据流。

光纤通信系统与应用(胡庆)复习总结

红色:重点、绿色:了解 第1章 1、光纤通信的基本概念:以光波为载频,用光纤作为传输介质的通信方式。光纤通信工作波长在于近红外区:0.85~2.00μm的波长区,对应频率: 167~375THz。 对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、 1.31μm 1.55μm及 1.625μm 2、光纤通信系统的基本组成:P5 图1-3 目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。该系统主要由光发送设备(光发射机)、光纤传输线路、光接收设备(光接收机)、光中继器以及各种耦合器件组成。 各部件功能: 电发射机:对来自信源的信号进行模/数转换和多路复用处理; 光发送设备:实现电/光转换; 光接收机:实现光/电转换; 光中继器:将经过光纤长距离衰减和畸变后的微弱光信号放大、整形、再生成具有一定强度的光信号,继续送向前方,以保证良好的通信质量。 3、光纤通信的特点:(可参照P1、2) 优点:(1),传输容量大。(2)传输损耗小,中继距离长。 (3)保密性能好:光波仅在光纤芯区传输,基本无泄露。 (4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。(5)体积小、重量轻。(6)原材料来源丰富、价格低廉。 缺点:1)弯曲半径不宜过小;2)不能远距离传输;3)传输过程易发生色散。 4、适用光纤:P11 G.652 和G.654:常规单模光纤,色散最小值在1310nm处,衰减最小值在1550nm 处。常见的结构有阶跃型和下凹型单模光纤。 G.653:色散位移光纤,色散最小值在1550nm处,衰减最小值在1550nm处。难 以克服FWM混频等非线性效应带来的影响。 G.655:非零色散光纤,色散在1310nm处较小,不为0;衰减最小值在1550nm 处。可以尽量克服FWM混频等非线性效应带来的影响。 补充:1、1966年7月,英籍华人(高锟)博士从理论上分析证明了用光纤作为传输介质以实现光通信的可能性。 2、数字光纤通信系统有准同步数字体系(PDH)和同步数字体系(SDH)两种传输体制。

光纤通信技术的发展及趋势

光纤通信技术的发展及趋势 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 1、导言 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 2、光纤通信技术的发展历史总结

近十几年来,光纤通信技术有了长足的进展,其中的新技术也不断被发掘,大大提高了传统意义上的通信能力,这使得光纤通信技术在更大的范围内得到了应用。 光纤通信技术是指把光波作为信息传输的载波,以光纤作为信息传输的媒介,将信息进行点对点发送的现代通信方式。光纤通信技术的诞生及深入发展是信息通信史上一次重要的改革。光纤通信技术从理论提出到工程领域的技术实现,再到今天高速光纤通信的实现,前后经历了几十年的时间。 上世纪六十年代开始的光纤通信技术最开始起源于国外,当时研制的光纤损耗高达400分贝/千米,后来,英国标准电信研究所提出,在理论上光纤损耗能够降低到20分贝/千米,然后,日本紧接着研制出通信光纤的损耗是100分贝/千米,康宁公司基于粉末法研制出了损耗在20分贝/千米以下的石英光纤,到最近的掺锗石英光纤的损耗降低至0. 2分贝/千米,已经接近了石英光纤理论上提出的损耗极限。 由以上光纤通信技术的发展历程,可以把光纤通信技术分为大致五个阶段,即850纳米波段的多模光波,到1310纳米多模光纤,到1310纳米单模光纤,再到1550纳米单模光纤,最后是长距离进行传输的光纤通信技术。 3、光纤通信技术的现状研究

光纤通信技术的发展历史

论文题目:光纤通信技术发展历史 姓名:谢新云 学号:0932002231 专业班级:通信技术(2) 院系:电子通信工程学院 指导老师:彭霞 完成时间:2011年10月22日

