文档库 最新最全的文档下载
当前位置:文档库 › 概率论重点和题型整合

概率论重点和题型整合

概率论重点和题型整合
概率论重点和题型整合

概率论与数理统计考点归纳

第一章

1.1样本空间(P2),互不相容与互斥的概念(P4)

1.2概率的性质:性质4和性质6(P10)

1.3古典概型(简单的)

1.4全概率公式和贝叶斯公式(P21-22考大题)

1.5相互独立的公式(P24)

第二章

2.1不考

2.2—2.4考填空和选择

2.5考大题

第三章

3.1例4(P65-66考大题),二维均匀分布(P66-67) 3.2定义2和定义4(P72,P74)

3.3卷积公式(P81)

第四章

4.1,4.2期望,方差的性质(可能考证明题)

常见分布的期望,方差(书上96-97页例1,2,3,4,和99页例7,8的结论,特别是泊松分布和指数分布)4.3协方差的性质:P103第④⑥个

相关系数的性质:P105第(3)个

4.4中心极限定理(P113考大题)

第五章

5.1统计量(P127)

5.2定义1,2,3,卡方分布的期望和方差,t分布(可能考证明题)

5.3定理1,2,3(P139)

第六章

6.1评价估计量的三条标准(P150)

6.2矩估计法,最大似然估计法(考大题)

6.3不考

6.4记住4个置信区间(P168-170,4.1,4.2,4.3,4.4)第七章

7.1,7.2

假设检验的两类错误(P181填空,选择),假设检验的一般步骤(考大题)

概率论与数理统计重点内容

1、古典概型中相关概率的计算;

2、条件概率;乘法公式;全概率公式(应用题);贝叶斯公式(应用题);

3、如何由概率分布或者密度函数求分布函数?或者由分布函数求概率分布或密度函数?

4、如何求期望?

5、如何求方差?

6、如何求协方差和相关系数?

7、中心极限定理的应用(应用题);

8、点估计的常用方法:矩估计法和最大似然估计,尤其要注意最大似然估计法;

9、假设检验;

10、随机变量函数的分布函数的求法。

上述相关概念的定义,相关性质,计算公式及如何运用解决应用题等必须掌握好。其它没有列为重点内容的也可能出现在填空题或者选择题中,但是正常情况比例不高。

试题一

一、填空题(每小题3分,共30分)

1. 如果事件,A B 满足AB φ=,则称事件,A B _______________。

2. 口袋里有4个红球6个白球,3个人依次从口袋里摸出一个球不放回,第二个人摸到红球的概率为

3. 随机变量~(1,2)X N ,则X 的概率密度函数为:

4. 随机变量~(0,1)X U ,则21~X +

5. 已知2~

(8)X χ,则()23D X -=

6. 二维随机变量(,)X Y 的概率密度函数为(,)f x y ,则Z X Y =+的概率密度函数

()Z f z =

7. 二维随机变量(,)X Y 的概率密度函数为1

,11,13

(,)40,

x y f x y ?-≤≤≤≤?=???其他,则

X ()f x =

8. 设X 服从参数为λ的指数分布,则()D X = 9. 设~(0,1)X N ,~(0,1)Y N ,且,X Y

~

10. 设总体~(0,1)X N ,12,,,n X X X 是取自X 的一个样本,则12

1

1

()~n i

i X

μσ

-=-∑

二、单选题(每小题3分,共18分)

1. 对任意两个事件A 和B , 有()P B A -= ( )

A. ()()P B P A -

B. ()()()P A P B P AB -+;

C. ()()P B P AB -

D. ()()()P A P B P AB +-

2. 设0.51,

0~()0,

x e x X f x λ

-?>?=???,

其他

则λ=( )。

A .2 B.

21 C.4 D.4

1 3. 设)(~2σμ,N X ,概率{2}P X μσ-<=( )

A .(2)Φ

B .1(2)-Φ

C .2(2)1Φ-

D .12(2)-Φ

4. 二维随机变量(,)X Y 的概率密度函数为22

1,1

(,)0,

x y f x y π?+≤?=???其他,则X ( )

A .是[1,1]-上的均匀分布

B .是[1,0]-上的均匀分布

C .是[0,1]上的均匀分布

D .不是均匀分布 5. 随机变量,X Y ,其中23Y X =-,则XY ρ=( ) A .2 B .3- C .1 D .1-

6. 设总体2

~(,)X N μσ,其中2

,μσ未知,12,,,n X X X 是取自X 的一个样本,则μ的置信度为1α-的置信区间是: A

./2/2X u X u αα?-+ ?

