文档库 最新最全的文档下载
当前位置:文档库 › 实验四 含有耦合电感的电路 互感电路仿真

实验四 含有耦合电感的电路 互感电路仿真

实验四   含有耦合电感的电路  互感电路仿真
实验四   含有耦合电感的电路  互感电路仿真

实验四 含有耦合电感的电路——互感消去法

一、实验目的

1、通过理论分析,搭建仿真的互感电路进行仿真实验,验证互感消去法的正确性。

2、学习用Multisim 软件平台进行仿真实验的基本方法,通过仿真实验掌握互感消去法的基本概念和理论分析原理。

二、实验原理

(1)理论分析

当互感线圈既非串联又非并联,但两线圈有公共端时,去耦后可用一个T 形等效电路来代替。如下图:

图1 互感线圈的T 形等效电路

(a)同侧端耦合电路 (b)T 形等效电路 (c)异侧端耦合电路 (d)T 形等效电路 (2)实例

下图图二所示具有互感电路中,已知耦合系数5.0=k

,V U

?∠=01001 ,

Ω=4R ,Ω=161l X ,Ω=42l X ,Ω=8c X ,求:输出电压的大小和相位。

·

·

-

+

1U -

+

2U

1L 2L 1

I 2I

I

-

+

2U M L -1

M L -2 I

·

·

-

+

2U 1L 2L I

M

M

-

+

1U -

+1U M +

-

+

2U M L +1 M L +2 I

-

+1U M -

1

I

2I

(a)

(b)

1I 2I

(c)

(d)

图二 耦合电路 图三 去耦等效电路 理论解:

120.51644M k L L ωωω=?=??=Ω

去耦后等效电路如图3所示,

Ω

?∠=-+=-+-?+=69.782622212)

84(4)

84(412j j j j j j j Z A Z U I ?-∠=?∠?∠==69.7813

262569.7826201001 V j j U

?-∠=??-∠?--=69.123735.27469.7813

26254442

三、 仿真试验

用Multisim11搭建仿真电路,进行仿真实验。如下图:

图四 仿真电路图

·

·

2U

1L 2

L C

M

R

-

+1U 12j Ω

Ω0j Ω

-8j Ω4

2U

Ω4j I

图5 仿真实验电路运行时测得电阻两端电压

图6 仿真实验1U 与2U 波形图

将示波器A 两端接口接在电压源1U 两端(蓝线),示波器B 两端口接在电阻R 两端(红线),观察1U 与2U 波形图,根据两条波形到达同一点所用时间的时间差算出它们的相位差,如上图: 由t f ?=?π?

2可得,3218050 6.09310124.25

?-?=???-?=-

即:2U 落后1U 的角度为0

124.25,有因为11000U V =∠?, 即:227.735124.25U V ?

=∠-

1U (蓝线)

2U (红线)

四、仿真实验与理论的对比分析

1、理论值V U

?-∠=69.123735.272 实验值227.735124.25U V ?

=∠- 实验值与理论值在误差范围内相等;

2、电压2U 的测量是无法得到初相位的,只能获得有效值,但可以测出2U 和1U 的相位差角。

3、理论计算结果与仿真测量结果有一定的误差。主要原因有:

(1)理论计算是理想状态的分析结果,仿真电路比较接近实际测量情况。比如,电压表有内阻存在,会对测量产生一定的影响。

(2)观测误差;我们通过观测2U 和1U 的波形的起始点的时间差计算相位差,由于肉眼观测必然会存在读数误差,从而引起的观测误差。

五、实验总结

1. 仿真实验时应注意频率和角频率之间换算关系,即

2f

ωπ=;

2. 仿真实验时先自定频率,再根据自定的频率得出角频率大小,从而得出电感、电容

的大小;

3. 计算得出的电感、电容大小与实际之间存在误差,为减小实验误差,使实验更为准

确,可尽量多的保留位数;

4. 示波器找点时,可相应放大示波器界面,使找到的点更为准确,注意单位换算; 5. 通过实验,熟练的掌握并运用去耦等效电路,通过观察波形图更为直观的看出两波

形之间的相位差,而不仅仅是理论运算得出结果。

互感电路实验报告结论

竭诚为您提供优质文档/双击可除互感电路实验报告结论 篇一:互感器实验报告 综合性、设计性实验报告 实验项目名称所属课程名称工厂供电 实验日期20XX年10月31日 班级电气11-14班 学号05姓名刘吉希 成绩 电气与控制工程学院实验室 一、实验目的 了解电流互感器与电压互感器的接线方法。 二﹑原理说明 互感器(transformer)是电流互感器与电压互感器的统称。从基本结构和工作原理来说,互 感器就是一种特殊变压器。电流互感器(currenttransformer,缩写为cT,文字符号为TA),是一种变换电流的互感器,其二次侧额定电流一般为5A。电压互

感器(voltagetransformer,缩写为pT,文字符号为TV),是一种变换电压的互感器,其二次侧额定电压一般为100V。(一)互感器的功能主要是:(1)用来使仪表、继电器等二次设备与主电路(一次电路)绝缘这既可避免主电路的高电压直接引入仪表、继电器等二次设备,有可防止仪表、继电器等二次设备的故障影响主回路,提高一、二次电路的安全性和可靠性,并有利于人身安全。(2)用来扩大仪表、继电器等二次设备的应用范围通过采用不同变比的电流互感器,用一只5A量程的电流表就可以测量任意大的电流。同样,通过采用不同变压比的电压互感器,用一只100V量程的电压表就可以测量任意高的电压。而且由于采用互感器,可使二次仪表、继电器等设备的规格统一,有利于这些设备的批量生产。 (二)互感器的结构和接线方案 电流互感器的基本结构和接线电流互感器的基本结构 原理如图3-2-1-1所示。它的结构特点是:其一次绕组匝数很少,有的型式电流互感器还没有一次绕组,而是利用穿过其铁心的一次电路作为一次绕组,且一次绕组 导体相当粗,而二次绕组匝数很多,导体很细。工作时,一次绕组串联在一次电路中,而二次绕组则与仪表、继电器等电流线圈相串联,形成一个闭合回路。由于这些电流线圈的阻抗很小,因此电流互感器工作时二次回路接近于短路状