概论 目前,在实际运用中相当有前途的一种通信技术之一,即光纤通信技术已成为现代化通信非常重要的支柱。作为全球新一代信息技术革命的重要标志之一,光纤通信技术已经变为当今信息社会中各种多样且复杂的信息的主要传输媒介,并深刻的、广泛的改变了信息网架构的整体面貌,以现代信息社会最坚实的通信基础的身份,向世人展现了其无限美好的发展前景。 自上世纪光纤通信技术在全球问世以来,整个的信息通讯领域发生了本质的、革命性的变革,光纤通信技术以光波作为信息传输的载体,以光纤硬件作为信息传输媒介,因为信息传输频带比较宽,所以它的主要特点是:通信达到了高速率和大容量,且损耗低、体积小、重量轻,还有抗电磁干扰和不易串音等一系列优点,从而备受通信领域专业人士青睐,发展也异常迅猛。 光纤通信不仅可以应用在通信的主干线路中,也可以在电力通信控制系统中发挥作用,进行工业监测、控制,现在在军事上也被广泛应用,基于各领域对信息量的需求不断增长,光纤通信技术的应用发展趋势也备受关注。一条完整的光纤链路除受光纤本身质量影响外,还取决于光纤链路现场的施工工艺和环境。 本文针对光纤通信技术的发展及趋势展开研究,分别介绍了光纤通信技术的发展历史和现状,以及光纤通信技术的发展趋势,对一些先进的光纤通信技术进行了介绍。 关键字:光纤通信技术,发展历史,现状,发展趋势

目录 概论 (1) 目录 (2) 第一章光纤通信技术的形成 (3) 1.1早期的光通信 (3) 1.2 现在光纤通信技术的形成 (3) 1.2.1 光纤通信器件的发展 (3) 1.2.2 光纤 (5) 第二章光纤通信技术的现状 (8) 2.1 光纤光缆 (8) 2.2 光电子器件 (8) 2.3光纤通信系统 (14) 第三章我国光纤通信技术的发展 (15) 参考文献 (16)

光纤通信技术的发展与应用

光纤通信技术的发展与应用 一、光纤通信的应用背景 通信产业是伴随着人类社会的发展而发展的。追溯光通信的发展起源,早在三千多年前,我国就利用烽火台火光传递信息,这是一种视觉光通信。随后,在1880年贝尔发明了光电话,但是它们所传输的信息容量小,距离短,可靠性低,设备笨重,究其原因是由于采用太阳光等普通光源。之后伴随着激光的发现,1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。 二、光纤通信的技术原理 光纤即光导纤维,光纤通信是指利用光波作为载波,以光纤作为传输介质将要传输的信号从一处传至另一处的通信方式。其中,光纤由纤芯、包层和涂层组成。纤芯是一种玻璃材质,以微米为单位,一般几或几十微米,比发丝还细。由多根光纤组成组成的称之为光缆。中间层称为包层,根据纤芯和包层的折射率不同从而实现光信号传输过程中在纤芯内的全反射,实现信号的传输。涂层就是保护层,可以增加光纤的韧性以保护光纤。

光纤通信系统的基本组成部分有光发信机、光纤线路、光收信机、中继器及无源器件组成。光发信机的作用是将要传输的信号变成可以在光纤上传输的光信号,然后通过光纤线路实现信号的远距离传输,光纤线路在终端把信号耦合到收信端的光检测器上,通过光收信端把变化后的光信号再转换为电信号,并通过光放大器将这微弱的电信号放大到足够的电平,最终送达到接收端的电端完成信号的输送。中继器在这一过程中的作用是补偿光信号在光纤传输过程中受到的衰减,并对波形失真的脉冲进行校正。无源器件的作用则是完成光纤之间、光纤与光端机之间的连接及耦合。其原理图如图1所示: 通过信号的这一传输过程可以看出,信号在传输过程中其形式主要实现了两次转换,第一次即把电信号变成可在光纤中传输的光信号,第二次即把光信号在接收端还原成电信号。此外,在发信端还需首先把要传输的信号如语音信号变成可传输的电信号。 三、光纤通信的特点 1.抗干扰能力强。光纤的主要构成材料是石英,石英属绝缘材料的范畴,绝缘性好,有很强的抗腐蚀性。而且在实际应用过程中它受电流的影响非常小,因此抗电磁干扰的能力很强,可以不受外部环境的影响,也不受人为架设的电缆等的干扰。这一特性相比于普通无线

光纤通信技术发展历程、特点及现状

光纤通信技术发展历程、特点及现状

————————————————————————————————作者:————————————————————————————————日期: 2

学号:20085044013 本科学年论文 学院物理电子工程学院 专业电子科学与技术 年级2008级 姓名王震 论文题目光纤通信技术发展历程、特点及现状 指导教师张新伟职称讲师 成绩

2012年1月10日 目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特

通信技术类论文投稿范文(两篇)