B

.X u X u αα?-+ ?

C

/2/2(1)(1)X t n X t n αα?

--+- ?

D

.(1)(1)X t n X t n αα?--+- ?

三、计算题(每小题8分,共32分)

1. 已知随机变量)2,1(~N X ,求随机变量32+-=X Y 的密度函数

2. 已知连续型随机变量的密度函数是:

??

?≤>=-0

2)(2x x e x f x

求:)3(>X P 和)|3(2

2a X a X P >+>

3. 一个学校有100盏电灯,每盏灯的功率是100瓦,设每盏灯打开的概率为60%,如果总的供电功率只有7千瓦,求电网不会超负荷的概率。

4. 某种产品的销量服从正态分布,往年的日均销量为53.6吨,标准差为6吨,今年由于市场变动较大,因而需要研究一下日均销量是否有显著变化,随机抽取9日的销量数据,得到这9日平均销量为49.2吨,假设标准差不变,在显著性水平为0

5.0=α的条件下检验现在的日均销量量与往年是否有显著差异。(64.105.0=U ,9

6.1025.0=U )

四、综合题(每小题10分,共20分) 1. 已知随机变量X 的密度函数是:

[]1,8()0,x f x ∈=?

其他 ()F x 是X 的分布函数,求随机变量()Y F X =的分布函数。

2. 若随机变量X 的密度函数为()()f x f x =-。 试征:(1)1(0)2F =

,(2)对任意实数a ,有0

1

()()2a F a f x dx -=-? 参考答案

一、填空题(每小题3分,共30分) 1.互不相容 2. 0.4 3.

2

(1)x --

4. (1,3)U

5. 64

6.

(,)f z y y dy +∞

-∞

-?

(,)f x z x dx +∞

-∞

-?

7. 1

,11

20,x ?-≤≤????

其他 8. 21λ 9. (2)t 10. 2(1)n χ-

二、单选题(每小题3分,共18分)

1. C

2. A

3. C

4. D

5. D

6. C

三、计算题(每小题8分,共32分)

1. 显然32+-=X Y 也是正

态分

布。……………………………………………………………………(2分) ()(23)2()31E Y E X E X =-+=-+=

()(23)4()D Y D X D X =-+== …………………………………………………………

……(5分)

所以

3

2+-=X Y 的密度函数为:

2(1)16

y --

……………………………………………………(8分)

2.

263

(3)2x P X e dx e +∞

-->==? ……………………………………………………

……(4分)

22

2

2(3)

2

2

6

2

2(3)(3|)()a a P X a e

P X a X a e P X a e

-+

-->+>+>===> ………………………………………(8分)

3. 设X 表示亮灯数,~(100,0.6)X b

因为总供电功率是7000瓦,而每盏灯是100瓦,所以亮灯数不超过70个就不会超负荷。

据中心极限定理,

(70)

P X P ≤=≤≈Φ

4. 0H :53.6μ=

计算检验量49.253.6 2.2 1.962U -=

==>

所以可以认为加油量发生了显著的变化。

四、综合题(每小题10分,共20分)

1. 易见,当1x <时,()0F x =,当8x >时,()1F x = 对

[]

1,

8

x ∈,

1

(

1x

F d t x

==-?

……………………………………………………(4分) 设()G y 是随机变量()Y F X =的分布函数,显然,当0y <时,()0G y =,当1y ≥时,

()1G y =

[]

0,1y ∈,

()

3

3

()()G y P Y ??=

=

=

≤=≤+

=

+

=?

?

……………………………………………………(9分) 于

()

Y F X =的分布函数为

0,

0(),0111y G y y y y

=≤

……………………………………………(10分)

2.

对任意

实数

a ,有

()

(

)

()a

a

a

a

F a f x d x f

t d

-∞

-∞

-∞

-

==--==-=-

??

??

a =,

1

(

0)2

F =

。 ……………………………………………………… (5分)

1()2

a F a -

-

=

?

………………………………………………(5分)

试题二

广东商学院试题纸

2005-2006学年第二学期

一、填空题(每小题2分,共20分)

1、设事件A 与B 相互独立,8.0)(=A P ,5.0)(=B P ,则)(B A P -=

2、某运动员每次射击击中目标的概率为p ,连续射击5发子弹,没有一发击中目标的概率为

3、设随机变量X 的概率分布为

,5

.03.02.01

01P X -则}1{2=X P =

4、已知连续型随机变量X~f(x)=??