试验十互感电路的研究

实验七示波器和信号发生器的使用 一、实验目的 1.了解示波器的工作原理。 2.掌握示波器和信号发生器的使用方法。 二、实验仪器 双踪示波器信号发生器若干电阻、电容 三、预习要求 1.了解示波器的原理,预习示波器的使用方法。 2.预习信号发生器的使用方法。 四、实验原理 1.示波器。 示波器是一种综合的电信号特性测量仪器,它可以直接显示出电信号的波形,测量出信号的幅度、频率、脉宽、相位、同频率信号的相位差等参数。 2.信号发生器是用来产生不同形状、不同频率波形的仪器,实验中常用作信号源。信号的波形、周期(或频率)和幅值可以通过开关和旋钮加以调节。 五、实验内容 1.寻找扫描光迹。 接通示波器电源(220V),预热1-2分钟。如果仍找不到光点,可调节亮度旋钮,适当调节垂直和水平位移旋钮,将光点移至屏幕的中心位置。调节扫描灵敏度旋钮可使扫描光迹成为一条扫描线。调节辉度(亮度)、聚焦、标尺亮度旋钮,使扫描线成为一条亮度适中、清晰纤细的直线。 2.熟悉双踪示波器面板主要旋钮(或开关)作用。 为了显示稳定的波形,需要注意几个主要旋钮或开关的位置。 ①“触发源方式”开关(SOURCE MODE):通常为内触发。 ②“内触发源方式”开关(INT TRIG):通常置于所用通道位置。当用于双路显 示时,为比较两个波形的相对位置,可将其置于交替(VERT MODE)位置。 ③(扫描)触发方式:通常置于自动位置。 ④显示方式:根据需要可置于CH1、CH2、ALT(交替显示两路高频信号)、 CHOP (断续显示两路低频信号)、 ADD(显示两路信号之和)。 ⑤扫描灵敏度开关:表示横轴方向一个大格的时间。根据被测信号周期确定。 ⑥幅度灵敏度开关:表示纵轴方向一个大格的电压。根据被测信号幅度确定。 ⑦在测量波形的周期和幅值时,应注意将扫描微调旋钮和垂直(Y轴)微调旋钮 置于校准位置。 ⑧当输入波形左右移动、不稳定时,可调节触发电平旋钮使波形稳定。 3.示波器内校准信号的自检 (1)调出校准信号:将示波器内的方波校准信号,通过专用电缆线接入通道1(或通道2),调节示波器各有关旋钮和开关,在屏幕上可以显示出方波。

含有耦合电感的电路(学生用)

第十章 含有耦合电感的电路 §1. 耦合电感器与互感电压 一、耦合电感器 ──如果电感器L 1,L 2之间有公共磁通相交链,这两个电感器就构成一个耦合电感器。 1、11φ21φ1L φ 电感器2与1的互感(mutual inductance ) 1 21 212121i N i M φψ=? 注2,21φ的方向与电感器2导线的绕向无关。 2 2’

1=k ──全耦合电感器(相当于021==L L φφ无漏磁通) 实际中: 当双线并绕时,耦合最强,1→k 。 当两个耦合电感器相距甚远,或彼此垂直时,其间耦合较弱,0→k 。

? ??><称强耦合时称弱耦合时,5.0,5.0k k 1ψ2ψ 1ψ13331333Mi i L -=-=ψψψ 表明:在这种绕线方式中,互感磁链与自感磁链方向相反,称为互感的“削弱”作用。 ΦΦ3’ 3

问题:在电路分析中,在确定互感电压时,是否一定要知道耦合电感器的实际绕向呢? 同名端──在耦合电感器各自一个端钮上通进电流,如果它们产生的互感磁通同方向,这两个端钮就称为同名端。在同名端上打上标记“。”、“.”、“*”或“?”均可。 标有同名端,并用参数表示的耦合电感器的电路符号为: 3. 21i i 、为时变函数时: dt di M dt di L dt Mi i L d dt d u 2 1121111)(+=+==ψ dt di M dt di L dt Mi i L d dt d u 1 2212222)(+=+==ψ

当21i i 、为同频率正弦量时,在正弦稳态情况下: 2 111I M j I L j U ωω+=? 1 222I M j I L j U ωω+=? M ω──互感抗

互感电路的测量

电工实验—18 互感电路的测量 一. 实验目的 1. 掌握互感线圈同名端的测量方法 2. 掌握互感线圈互感系数和耦合系数的测量方法 二. 实验原理说明 1.两个或两个以上具有互感的线圈中,感应电动势(或感应电压)极性相同的端钮定义为同名端(或称同极性端)。在电路中,常用“?”或“*”等符号标明互感耦合线圈的同名端。同名端可以用实验方法来确定,常用的有直流法和交流法。 (1) 直流法 如图18-1所式,当开关S 合上瞬间,01>dt di ,在'11-中产生的感应电压 011>=dt di M u ,'22-线圈的2端与'11-线圈中的1端均为感应电压的正极性端,1端 与2端为同名端。(反之,若电压表反偏转,则1端与'2端为同名端。) 同理,如果在开关S 打开时, 01