下面是两篇通信技术类论文投稿范文,第一篇论文介绍了光纤通信技术的应用,这种高质量的传输方式在不同的领域都得到了应用,论文进行了详细阐述。第二篇论文介绍了光纤通信在电力传输损耗的解决措施,分析了光纤通信在电力传输中产生损耗的原因并给出了相关解决措施。 通信电源技术 《光纤通信技术的应用》 【摘要】光纤通信技术是一种将光纤电缆作为传输介质的高质量传输方式,其已经在不同领域得到了不同程度的应用。在电力通信领域、智能交通领域、广播电视领域以及互联网领域光纤通信都不可或缺。现文章主要针对光纤通信技术及其应用开展论述。 【关键词】光纤通信;智能交通;电力行业 光纤通信技术的使用提高了信息传递的效率,不论是传输质量,传输容量还是传输速度都得到了改善。光纤通信质量轻、损耗低、安全可靠、抗干扰性强,在不同领域都已经普及应用,特别是在服务与生产行业的应用十分普遍。 一、光纤通信技术 光纤通信是将光作为信息的承受载体,将光纤作为传输的通信方式[1]。光纤作为一种新型的传输介质,其损耗相对于同轴电缆或导波管来说要低出许多。因此,在实际使用过程中光纤通信的容量要对于微波通信来说要大出几十倍。如图1所示为光纤结构图。光纤通信技术在实际使用过程中拥有其独特的特点:

第一,通信容量较大。光纤通信在使用过程中由于传输速度与质量相对于其他电缆与铜线来说拥有显著的优势。光纤通信技术利用光源调制的特殊性、调制的方式以及光纤是色散特性使得明显改善了光纤通信的质量。同时,光纤通信在运用时中单波长光纤通信系统可以最大程度的发挥光纤通信的效用,显著提升其传输容量。 第二,传输损耗较低。一般石英光纤损耗大约在0-20dB/km左右,这一水平的传输损耗远远低于其他介质[2]。因此,可以判断石英光纤损耗是一种明显的低消耗材料。在跨度更多的无中继距离传输中可以显著减少损耗。伴随着中继站数量的不断减少,系统的成本与复杂性得到了降低,光纤通信在长途传输的过程中可以发挥最大的使用效益,降低经济成本。 第三,保密性良好。光纤通信中的广播可以提升光波导结构的各项效果。光纤通信技术能够将信号完整的封存在光波导结构当中,有可能泄露的射线都将被不透明包皮吸收。这一方式不会导致光波泄露,同时光纤在传输过程中也不会出现串音干扰,光纤通信的内容将拥有较高的保密性。 二、光纤通信技术的应用 2.1光纤通信技术在电力通信中的应用 电力通信工作主要是为对电网进行日常运营管理,以保证电网能够正常顺利运作。在电网工作中电力通信是其中的技术基础,其能够为电网正常提供电力以及电力系统的正常应用提供充分的保障。光纤通信技术一般是在电力通信的架空、地埋等不同方式来敷设光缆,从

光纤通信技术的发展史及其现状_论文[1]

光纤通信技术的发展史及其现状 【内容摘要】 光纤通信符合了高速度、大容量、高保密等要求,但是,光纤通信能实际应用到人类传输信息中并不是一帆风顺的,其发展中经历了很多技术难关,解决了这些技术难题,光纤通信才能进一步发展。 本文从光源及传输介质、光电子器件、光纤通信系统的发展来展示光纤通信技术的发展。 【关键词】 光纤通信技术光纤光缆光有源器件光无源器件光纤通信系统 【正文】 光自身固有的优点注定了它在人类历史上充当不可忽略的角色,随着人类技术的发展,其应用越来越广泛,优点也越来越突出。 光纤通信是将要传送的图像、数据等信号调制到光载波上,以光纤作为传输媒介的通信方式。作为载波的光波频率比电波频率高得多,作为传输介质的光纤又比同轴电缆或波导管的损耗低得多,因此相对于电缆通信或微波通信,光纤通信具有许多独特的优点。 将优点突出的光纤通信真正应用到人类生活中去,和很多技术一样,都需要一个发展的过程。 一、光纤通信技术的形成 (一)、早期的光通信 光无处不在,这句话毫不夸张。在人类发展的早期,人类已经开始使用光传递信息了,这样的例子有很多。 打手势是一种目视形式的光通信,在黑暗中不能进行。白天太阳充当这个传输系统的光源,太阳辐射携带发送者的信息传送给接收者,手的动作调制光波,人的眼睛充当检测器。 另外,3000多年前就有的烽火台,直到目前仍然使用的信号灯、旗语等都可以看作是原始形式的光通信。望远镜的出现则又极大地延长了这类目视形式的光通信的距离。 这类光通信方式有一个显著的缺点,就是它们能够传输的容量极其有限。 近代历史上,早在1880年,美国的贝尔(Bell)发明了“光电话”。这种光电话利用太阳光或弧光灯作光源,通过透镜把光束聚焦在送话器前的振动镜片上,使光强度随话音的变化而变化,实现话音对光强度的调制。在接收端,用抛物面反射镜把从大气传来的光束反射到硅光电池上,使光信号变换为电流传送到受话器。 光电话并未能在人类生活中得到实际的使用,这主要是因为当时没有合适的光源和传输介质。其所利用的自然光为非相干光,方向性不好,不易调制和传输;而以空气作为传输介质,损耗会很大,无法实现远距离传输,又易受天气影响,通信极不稳定可靠。