?=≤≤k ,b

x a k 则其他

,0,

5、设随机变量X 服从参数为 λ 的泊松分布,则DX=

6、设随机变量X 服从参数为 λ 的指数分布,则{}==1X P

7、设),0(~2σN X ,若9.0}|{|=

8、设总体)(~

),1,0(~2n Y N X χ,且X 与Y 相互独立,则随机变量

Y

X n ~ 9、设12),(~+=X Y x f X X ,则)(y f Y =

10、10个乒乓球中有6个新球,4个旧球,从中任取两个,已知所取的两个球中有一个是旧球,则另一个也是旧球的概率为 二、选择题(每小题2分,共10分)

1、设事件A 与B 互不相容,P(A)=0.5,P(B)=0.2,则P(A+B)=( ) A . 0.5 B . 0.6 C . 0.7 D . 0.8

2、设X 为随机变量,且DX=(EX)2,则X 可能服从( ).

A . 二项分布

B . 泊松分布

C . 指数分布

D . 正态分布

3、设,

其他

??

?≤≤=0

3

1)(~x cx

x f X 则=c ( )。 A .2 B.

21 C.4 D.4

1 4、设)(~2

σμ,N X ,则随着2

σ的增大,概率}{σμ<-X P ( ) A .单调增大 B .单调减少 C .保持不变 D .增减不定

5、X 与Y 是两个随机变量,且X b a Y 2

2

-=,其中0,≠b a ,则X 与Y 的相关矩阵为( )

A . ????

??1111 B . ???? ??1001 C . ????

??--1111 D . ???

?

??--1111

三、计算题I (每小题6分,共24分)

1、现有产品5件,其中有2件次品,3件正品,从中随机地抽取3件,求抽得的次品数的概率分布。

2、某工厂的1,2,3车间生产同一种产品,产量依次占2/5,2/5,1/5,而次品率分别为0.01,0.01及0.02。现从这个厂的产品中任取一件,发现为次品,求这件次品是第3车间生产的概率。

3、已知离散型随机变量X 的概率分布为

求X 的数学期望和方差。

4、设总体X 服从参数为λ的泊松分布,试求λ的最大似然估计值。 四、计算题II (每小题8分,共24分)

1、设二维随机向量),(~),(y x f Y X ,并且???≥=+-其它0

,),()32(y x ae y x f y x ,确定系数a 并

计算关于X 的边缘密度。

2、设),3(~),,2(~p B Y p B X 。若9

5

}1{=

≥X P ,试求}1{≥Y P 。 3、设随机变量4321,,,X X X X 相互独立同分布: ???

?

?

?4.06

.010

~i X , 4,3,2,1=i . 4

321X X X X X =,

求行列式X 的概率分布。

五、应用题(每小题8分,共16分)

1、某车间有同型号机床100台,每台机床开动的概率是0.8,假设各台机床开动与否是相互独立的,开动时每台机床要消耗电能10个单位,问供电部门要供应该车间多少单位电能,才能以95%的概率保证不致因供电不足而影响生产?(φ(1.64)=0.95)。

2、某超市的日销售额服从正态分布,去年的日均销售额为53.6万元,方差为36(万元2),今年随机抽查了10个日销售额,分别为

57.2 57.8 58.4 59.3 60.7 71.3 56.4 58.9 47.5 49.5

根据经验,方差没有变化,问今年的日均销售额与去年相比有无显著变化?05.0=α。

162.310=,975.0)96.1(=φ。

六、证明题(6分)

设921,,,X X X 是来自正态总体X 的简单随机样本, )(61611X X Y ++=

, )(3

1

9872X X X Y ++=,

∑=-=9

1

222

)(21i i X X S , S

Y Y Z )

(221-=

证明统计量Z 服从自由度为2的t 分布。

概率论与数理统计知识点总结!