同名端。 2.互感系数M 的测定 测量互感系数的方法较多,这里介绍两种方法。 (1) 如图18-3表示的两个互感耦合线圈的电路,当线圈'11-接正弦交流电压,线圈 '22-开路时,则I M j U ω=20,而互感I U M ω20=,其中ω为电源的角频率,I 为线圈'11-中的电流。为了减少测量误差,电压表应选用内阻较大的。如果选用晶体管毫伏表,则线圈'11-中的电流可以采用间接测量法。 图18-3 测量开路互感电压 图18-4 互感耦合电路的入端阻抗 (2)利用两个互感耦合线圈串联的方法,也可以测量它们之间的互感系数。当两线圈顺向串联时,其等值电感:L 顺=L 1+L 2+2M 。当两线圈反向串联时,等值电感为:L 反=L 1+L 2-2M 。只要分别测出L 顺、L 反,则M=(L 顺 - L 反)/4。 实验中要测量线圈的自感时,可以用相位法测量,测量出线圈的端电压U ,电流I 和相角φ,则可以计算出线圈的自感L : ω ωI U X L L Φ==sin 利用两互感线圈顺向串联时等效电感大,反向串联时等效电感小的特点,在相同电压下,电流的大小将不相同,这样也能判断两线圈的同名端 3.在互感耦合电路中,如图18-4所示,若在线圈'11-上施加电压1U ,在线圈'22-端接入阻抗: ()()f f X X j R R X X R M X j R X R M R I U Z 1111222222222 21222222222 21111+++=??? ? ??+-+???? ??++==ωω 其中,11L X ω=,L R R R +=222,L X L X +=222ω。R 1+X 1j 是原边的复阻抗,R 2+ωL 2j 是副边的复阻抗,R L +X L j 是引入副边的复阻抗。副边电路对原边电路的反射电阻f R 1和反射电抗f X 1分别为:

第6章 互感耦合电路

第6章互感耦合电路 6.1互感与互感电压 一、填空题 1.由于一个线圈中的电流变化在另外一个线圈中产生感应电压的现象称为______________,产生的感应电压叫做_________。此时若线圈工中电流红变化在线圈I 中产生的互感电压记做____________,其大小的表达式为_______________;;同理线圈中II 电流2i 的变化在线圈I 产生的互感电压记做____________,其大小的表达式为_______________。 2.互感系数简称互感,用______表示,其国际单位是_________。它是线圈之间的固有参数,它取决于两线圈的______、______、______和______。 3.两线圈相互靠近,其耦合程度用耦合系数k 表示,k 的表达式为_________,其取值范围是,当k =1时称为_________。 4.已知两线圈,1L =12mH ,2L =3mH ,若k =0.4,则M =_________,若两线圈为全耦合。则M =____________。 5.有互感的两线圈,1L =0.4H ,2L =0.1H ,耦合系数k =0.5,电压、电流、磁链的参考方向均关 联,且符合右手螺旋定则,已知1i t A ,2i =0,则M =_______________,1 U =____________,2 U =__________________。 二、选择题 1.变压器同名端的含义是( ) (l )变压器的两个输人端 (2)变压器的两个输出端 (3)当分别从一二级的一端输入电流时,一、二级绕组的自感磁通与互感磁通的方向一致,这两端即为同名端 (4)分别从一、二级的一端输人电流时,一、二级绕组的自感磁通与互感磁通的方向相反,这两端即为同名端 2.线圈自感电压的大小与()有关 (l )线圈中电流的大小(2)线圈两端电压的大小 (3)线圈中电流变化的快慢(4)线圈电阻的大小 3.有一线圈,忽略电阻,其电感量L =0.02H ,当线圈中流过电流i =20A 的瞬间,电流增加的速率是2X 310A/s ,此时电感两端的电压是() (1)40V (2)0.4V (3)0V (4)800V 4、与线圈1中电流每秒变化20A ,线圈2中产生的互感电压的大小是0.2V ,则两线圈的互感是( )

实验四 互感电路仿真分析

实验四 去耦互感电路仿真分析 1.实验目的 (1)学会互感电路同名端、异名端、互感系数已经耦合系数的特点和计算方式。 (2)掌握同名端、异名端的去耦法的计算方式。 (3)掌握耦合电路Muitisim 仿真电路的连接方式,掌握用Muitisim 检验去耦法的正确性。 2.实验原理及实例 原理:当互感线圈既非串联又非并联,但两线圈有公共端时,去耦后可用一个T 形等效电路来代替。 如图4-1为同名端互感线圈的T 形等效。图4-2为异名端互感线圈的T 形等效。 图4-1 图4-2 实例:如图4-3所示电路,已知1L 和2L 两线圈之间的耦合系数1=k ,电源电压V U s ?∠=?0100,频率Hz f 50=,求总电流?I 和? 2U ?

图4-3 解:根据21L L k M ωωω+=可得到Ω=??=84161M ω 根据实验原理,可将图4-3通过去耦法等效成为图4-4所示的简易图, 图4-4 则: )(84.362012164414)41(8Ω?∠=+=+--+ =j j j j j j Z ab )(87.36587.3620100A Z U I ab s ?-∠=? ∠==??