光纤通信技术的发展与展望论文.

光纤通信技术的发展与展望论文 2019-02-13 [摘要]分析光纤通信技术的发展历史与发展现状,并对光纤通信技术的发展趋势进行了展望。 [关键词]光纤通信技术发展现状趋势展望 一、光纤通信技术的发展及现状 光纤通信的诞生与发展是电信史上的一次重要革命。光纤从提出理论到技术实现和今天的高速光纤通信也不过几十年的时间。从国外的发展历程我们可以看出,20世纪60年代中期,所研制的最好的光纤损耗在400分贝以上,1966年英国标准电信研究所高锟及Hockham从理论上预言光纤损耗可降至20分贝/千米以下,日本于1969年研制出第一根通信用光纤损耗为100分贝/千米,1970年康宁公司(Corning)采用“粉末法”先后获得了损耗低于20分贝/千米和4分贝/千米的低损耗石英光纤,1974年贝尔实验室(Bell)采用改进的化学汽相沉积法制出性能优于康宁公司的光纤产品。到1979年,掺锗石英光纤在1.55千米处的损耗已经降到0.2分贝/千米,这一数值已经十分接近由Rayleigh散射所决定的石英光纤理论损耗极限。 目前国内光纤光缆的生产能力过剩,供大于求。特种光纤如FTTH用光纤仍需进口,但总量不大,国内生产光纤光缆价格与国际市场没有差别,成本无法再降,已经是零利润,在国际市场没有太强竞争力,出口量很小。二十年来的光技术的两个主要发展,WDM和PON,这两个已经相对比较成熟。多业务传输发展平台两个方面,一方面是更有效承载以太网业务、数据业务,另一方面是向业务方面发展。AS0N的现状是目前的系统只是在设备中,或是在网络中实现了一些功能,但是一些核心作用还没有达到。 二、光纤通信技术的趋势及展望 目前在光通信领域有几个发展热点即超高速传输系统、超大容量WDM系统、光传送联网技术、新一代的光纤、IPoverOptical以及光接入网技术。 (一)向超高速系统的发展 目前10Gbps系统已开始大批量装备网络,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。但是,10Gbps系统对于光缆极化模色散比较敏感,而已经铺设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。它的比较现实的出路是转向光的复用方式。光复用方式有很多种,但目前只有波分复用(WDM)方式进入了大规模商用阶段,而其它方式尚处于试验研究阶段。

光纤通信技术发展历程、特点及现状

本科学年论文 学 院 物理电子工程学院 专 业 电子科学与技术 年 级 2008级 姓 名 王震 论文题目 光纤通信技术发展历程、特点及现状 指导教师 张新伟 职称 讲师 成 绩 2012年1月10日 学号:

目录 摘要 (1) Abstract (1) 绪论 (1) 1光纤通信发展历程 (1) 1.1 世界光纤通信发展史 (1) 1.2 中国光纤通信发展史 (2) 2 光纤通信技术的特点 (3) 2.1 频带极宽,通信容量大 (3) 2.2 损耗低,中继距离长 (3) 2.3 抗电磁干扰能力强 (3) 2.4 无串音干扰,保密性好 (3) 3 不断发展的光纤通信技术 (3) 3.1 SDH系统 (3) 3.2 不断增加的信道容量 (3) 3.3 光纤传输距离 (4) 3.4 向城域网发展 (4) 3.5 互联网发展需求与下一代全光网络发展趋势 (4) 4 结束语 (4) 参考文献 (4)