《概率论与数理统计》 第一章随机事件及其概率 §1.1 随机事件 一、给出事件描述,要求用运算关系符表示事件: 二、给出事件运算关系符,要求判断其正确性: §1.2 概率 古典概型公式:P (A )= 所含样本点数 所含样本点数 ΩA 实用中经常采用“排列组合”的方法计算 补例1:将n 个球随机地放到n 个盒中去,问每个盒子恰有1个球的概率是多少?解:设A : “每个盒子恰有1个球”。求:P(A)=?Ω所含样本点数:n n n n n =???... Α所含样本点数:!1...)2()1(n n n n =??-?-?n n n A P ! )(=∴ 补例2:将3封信随机地放入4个信箱中,问信箱中信的封数的最大数分别为1、2、3的概率各是多少? 解:设A i :“信箱中信的最大封数为i”。(i =1,2,3)求:P(A i )=? Ω所含样本点数:6444 443==?? A 1所含样本点数:24234=?? 8 36424)(1== ∴A P A 2所含样本点数: 363423=??C 16 9 6436)(2== ∴A P A 3所含样本点数:443 3 =?C 16 1644)(3== ∴A P 注:由概率定义得出的几个性质: 1、0

P(A 1+A 2+...+ A n )= P(A 1) + P(A 2) +…+ P(A n ) 推论2:设A 1、 A 2、…、 A n 构成完备事件组,则 P(A 1+A 2+...+ A n )=1 推论3: P (A )=1-P (A ) 推论4:若B ?A ,则P(B -A)= P(B)-P(A) 推论5(广义加法公式): 对任意两个事件A 与B ,有P(A ∪B)=P(A)+P(B)-P(A B) 补充——对偶律: n n A A A A A A ???=???......2121 n n A A A A A A ???=??? (2121) §1.4 条件概率与乘法法则 条件概率公式:P(A/B)= )()(B P AB P (P(B)≠0)P(B/A)= ) () (A P AB P (P(A)≠0) ∴P (AB )=P (A /B )P (B )= P (B / A )P (A ) 有时须与P (A+B )=P (A )+P (B )-P (AB )中的P (AB )联系解题。 全概率与逆概率公式: 全概率公式: ∑==n i i i A B P A P B P 1 )/()()( 逆概率公式: ) () ()/(B P B A P B A P i i = ),...,2,1(n i = (注意全概率公式和逆概率公式的题型:将试验可看成分为两步做,如果要求第二步某事件的概率,就用全概率公式;如果求在第二步某事件发生条件下第一步某事件的概率,就用逆概率公式。) §1.5 独立试验概型 事件的独立性: )()()(B P A P AB P B A =?相互独立与 贝努里公式(n 重贝努里试验概率计算公式):课本P24 另两个解题中常用的结论—— 1、定理:有四对事件:A 与B 、A 与B 、A 与B 、A 与B ,如果其中有一对相互 独立,则其余三对也相互独立。 2、公式:)...(1)...(2121 n n A A A P A A A P ???-=??? 第二章 随机变量及其分布

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率知识点总结及题型汇总-统计概率知识点总结

概率知识点总结及题型汇总 一、确定事件:包括必然事件和不可能事件 1、在一定条件下必然要发生的事件,叫做必然事件。必然事件是指一定能发生的事件,或者说发生的可能性是100%;如:从一包红球中,随便取出一个球,一定是红球。 2、在一定条件下不可能发生的事件,叫做不可能事件。不可能事件是指一定不能发生的事件,或者说发生的可能性是0,如:太阳从西边出来。这是不可能事件。 3、必然事件的概率为1,不可能事件的概率为0 二、随机事件 在一定条件下可能发生也可能不发生的事件,叫做随机事件。 一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一个随机事件发生的可能性的大小用概率来表示。 三、例题:指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件,哪些是确定事件? ①一个玻璃杯从一座高楼的第10层楼落到水泥地面上会摔破; ②明天太阳从西方升起;③掷一枚硬币,正面朝上; ④某人买彩票,连续两次中奖;⑤今天天气不好,飞机会晚些到达. 解:必然事件是①;随机事件是③④⑤;不可能事件是②.确定事件是①② 三、概率 1、一般地,对于一个随机事件A ,把刻画其发生可能性大小的数值,称为随机事件A 发生的概率,记为P(A) . (1)一个事件在多次试验中发生的可能性,反映这个可能性大小的数值叫做这个事件发生的概率。(2)概率指的是事件发生的可能性大小的的一个数值。 2、概率的求法:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性 都相等,事件 A 包含其中的m种结果,那么事件A 发生的概率为P(A) = m n . (1)一般地,所有情况的总概率之和为1。(2)在一次实验中,可能出现的结果有限多个. (3)在一次实验中,各种结果发生的可能性相等. (4)概率从数量上刻画了一个随机事件发生的可能性的大小,事件发生的可能性越大,则它的概率越接近1;反之,事件发生的可能性越小,则它的概率越接近0。 (5)一个事件的概率取值:0≤P(A)≤1 当这个事件为必然事件时,必然事件的概率为1,即P(必然事件)=1 不可能事件的概率为0,即P(不可能事件)=0 随机事件的概率:如果A为随机事件,则0<P(A)<1 (6)可能性与概率的关系 事件发生的可能性越大,它的概率越接近于1,事件发生的可能性越小,则它的概率越接近0.