)(13.532014 41487.3652V j j j U ?∠=?+-??-∠=? 3.仿真实验设计 步骤: 1.按照L j Z L ω=、C j Z C ω1-=、2 1L L M k =依次算出1L 至8L 、1C 、2C 和2k 的值。 2.按照图4-3未去耦电路连接如图4-5所示的仿真电路图,得到未去耦时的流?I 和? 2U 。 3.按照图4-4运用去耦法之后的电路图连接成如图4-6所示的仿真电路图,得到对图4-5进去去耦法简化之后的?I 和?2U 。 图4-5 图4-6 在通过图4-7的连接得到图4-8的示波图

实验八 互感电路的测量

实验八 互感电路的测量 一.实验目的 1.学会互感电路同名端、互感系数以及耦合系数的测定方法。 2.通过两个耦合线圈顺向串联和反向串联实验,加深理解互感对电路等效参数以及电压、电流的影响。 二.实验基本知识 1.判断互感线圈同名端的方法 (1)直流法 为了正确判断互感电动势的方向,必须首先判断两个具有互感耦合线圈的同名端,判断互感电路同名端的方法是:用一直流电源开关瞬间与互感1接通(图8-1)在线圈2回路中接一直流毫安表,在开关K 闭合的瞬间,线圈1回路中的电流I 1通过互感耦合将在线圈2中产生一互感电势并在线圈2回路中产生一电流I 2使所接毫安表发生偏转,根据愣次定律及图示所假定的电流方向,当毫安表正向偏转时,线圈1与电源正极相接的端点1与线圈2直流毫安表正极相接的端点2′和线圈1与电源正极相接的端1为同名端,(注意上述判定同名端的方法在开关K 闭合的瞬间才成立)。 图8-1 图8-2 (2)交流法 互感电路同名端也可利用交流法来测定,将线圈1的一个端子1`与线圈2的一个端子2′用导线连接(如图8-2中虚线所示)在线圈1两端加以交流电压,用电压表分别测1及1′两端与2、2′两端的电压,设分别为U 11′与U 12,如果U 12>U 11′`,则用导线连接的两个端点(1′与2′)应为异名端(也即1′与2′以及1与2′为同名端),因为如果假定正方向为U 11′,当1与2′为同名端时,线圈2中互 2′ 2 1

感电压的正方向为U 2′2,所以U 12=U 11′+U 2′`2,U 12(因1′与2′相联)必然大于电源电压U 11′,同理,如果1,2两端电压的读数U 12小于电源电压(即U 12

实验十五互感电路观测全解

实验十五互感电路观测 执笔人:zht 实验成员: 班级:自动化二班

实验十五 互感电路观测 一、实验目的 1、学会互感电路同名端、互感系数以及耦合系数的测定方法。 2、观察两个线圈相对位置的改变,以及用不同材料作线圈芯时对互感的影响。 二、原理说明 1、判断互感线圈同名端的方法 (1)直流法 如图15-1所示,当开关S 闭合瞬间,若毫安表的指针正偏,则可断定“1”,“3”为同名端;指针反偏,则 “1”,“4”为同名端。 (2)交流法 如图15-2所示,将两个线圈N 1和N 2的任意两端(如2,4端)联在一起,在其中的一个线圈(如N 1)两端加一个低压交流电压,另一线圈开路,(如N 2),用交流电压表分别测 出端电压U 13、U 12和U 34。若U 13是两个绕组端压之差,则1,3是同名端;若U 13是两个绕组端压之和,则1,4是同名端。 2、两线圈互感系数M 的测定。 如图15-2,在N 1侧施加低压交流电压U 1,N 2侧开路,测出I 1及 U 2 。根据互感电势122MI U E O M ω=≈;可算得互感系数为 图 15-1 图15-2 i 1

1 2I U M ω= 3、耦合系数k 的测定 两个互感线圈耦合松紧的程度可用耦合系数k 来表示 21/k L L M = 如图15-2,先在N 1侧加低压交流电压U 1,测出N 2侧开路时的电流I 1;然后再在N 2侧加电压U 2,测出N 1侧开路时的电流I 2,求出各自的自感L 1和L 2,即可算得k 值。 三、实验设备 四、实验内容及步骤 1、分别用直流法和交流法测定互感线圈的同名端。

含有耦合电感的电路

第十章 含有耦合电感的电路 本章重点: 1.互感及互感电压 2.互感线圈的串并联 3.理想变压器的变换作用 本章难点:空心变压器的等效电路 本章内容 §10-1 互感 1、概念:互感、总磁链、同名端。 2、耦合线圈的电压、电流关系) 设,u i 为关联参考方向: (1) 121111u u L u +=±== dt di M dt di dt d 211ψ 222122u u L u +=+±== dt di dt di M dt d 212ψ 式中:u 11=L 1 dt di 1 ,u 22=L 2dt di 2称为自感电压; u 22=±M dt di 1,u 12=±M dt di 2称为互感电压(互感电压的正负,决定于互感电压“+”极性端子,与产生它的电流流进的端子为一对同名端,则互感电压为“+”号). (2) 相量式 1212111j L L M U I j M I jX I J Z I ωω? ? ? ? ? =±=+ 1221222j L L M U M I j I jX I J Z I ωω? ? ? ? ? =±+=+ 式中M Z j M ω=为互感抗。 3、耦合因数: 1def k == =≤ §10-2 含有耦合电感电路的计算 1、耦合电感的串联 (1)反向串联:把两个线圈的同名端相连称为反接。由(a)图知:

111 11(L -M )=(L -M)di di di u R i R i dt dt dt =++ 22222(L -M )=(L -M)di di di u R i R i dt dt dt =++ 122212()(L +L -2M)di u u u R R i dt =+=++ 其相量式为(b 图去耦等效电路) 12 12()(L +L -2M)U R R I j I ω=++&&& 1212()(L +L -2M)Z R R j ω=++ (2)顺向串联;把两个线圈的异名端相连,称为顺接。 1212()(L +L +2M)Z R R j ω=++ 2、耦合电感线圈并联 (1)同侧并联电路:把两个耦合电感的同名端连在同一个结点上,称为同侧并联电路,由(a) 图得: ? ? ? 1211( )U R j L I j M I ωω=++; ? ? ? 1222 ()U j M I R j ML I ωω=++ i + ?? R 1 R 2 L 1 L 2 + + — — —U 1 U 2 i + R 1 R 2 L 1-M L 2-M + + — — U 1 U 2 — (a) (b) i ? + — ???U &j M ω1j L ω2 j L ω3I &1I &2 I &1R 20 ? + — ?U &3 j L ω() 1 j L M ω-() 2 j L M ω-3I &1 I & 2 I &1R 2 R 0 (a ) (b ) ① ① 1'

互感电路测量

实验八 互感电路测量 一、实验目的 1、学会互感电路同名端、互感系数以及耦合系数的测定方法。 2、理解两个线圈相对位置的改变,以及用不同材料作线圈芯时对互感的影响。 二、实验设备和器材 数字直流电压表 0~200 V 数字直流电流表 0~200 mA 交流电压表 0~500 V 交流电流表 0~5 A 空心互感线圈 N 1为大线圈,N 2为小线圈 自耦调压器 0~250 V 直流稳压电源 0~30 V 电阻器 30Ω/8W ,500Ω/2W 发光二极管 红或绿 粗、细铁棒、铝棒 变压器 36 V/220 V 三、实验原理与说明 1、判断互感线圈同名端的方法 (1)直流法:如实验图8-1所示,当开关K 闭合瞬间,若毫安表的指针正偏,则可断定“1”、“3”为同名端;指针反偏,则“1”、“4”为同名端。 (2)交流法:如实验图8-2所示,将两个绕组N 1和N 2的任意两端(如2、4端)连在一起,在其中一个绕组(如N 1)两端加一个低电压,另一绕组(如N 2)开路。用交流电压表分别测出端电压U 13、U 12和U 34。若U 13是两个绕组端电压之差,则1、3是同名端;若U 13是两绕组端电压之和,则1、4是异名端。 2、两线圈互感系数M 的测定 在实验图8-2的N 1侧施加低压交流电压U 1,测出I 1及U 2。根据互感电势E 2M ≈U 2 = wMI 1,可算得互感系数为:1 2wI U M 。

3、耦合系数k 的测定 两个互感线圈耦合松紧的程度可用耦合系数k 来表示: 21L L M k 如实验图8-2所示,先在N 1侧加低压交流电压U 1,测出N 2侧开路时的电流I 1;然后再在N 2侧加电压U 2,测出N 1侧开路时的电流I 2,求出各自的自感L 1和L 2,即可算得k 值。 四、实验内容与步骤 1、分别用直流法和交流法测定互感线圈的同名端 (1)直流法:实验线路如实验图8-3所示。先将N 1和N 2两线圈的四个接线端子编以1、2和3、4序号。将N 1、N 2同心地套在一起,并放入细铁棒。U 为可调直流稳压电源,调至10 V 。流过N 1侧的电流不可超过0.4 A (选用5 A 量程的数字电流表)。N 2侧直接接入2 mA 量程的毫安表。将铁棒迅速地拔出和插入,观察毫安表读数正、负的变化,来判定N 1和N 2两个线圈的同名端。 (2)交流法:本方法中,由于加在N 1上的电压仅2 V 左右,直接用屏内调压器很难调节,因此采用实验图8-4的线路来扩展调压器的调节范围。图中W 、N 为主屏上的自耦调压器的输出端,B 为升压铁心变压器,此处作降压用。将N 2放入N 1中,并在两线圈中插入铁棒。A 为2.5 A 以上量程的交流电流表,N 2侧开路。 接通电源前,应首先检查自耦调压器是否调至零位,确认后方可接通交流电源,令自耦调压器输出一个很低的电压(约12 V 左右),使流过电流表的电流小于1.4 A ,然后用0~30 V 量程的交流电压表测量u 13、u 12和u 34,然后判定同名端。 拆去2、4连线,并将2、3相接,重复上述步骤,判定同名端。 2、求互感系数M 拆除2、3连线,测u 1、i 1和u 2,计算出M 。 3、测电压和电流 将低压交流加在N2侧,使流过N2侧电流小于1 A ,N1侧开路,按步骤(2)测出u 2、i 2和u 1。 4、求耦合系数k

耦合电感的等效电路

6.5.2 耦合电感的等效电路 1. 耦合电感的去耦等效电路 (1)串联电路去耦 图6-41(a )和图6-42(a )即为耦合电感的串联电路。图6-41(a )中1L 和2L 的异名端联接在一起,该联接方式称为同向串联(顺接);图6-42(a )中1L 和2L 的同名端连接在一起,该连接方式称为反向串联(反接)。 1 +- 2 u M L +i M L +1 +- 2 u (a ) (b ) M L L 2++- + u (c ) 图6-41 串联耦合电路的去耦 顺接时,支路的电压电流关系为 dt di M L L dt di M L dt di M L dt di M dt di L dt di M dt di L u ) 2() ()() ()(21212 1 ++=+++=+++= 根据等效变换的概念,该顺接耦合电感可用一个)(1M L +的电感和一个)(2M L +的电感相串联的电路等效替代,或用一个)2(21M L L ++的电感等效替代。如图6-41(b )所示。 反接时,支路的电压电流关系为 dt di M L L dt di M L dt di M L dt di M dt di L dt di M dt di L u ) 2()()() ()(21212 1 -+=-+-=-+-= 根据等效变换的定义,该反接耦合电感可用一个)(1M L -的电感和一个)(2M L -的电感相串联的电路等效替代,或用一个)2(21M L L -+的电感等效替代。如图6-42(b )所示。 1 +- 2 u M L -i M L -1+- 2 u