光纤通信技术发展历程、特点及现状 摘要:光纤通信是利用光作为信息载体、以光纤作为传输的通信方式。光纤通信是以其传输频带宽、通信容量大、中继距离长、损耗低特点,并具有抗电磁干扰能力强,保密性好的优势,光纤通信不仅可以应用在通信的主干线路中,还可以应用在电力通信控制系统中,进行工业监测、控制,而且在军事领域的用途也越来越为广泛。光纤通信技术正朝着超大容量、超长距离传输和交换、全光网络方向发展。 关键词:光纤通信;发展历程;特点;发展现状 绪论 光纤通信技术已成为现代通信的主要通信方式,在现代信息网中起着非常重要的作用,随着信息技术的发展,大容量光纤通信网络的建设,光电子技术将起到越来越重要的作用。光电子技术将继微电子技术之后再次推动人类科学技术的革命。有专家预测,21世纪将是“光子世纪”,十年内,光子产业可能会全面取代传统电子工业,成为本世纪最大的产业。光纤通信又进入了一个蓬勃发展的新时期,而这一次发展将涉及信息产业的各个领域,其范围更广,技术更新,难度更大,动力更强,无疑将对21世纪信息产业的发展和社会进步产生巨大影响。 1 光纤通信发展历程 1.1 世界光纤通信发展史 光纤的发明,引起了通信技术的一场革命,是构成21世纪即将到来的信息社会的一大要素。 1966年出生在中国上海的英籍华人高锟,发表论文《光频介质纤维表面波导》,提出用石英玻璃纤维(光纤)传送光信号来进行通信,可实现长距离、大容量通信。于1970年损失为20db/km的光纤研制出来了。据说康宁公司花费3000万美元,得到30米光纤样品,认为非常值得。这一突破,引起整个通信界的震动,世界发达国家开始投入巨大力量研究光纤通信。1976年,美国贝尔实验室在亚特兰大到华盛顿间建立了世界第一条实用化的光纤通信线路,速率为45Mb/s,采用的是多模光纤,光源用的是发光管LED,波长是0.85微米的红外光。在上世纪70

光纤通信技术在宽带接入网中的应用

光纤通信技术在宽带接入网中的应用 摘要:随着科学技术的日益发展,人与人之间的通信也越来越频繁,对速度,容量的要求也越来越高,传统的电缆通信已经慢慢满足不了人们的需求。在这种需求下,光纤通信技术在原有的传统通信技术中脱颖而出,已成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。本文首先解释了光纤通信的定义,以及它的特点和发展情况。重点论述了宽带接入的基本定义、常见的宽带接入方式及特点、宽带接入的发展及应用情况,最后以配合实例的方式介绍了光纤接入技术在宽待接入网中的应用。 关键词:光纤通信;宽带接入技术;宽带接入网。 1光纤通信技术的基本概念 所谓光纤通信技术,即以光纤为主要传播媒介,通过光学纤维传输信息的通信技术。自1970年美国康宁公司首次研制成功损耗为20dB/km的光纤,光纤通信时代到来。与传统的电缆通信不同,它有许多电缆通信所不具备的优点。 1.1光纤通信的优点 1.1.1频带极宽,通信容量大。 光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。目前,单波长光纤通信系统的传输速率一般在2.5Gbps到1OGbps。 1.1.2损耗低,中继距离长。 目前,商品石英光纤损耗可低于0~20dB/km,这样的传输损耗比其它任何传输介质的损耗都低;若将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。 1.1.3抗电磁干扰能力强。 光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。由于能免除电磁脉冲效应,光纤传输系还特别适合于军事应用。 1.1.4无串音干扰,保密性好。 在电波传输的过程中,电磁波的泄漏会造成各传输通道的串扰,而容易被窃听,保密性差。光波在光纤中传输,因为光信号被完善地限制在光波导结构中,而任何泄漏的射线都被环绕光纤的不透明包皮所吸收,即使在转弯处,漏出的光波也十分微弱,即使光缆内光纤总数很多,相邻信道也不会出现串音干扰,同时在光缆外面,也无法窃听到光纤中传输的信息。 除以上特点之外,还有光纤径细、重量轻、柔软、易于铺设;光纤的原材料资源丰富,成本低;温度稳定性好、寿命长。由于以上优点,光纤刚一发明,就备受业内人士青睐,发展非常迅速,光纤通信系统的传输容量从1980年到2000年增加了近一万倍,传输速

相关文档
相关文档 最新文档