最新统计概率文科题型总结

精品文档 统计和概率高考题型总结 题型一、频率分布直方图 1.对某校高三年级学生参加社区服务次数进行统计, 随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数. 根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中,M p 及图中a 的值; (Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15) 内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间 [25,30)内的概率. 题型二、古典概型 2.某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下: (I )若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a ,b ,c 的值; (Ⅱ)在(I )的条件下,将等级系数为4的3件日用品记为x 1,x 2,x 3,等级系数为5的2件日用品记为y 1,y 2,现从x 1,x 2,x 3,y 1,y 2这5件日用品中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相等的概率. 题型三、回归方程 3.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5

精品文档 (I )从3月1日至3月5日中任选2天,记发芽的种子数分别为,,求事件“,均小于25”的概率; (II )请根据3月2日至3月4日的数据,求出y 关于x 的线性回归方程???y bx a =+; (III )若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方 程是可靠的,试问(II )所得的线性回归方程是否可靠? (参考公式:回归直线方程式???y bx a =+,其中1 2 2 1 ???,n i i i n i i x y nx y b a y bx x nx ==-==--∑∑) 题型四、独立性检验 4. 为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表: (1(2(参考公式:2 () ()()()() n a d b c K a bc d a cb d -=+ +++,其中na b cd =+++ ) 题型五、茎叶图 5.随机抽取某中学甲、乙两班各10名同学,测量它们的身高(单位:cm ),获得身高数据的茎叶图如图所示。 甲班 乙班 2 18 1 9 9 1 0 17 0 3 6 8 9 8 8 3 2 16 2 5 8 8 15 9 (1) 根据茎叶图判断哪两个班的平均身高较高; (2) 计算甲班的样本方差; (3) 现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率。 题型六、分层抽样 已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1) 求x 的值;

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

概率论重点及课后题答案2

第2章条件概率与独立性 一、大纲要求 (1)理解条件概率的定义. (2)掌握概率的加法公式、乘法公式,会应用全概率公式和贝叶斯公式. (3)理解事件独立性的概念,掌握应用事件独立性进行概率计算. (4)了解独立重复试验概型,掌握计算有关事件概率的方法,熟悉二项概率公式的应用. 二、重点知识结构图 三、基础知识 1.条件概率 定义设有事件A B 、,且()0P B ≠,在给定B 发生的条件下A 的条件概率,记为(|)P A B ,有 ()(|)() P AB P A B P B = 2.乘法公式

定理若对于任意事件A B 、,都有()0,()0P A P B >>,则 ()()(|)()(|)P AB P A P B A P B P A B == 这个公式称为乘法定理. 乘法定理可以推广到有限多个随机事件的情形. 定理设12,,,n A A A 为任意n 个事件(2n ≥),且121()0n P A A A -> ,则有 121121312121()()(|)(|)(|)n n n n P A A A A P A P A A P A A A P A A A A --= 3.全概率公式 定理设12,,B B 为一列(有限或无限个)两两互不相容的事件,有 1 i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一事件A ,有1 ()()(|)i i i P A P B P A B ∞==∑. 4.贝叶斯公式 定理设12,,B B 为一系列(有限或无限个)两两互不相容的事件,有 1i i B ∞==Ω∑()0(1,2,)i P B i >= 则对任一具有正概率的事件A ,有 1 ()(|) (|)()(|)k k k j j j P B P A B P B A P B P A B ∞==∑ 5.事件的相互独立性 定义若两事件A B 、满足,则称A B 、(或B A 、)相互独立,简称独立. 定理若四对事件;;A B A B A B A B 、、 、;、 中有一对是相互独立的, 则另外三对事件也是相互独立的.即这四对事件或者都相互独立,或者都相互不独立. 定义设12n A A A ,,,是n 个事件,若对所有可能的组合1i j k n ≤<<<≤ 成立: ()()()i j i j P A A P A P A =(共2n C 个)