实验四 含有耦合电感的电路 互感电路仿真

实验四 含有耦合电感的电路——互感消去法 一、实验目的 1、通过理论分析,搭建仿真的互感电路进行仿真实验,验证互感消去法的正确性。 2、学习用Multisim 软件平台进行仿真实验的基本方法,通过仿真实验掌握互感消去法的基本概念和理论分析原理。 二、实验原理 (1)理论分析 当互感线圈既非串联又非并联,但两线圈有公共端时,去耦后可用一个T 形等效电路来代替。如下图: 图1 互感线圈的T 形等效电路 (a)同侧端耦合电路 (b)T 形等效电路 (c)异侧端耦合电路 (d)T 形等效电路 (2)实例 下图图二所示具有互感电路中,已知耦合系数5.0=k ,V U ?∠=01001 , Ω=4R ,Ω=161l X ,Ω=42l X ,Ω=8c X ,求:输出电压的大小和相位。 · · - + 1U - + 2U 1L 2L 1 I 2I I - + 2U M L -1 M L -2 I · · - + 2U 1L 2L I M M - + 1U - +1U M + - + 2U M L +1 M L +2 I - +1U M - 1 I 2I (a) (b) 1I 2I (c) (d)

图二 耦合电路 图三 去耦等效电路 理论解: 120.51644M k L L ωωω=?=??=Ω 去耦后等效电路如图3所示, Ω ?∠=-+=-+-?+=69.782622212) 84(4) 84(412j j j j j j j Z A Z U I ?-∠=?∠?∠==69.7813 262569.7826201001 V j j U ?-∠=??-∠?--=69.123735.27469.7813 26254442 三、 仿真试验 用Multisim11搭建仿真电路,进行仿真实验。如下图: 图四 仿真电路图 · · 2U 1L 2 L C M R - +1U 12j Ω Ω0j Ω -8j Ω4 2U Ω4j I

第十章含耦合电感的电路习题解答.doc

第十章(含耦合电感的电路)习题解答 一、选择题 1.图10—1所示电路的等效电感=eq L A 。 A.8H ; B.7H ; C.15H ; D.11H 解:由图示电路可得 121 d d 2d d ) 63(u t i t i =++, 0d d 4d 221=+t i t i d 从以上两式中消去 t i d d 2 得t i u d d 811=,由此可见 8=eq L H 2.图10—2所示电路中,V )cos(18t u s ω=,则=2i B A 。 A.)cos(2t ω; B.)cos(6t ω; C.)cos(6t ω-; D.0 解:图中理想变压器的副边处于短路,副边电压为0。根据理想变压器原副边电压的关系可知原边的电压也为0,因此,有 A )cos(29 ) cos(18 1t t i ω=ω= 再由理想变压器原副边电流的关系n i i 121= (注意此处电流2i 的参考方向)得 A )cos(612t ni i ω== 因此,该题应选B 。 3.将图10─3(a )所示电路化为图10—3(b )所示的等效去耦电路,取哪一组符号取决于 C 。 A.1L 、2L 中电流同时流入还是流出节点0; B.1L 、2L 中一个电流流入0,另一个电流流出节点0 ; C.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向无关; D.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向有关。 解:耦合电感去耦后电路中的M 前面是取“+”还是取“–”,完全取决于耦合电感的同名端是在同侧还是在异侧,而与两个电感中电流的参考方向没有任何关系。因此,此题选C 。

互感3实验

实验9、互感电路 (研究性实验) 一、学时分配 3学时。 二、实验目的 1. 掌握互感线圈同名端的测量方法。 2. 掌握互感线圈互感系数和耦合系数的测量方法。 三、实验原理 1、互感线圈同名端的测定 两个或两个以上具有互感的线圈中,感应电压极性相同的端钮定义为同名端。在电路中,常用“”或“*”等符号标明互感耦合线圈的同名端。同名端可以用实验方法来测定,常用的有直流法和交流法。 (1) 直流通断法 图9-1所示电路中,线圈L1通过开关K接到直流电压源,直流电压表接到线圈L2的两端。在开关K闭合瞬间,线圈L2的两端会产生一个互感电压,电压表上就会有电压显示。若电压表显示为正值,则与直流电压源正极相连的端钮a和与电压表正极相连的端钮c为同名端;反之,则a、c为异名端。实际上,当开关K断开或闭合瞬间,电位同时升高或降低的端钮即为同名端。 图9-1 直流通断法图9-2 交流电压法 (2) 交流电压法 图9-2所示电路中,将两线圈的b端和d端短接,在a、b端加交流电源,用交流电压表分别 测量有效值、、。若,则a端和c端为同名端;若,则a端与d端为同名端。 (3)交流电流法 设两个耦合线圈的自感系数分别为、,它们之间的互感系数为。若将两个线圈的异 名端相联,称为顺接串联,顺接串联后的等效电感为;若将两个线圈的同名端 相联,则称反接串联,其等效电感是。显然,在串联线圈两端加上正弦交流电

压时,其等效电抗的关系为,这时测出各自的电流。如果测得的电流小,则是顺接串联,两线圈相连接的端子是异名端;如果测得的电流大,则是反接串联,两线圈相连接的端子是同名端。 2 互感系数的测定 (1) 利用感应电压测量互感系数 图9-3所示的两个互感耦合线圈的电路,耦合线圈的互感系数为。当线圈a、b端接角频率为 的正弦交流电压源,线圈c、d端开路时,则c、d两端的开路电压有效值为, 其中是线圈ab的电流有效值。这样,可得耦合线圈的互感系数为 (9-1) 需要指出的是,为了减少测量误差,应尽量选用内阻较大的电压表和内阻较小的电流表。 图9-3 互感系数的测定 (2) 利用两个互感耦合线圈串联测量互感系数 两线圈顺接串联后,两端接角频率为的正弦电压源,用电流表测量电流为,则顺接串 联后的等效电感为;两线圈反接串联后,两端也接角频率为的正弦电压源,用 电流表测量电流为,则反接串联后的等效电感为。设两线圈的自感系数分别为、,根据两线圈顺接串联、反接串联的等效电感的关系,有 解上述方程组,得耦合线圈的互感系数为

电路第10章---含有耦合电感的电路汇总

§10.1 互感 耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。 1. 互感 两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流 i 2 时,不仅在线圈2中产生磁通f 22, 同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。定义互磁链: 图 10.1 ψ12 = N 1φ12 ψ21 = N 2φ21 当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链: 互感磁通链: 上式中 M 12 和 M 21 称为互感系数,单位为(H )。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和: 需要指出的是: 1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足

M12 =M21 =M 2)自感系数L 总为正值,互感系数 M 值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。 2. 耦合因数 工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义 一般有: 当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。 耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。 3. 耦合电感上的电压、电流关系 当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。根据电磁感应定律和楞次定律得每个线圈两端的电压为: 即线圈两端的电压均包含自感电压和互感电压。 在正弦交流电路中,其相量形式的方程为 注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。以上说明互感电压的正、负: (1)与电流的参考方向有关。

含有耦合电感的电路

第5章 含有耦合电感的电路 内容提要 本章主要介绍耦合电感的基本概念和基本特性,同时介绍同名端的概念及使用方法,重点介绍采用消耦法求解含有耦合电感电路的分析计算方法,最后介绍空心变压器及理想变压器的工作原理,特性方法式及其分析计算方法。 §5.1 互感 当一个线圈通过电流时,在线圈的周围建立磁场,如果这个线圈邻近还有其它线圈,则载流线圈产生的磁通不仅和自身交链,而且也和位于它附近的线圈交链,则称这两线圈之间具有磁的耦合或说存在互感。载流线圈的磁通与自身线圈交链的部分称为自感磁通,与其它线圈交链的部分称为互感磁通。 5.1.1互感及互感电压 如图5-1所示,两组相邻线圈分别为线圈I 和线圈Ⅱ,线圈I 的匝数为1N ,线圈Ⅱ的匝数为2N 。设电流1i 自线圈I 的“1”端流入,按右手螺旋定律确定磁通正方向如图5-1所示,由1i 产生磁通11?全部交链线圈I 的1N 匝线圈,而其中一部分21?,不仅交链线圈I 而且交链线圈Ⅱ的2N 匝线圈,我们定义11?是线圈I 的自感磁通,21?是线圈I 对线圈Ⅱ的互感磁通。这里的线圈I 通过电流1i 产生了磁通,我们将这种通有电流的线圈称为载流线圈或施感线圈,流经线圈的电流称为施感电流。同理如果在线圈Ⅱ中通入电流2i ,由电流2i 也会产生线圈Ⅱ的自感磁通22?和线圈Ⅱ对线圈I 的互感磁通12?。 说明:磁通(链)下标的第一个数字表示该磁通链所在线圈的编号,第二个数字表示产生该磁通(链)的施感电流的编号,接下来研究的使用双下标符号的物理量,其双下标的含义均同上。 当载流线圈中的施感电流随着时间变化时,其产生的磁通链也随之变化。根据法拉第电磁感应定律,这种时变磁通在载流线圈内将会产生感应电压。 设通过线圈I 的总磁通为1?,则有 12111???+= (5-1) 其中自感磁通11?与1N 匝线圈交链,对于线性电感则有自感磁通链11ψ为 1111111N L i ψφ== (5-2) 式(5-2)中,1L 称为线圈I 的自感系数,简称自感,单位为亨利简称亨(H )。

耦合电感的去耦等效方法

耦合电感的去耦等效方法的讨论 王胤旭5090309291 陈琦然5090309306 杨衎 5090309 摘要:本文主要讨论有公共连接点的两个耦合电感的简单去耦等效方法以及由此衍生的两个特例--耦合电感的串联和并联。并讨论多重耦合电感的去耦相对独立性以及某些含有复杂耦合电感电路的快速去耦等效方法。 1.有公共连接点的耦合电感的去耦等效 图示电路中, 耦合电感L1和L2 有一公共连接点 N, 根据耦合电感的性质, 可得如下方程: ?????+=+=2 21211I I L j MI j U MI j L j U BC AC ωωωω 对于节点N 有KCL 方程:0321=++I I I 上面两式整理得:2 2113 223 11)()()()(I M L j I M L j U U U MI j I M L j U MI j I M L j U BC AC AB BC AC ---=-=--=--=ωωωωωω 故可得其等效去耦电路如图2所示。 图1 耦合电感