概率统计大题总结

概率与统计大题总结 一、 知识点汇编: 1.线性回归分析 (1)函数关系是一种确定性关系,而相关关系是一种非确定性关系.回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法. (2)线性回归分析:方法是画散点图,求回归直线方程,并用回归直线方程进行预报.其回归方程的截距和斜率的最小二乘估计公式分别为: 回归模型中,R 2表示解释变量对于预报变量变化的贡献率.R 2越接近于1,表示回归的效果越好.如果对某组数据可能采取几种不同的回归方程进行回归分析,也可以通过比较几个R 2,选择R 2大的模型作为这组数据的模型. 说明:r 只能用于线性模型,R 2则可用于任一种模型. 对线性回归模型来说,2 2 =R r . 3、独立性检验 (1)对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类 别,像这类变量称为分类变量. (2)假设有两个分类变量X 和Y ,它们的值域分别为{}11x ,y 和{}12y ,y 其样本频数列联表

称为 y 1 y 2 总计 x 1 a b a +b x 2 c d c +d 总计 a +c b +d a + b + c +d (3)构造随机变量()()()()()() 2 2 +++-= ++++a b c d ad bc K ,a b c d a c b d 利用K 2的大小可以确定在多大程度上可以认为“两个分类变量有关系”,这种方法称为 如:如果k >7.879,就有99.5%的把握认为“X 与Y 有关系”. 4、概率 事件的关系: ⑴事件B 包含事件A :事件A 发生,事件B 一定发生,记作B A ?; ⑵事件A 与事件B 相等:若A B B A ??,,则事件A 与B 相等,记作A=B ; ⑶并(和)事件:某事件发生,当且仅当事件A 发生或B 发生,记作B A ?(或B A +) ; ⑷并(积)事件:某事件发生,当且仅当事件A 发生且B 发生,记作B A ?(或 AB ) ; ⑸事件A 与事件B 互斥:若B A ?为不可能事件(φ=?B A ),则事件A 与互斥;

四川大学概率统计往年期末试题

四川大学期末考试试题 (2008-2009学年第二学期) 一、单项选择题(每空2分,共10分) 1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P Y ( ) (A)0.8 (B)0.5 (C)0.65 (D)0.95 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61 )(625102π则 E(X)=( ) (A)5 (B)3 (C)-3 (D)-5 3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( ) (A)??? ??+3531y F (B))53(+y F (C) )353(-y F (D) ?? ? ??+35y F 4.设总体n X X X ,,,21Λ是独立同分布的随机变量序列,均服从参数为1的指数分布,令∑==n i i X n X 122 1,则?→?P X 2( ) (A)1 (B)2 (C)3 (D)4 5.设总体3212 ,,),,(~X X X N X σμ是来自X 的样本,记 32114 14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效 (A)1Z (B)2Z (C)3Z (D)无法判断 二、填空题(每空2分,共10分) 1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______; 2.设), 3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______; 3.设)4 3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则~Z _________分布; 4.设)(~λP X ,已知1)]2)(1[(=--X X E ,则=λ__________; 5.设总体)1,0(~N X ,321,,X X X 分别是来自X 的样本,

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型 解题思路及知识点总结 一、解题思路 (一)解题思路思维导图 (二)常见题型及解题思路 1.正确读取统计图表的信息 典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().

A .月接待游客量逐月增加 B .年接待游客量逐年增加 C .各年的月接待游客量高峰期大致在7,8月份 D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A. 2.古典概型概率问题 典例2:( 全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德 巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13 ,17,19,23,29,共10个,随机选取两个不同的数,共有 种方法,因为 ,所以随机选取两个不同的数,其和等于30的有3种方 法,故概率为 ,选C. 典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6 D. 0.45 解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得 ,故选A. 3.几何概型问题 典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12 C. 23 D.3 4

概率统计常见题型及方法总结

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致 B 这 个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因 i A 的概率问题 全概率公式:()()() 1 B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球,2分 则 b a a B P += )(1,2分 111++++ ++++=b a a b a b b a a b a a b a a +=2分 依次类推2分 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少? 、解记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取一件产品 进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为0.05,而一件次品被误判为正品的概率为0.01。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解设A 表示“任取一件产品被检验为正品”,B 表示“任取一件产品是正品”,则 ()96100P B = ,()4100 P B =,()|0.95P A B =,()|0.01P A B =