图2 等效去耦后的电感 上述去耦过程可以用文字表述如下: 1)设互感为M 的两耦合电感具有公共的连接点(假设其同名端相连)且连接点处仅含 有三条支路, 则其去耦规则为: 含有耦合电感的两条支路各增加一个电感量为- M 的附 加电感; 不含耦合电感的另一条支路增加一个电感量为- M 的附加电感。 若为非同名端连接,只需将上述电感量M 改变符号即可。 2)若连接处含有多条支路, 则可以通过节点分裂, 化成一个在形式上仅含三条支路的节 点。 2.两个特例----耦合电感的串联和并联 2. 1 两耦合电感串联 1)若同名端连接于同一节点(即电流从异名端流入), 则构成反接串联,计算公式: M L L L eq 221-+=; 2)若非同名端连接于同一节点(即电流从同名端流入), 则构成顺接串联,计算公式: M L L L eq 221++=; 2. 2 两耦合电感的并联 1)若同名端连接于同一节点, 则构成同侧并联,计算公式:M L L M L L L eq 2212 21-+-=; 2)若非同名端连接于同一节点, 则构成异侧并联,计算公式:M L L M L L L eq 2212 21++-=;

互感器实验报告

综合性、设计性实验报告 实验项目名称电流互感器与电压互感器的接线方式 所属课程名称工厂供电 实验日期2014年10月31日 班级电气11-14班 学号05 姓名刘吉希 成绩 电气与控制工程学院实验室 一、实验目的 了解电流互感器与电压互感器的接线方法。 二﹑原理说明

互感器(transformer)是电流互感器与电压互感器的统称。从基本结构和工作原理来说,互感器就是一种特殊变压器。电流互感器(current transformer,缩写为 CT,文字符号为 TA),是一种变换电流的互感器,其二次侧额定电流一般为 5A。电压互感器(voltage transformer,缩写为 PT,文字符号为 TV),是一种变换电压的互感器,其二次侧额定电压一般为 100V。(一)互感器的功能主要是:(1)用来使仪表、继电器等二次设备与主电路(一次电路)绝缘这既可避免主电路的高电压直接引入仪表、继电器等二次设备,有可防止仪表、继电器等二次设备的故障影响主回路,提高一、二次电路的安全性和可靠性,并有利于人身安全。(2)用来扩大仪表、继电器等二次设备的应用范围通过采用不同变比的电流互感器,用一只 5A 量程的电流表就可以测量任意大的电流。同样,通过采用不同变压比的电压互感器,用一只 100V 量程的电压表就可以测量任意高的电压。而且由于采用互感器,可使二次仪表、继电器等设备的规格统一,有利于这些设备的批量生产。(二)互感器的结构和接线方案 电流互感器的基本结构和接线电流互感器的基本结构原理如图 3-2-1-1 所示。它的结构特点是:其一次绕组匝数很少,有的型式电流互感器还没有一次绕组,而是利用穿过其铁心的一次电路作为一次绕组,且一次绕组

(含耦合电感的电路)习题解答

第十章(含耦合电感的电路)习题解答 一、选择题 1.图10—1所示电路的等效电感=eq L A 。 A.8H ; B.7H ; C.15H ; D.11H 解:由图示电路可得 121 d d 2d d ) 63(u t i t i =++, 0d d 4d 221=+t i t i d 从以上两式中消去t i d d 2得t i u d d 811=,由此可见 8=eq L H 2.图10—2所示电路中,V )cos(18t u s ω=,则=2i B A 。 A.)cos(2t ω; B.)cos(6t ω; C.)cos(6t ω-; D.0 解:图中理想变压器的副边处于短路,副边电压为0。根据理想变压器原副边电压的关系可知原边的电压也为0,因此,有 再由理想变压器原副边电流的关系n i i 121= (注意此处电流2i 的参考方向)得 因此,该题应选B 。 3.将图10─3(a )所示电路化为图10—3(b )所示的等效去耦电路,取哪一组符号取决于 C 。 A.1L 、2L 中电流同时流入还是流出节点0; B.1L 、2L 中一个电流流入0,另一个电流流出节点0 ; C.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向无关; D.1L 、2L 的同名端相对于0点是在同侧还是在异侧,且与电流参考方向有关。 解:耦合电感去耦后电路中的M 前面是取“+”还是取“–”,完全取决于耦合电感的同名端是在同侧还是在异侧,而与两个电感中电流的参考方向没有任何关系。因此,此题选C 。 4.图10—4所示电路中,=i Z B 。 A .Ω2j ; B.Ωj1; C.Ωj3; D.Ωj8 解:将图10—4去耦后的等效电路如图10—4(a ),由图10—4(a )得 因此,该题选B。 5.在图10—5所示电路中,=i Z D 。 A .Ωj8; B.Ωj6; C.Ωj12; D.Ωj4 解:图中的耦合电感反向串联,其等效阻抗为 所以此题选D 。 6.互感系数M 与下列哪个因素无关 D A .两线圈形状和结构; B.两线圈几何位置; C.空间煤质; D.两线圈电压电流参考方向 7.理想变压器主要特性不包括 C A .变换电压; B.变换电流; C.变换功率; D.变换阻抗 8.对于图10-6所示电路中,下列电压、电流的关系叙述中,正确的是:D A. 12121122,di di di di u L M u M L dt dt dt dt =--=--; B.12121122,di di di di u L M u M L dt dt dt dt =-=-+;

相关文档
相关文档 最新文档