概率统计大题题型总结(理)学生版

统计概率大题题型总结 题型一 频率分布直方图与茎叶图 例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如 图所示,其中茎为十位数,叶为个位数. (Ⅰ) 根据茎叶图计算样本均值; (Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人; (Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率. 例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500 元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润. (Ⅰ)将T 表示为X 的函数; (Ⅱ)根据直方图估计利润T 不少于57000元的概率; 1 7 9 2 0 1 5 3 0 第17题图

(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望. 变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下: 08912 58 200338312 则这组数据的中位数是( ) A 、19 B 、20 C 、21.5 D 、23 /频率组距0.010 0.0150.0200.0250.030100110120130140150需求量/x t

【期末复习】大学概率论与数理统计期末考试试卷 答案

20**~20**学年第一学期概率论与数理统计期末考试试卷(A 卷)答案 一.(本题满分8分) 某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解: 设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分 ()()40951.010 91155 =-=-=A P A P .…………….6分 二.(本题满分8分) 设随机事件,,满足:()()()41===C P B P A P ,()0=AB P ,()()16 1==BC P AC P .求随机事件,,都不发生的概率. 解: 由于AB ABC ?,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有 ()0=ABC P .…………….2分 所求概率为() C B A P .注意到C B A C B A ??=,因此有…………….2分 ()()C B A P C B A P ??-=1…………….2分 ()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 8 3 016116104141411=-+++--- =.…………….2分 三.(本题满分8分) 某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为,()10<

XX考研数学概率论重要考点总结

XX考研数学概率论重要考点总结 第一章随机事件和概率 一、本章的重点内容: 四个关系:包含,相等,互斥,对立﹔ 五个运算:并,交,差﹔ 四个运算律:交换律,结合律,分配律,对偶律(德摩根律)﹔ 概率的基本性质:非负性,规范性,有限可加性,逆概率公式﹔ 五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式﹔· 条件概率﹔利用独立性进行概率计算﹔·重伯努利概型的计算。 近几年单独考查本章的考题相对较少,从考试的角度来说不是重点,但第一章是基础,大多数考题中将本章的内容作为基础知识来考核,都会用到第一章的知识。 二、常见典型题型: 1.随机事件的关系运算﹔ 2.求随机事件的概率﹔ 3.综合利用五大公式解题,尤其是常用全概率公式与贝叶斯公式。 第二章随机变量及其分布 一、本章的重点内容: 随机变量及其分布函数的概念和性质(充要条件)﹔

分布律和概率密度的性质(充要条件)﹔ 八大常见的分布:0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用﹔ 会计算与随机变量相联系的任一事件的概率﹔ 随机变量简单函数的概率分布。 近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布 二、常见典型题型: 1.求一维随机变量的分布律、分布密度或分布函数﹔ 2.一个函数为某一随机变量的分布函数或分布律或分布密度的判定﹔ 3.反求或判定分布中的参数﹔ 4.求一维随机变量在某一区间的概率﹔ 5.求一维随机变量函的分布。 第三章二维随机变量及其分布 一、本章的重点内容: 二维随机变量及其分布的概念和性质, 边缘分布,边缘密度,条件分布和条件密度, 随机变量的独立性及不相关性, 一些常见分布:二维均匀分布,二维正态分布, 几个随机变量的简单函数的分布。

(最全)高中数学概率统计知识点总结

概率与统计 一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。 2、平均数:①、常规平均数:12n x x x x n ++???+= ②、加权平均数:112212n n n x x x x ωωωωωω++???+= ++???+ 3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。 4、方差:2222121 [()()()]n s x x x x x x n = -+-+???+- 二、频率直方分布图下的频率 1、频率 =小长方形面积:f S y d ==?距;频率=频数/总数 2、频率之和:121n f f f ++???+=;同时 121n S S S ++???+=; 三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。 2、平均数: 112233n n x x f x f x f x f =+++???+ 112233n n x x S x S x S x S =+++???+ 3、中位数:从左到右或者从右到左累加,面积等于时x 的值。 4、方差:22221122()()()n n s x x f x x f x x f =-+-+???+- 四、线性回归直线方程:???y bx a =+ 其中:1 1 2 22 1 1 ()() ?() n n i i i i i i n n i i i i x x y y x y nxy b x x x nx ====---∑∑== --∑∑ , ??a y bx =- 1、线性回归直线方程必过样本中心(,)x y ; 2、?0:b >正相关;?0:b <负相关。 3、线性回归直线方程:???y bx a =+的斜率?b 中,两个公式中分子、分母对应也相等;中间可以推导得到。 五、回归分析 1、残差:??i i i e y y =-(残差=真实值—预报值)。分析:?i e 越小越好; 2、残差平方和:21?()n i i i y y =-∑, 分析:①意义:越小越好; ②计算:222211221 ????()()()()n i i n n i y y y y y y y y =-=-+-+???+-∑ 3、拟合度(相关指数):221 2 1 ?()1() n i i i n i i y y R y y ==-∑=- -∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高; 4、相关系数:1 1 2 2 2 2 1 1 1 1 ()() ()() ()() n n i i i i i i n n n n i i i i i i i i x x y y x y nx y r x x y y x x y y ======---?∑∑= = ----∑∑∑∑ 分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关 ③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.2 2() ()()()() n ad bc k a b c d a c b d -= ++++ ②.犯错误上界P 对照表 1x 2x 合计 1y a b a b + 2y c d c d + 合计 a c + b d + n

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

深圳大学的概率论与数理统计试题(含答案)

期末考试试卷参考解答及评分标准 开/闭卷 闭卷 A/B 卷 A 2219002801- 课程编号 2219002811 课程名称 概率论与数理统计 _______________ 学分 J ________ 第一部分基本题 一、选择题(共6小题,每小题5分,满分30分。在每小题给出的四个选项中,只有一 个是符合题目要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选 错0分) 2?假设事件A 与事件B 互为对立,则事件A B( ) (A)是不可能事件 (B)是可能事件 (C) 发生的概率为1 (D)是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。 3. 已知随机变量X,Y 相互独立,且都服从标准正态分布,则 X 2 + Y 2服从( ) (A)自由度为1的2分布 (B)自由度为2的2分布 (C)自由度为1的F 分布 (D)自由度为2的F 分布 答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为 2分布。 4. 已知随机变量X,Y 相互独立,X~N(2,4),Y~N(-2,1),则( (A) X+Y~P ⑷ (B) X+Y~U(2,4) (C) X+Y~N(0,5) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有 X+Y~N(0,5)。 5. 样本(X 1,X 2,X 3)取自总体 X ,E(X)= < D(X)=-2,则有( ) 答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。 6. 随机变量 X 服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( ) (A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。 二、填空题(共6小题,每小题5分,满分30分。把答案填在题中横线上) 1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发生 (C)事件B 发生但事件A 不发生 答:选D , (B) 事件A 发生但事件B 不发生 (D)事件A 与事件B 至少有一件发生 ) (D) X+Y~N(0,3) 而 E(X+Y)=E(X)+E(Y)=2-2=0, (A) X 1+X 2+X 3是」的无偏估计 Y + V + V (B) X1 X2 入3 是邛勺无偏估计 3 (C) X ;是二2 的无偏估计 (D) .宁严2 是■-2的无偏估计

概率统计常见题型及方法总结

概率统计常见题型及方法 总结 Prepared on 22 November 2020

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题 全概率公式: ()()() 1B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球, 2分 则 b a a B P +=)(1, 2分

)()()()()(1111111B A P B P B A P B P A P += 111++++ ++++= b a a b a b b a a b a a b a a += 2分 依次类推 2分 b a a A P i += )( 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少 、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 ()()1()212()()()()12 r r r n P B P A B n m n P B A n m n m P B P A B P B P A B m n m n ?+===++?+?++ 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任取一件产品进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为,而一件次品被误判为正品的概率为。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解 设 A 表示“任取一件产品被检验为正品”, B 表示“任取一件产品是正品”,则 ()96100P B = ,()4100 P B =,()|0.95P A B =,()|0.01P A B = (1)由全概率公式得 ()()()()()||0.9124P A P B P A B P B P A B =+= (2)这批产品被检验为合格品的概率为 ()3 3 0.91240.7596p P A ===???? 四、在电报通讯中不断发出信号‘0’和‘1’,统计资料表明,发出‘0’和‘1’的概率分别为和,由于存在干扰,发出‘0’时,分别以概率和接收到‘0’和‘1’,以的概率收为模糊信号‘x ’;发出‘1’时,分别以概率和收到‘1’和‘0’,以概率收到模糊信号‘x ’。

相关文档
相关文档 最新文档