文档库 最新最全的文档下载
当前位置:文档库 › 反应釜温度过程控制课程设计

反应釜温度过程控制课程设计

反应釜温度过程控制课程设计
反应釜温度过程控制课程设计

过程控制系统课程设计

课题:反应釜温度控制系统

系别:电气与控制工程学院

专业:自动化

姓名:彭俊峰

学号: 092413238

指导教师:李晓辉

河南城建学院

2016年 6月 15日

引言 (1)

1系统工艺过程及被控对象特性选取 (2)

1.1 被控对象的工艺过程 (2)

1.2 被控对象特性描述 (4)

2 仪表的选取 (5)

2.1过程检测与变送器的选取 (5)

2.2执行器的选取 (6)

2.2.1执行器的选型 (7)

2.2.2调节阀尺寸的选取 (7)

2.2.3调节阀流量特性选取 (7)

2.3控制器仪表的选择 (8)

3.控制方案的整体设定 (10)

3.1控制方式的选择 (10)

3.2阀门特性及控制器选择 (10)

3.3 控制系统仿真 (12)

3.4 控制参数整定 (13)

4 报警和紧急停车设计 (14)

5 结论 (15)

6 体会 (16)

参考文献 (17)

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。

由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC温度调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

1系统工艺过程及被控对象特性选取

1.1 被控对象的工艺过程

本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm,反应器总容积0.903m,耐压2.5MPa。为安全起见,要求反应器在系统开、停车全过程中压力不超过1.5MPa。反应器压力报警上限组态值为1.2MPa。反应器的工艺流程如图1-1所示。

图1-1 釜式反应器工艺流程图

该装置主要参数如表1-1所示。各个阀门的设备参数如表1-2所示,其中,D

g 为阀门公称直径、K

为国际标准流通能力。

v

表1-1 主要测控参数表

表1-2 设备参数表

由图1-1可以看出,该被控对象的反应过程为反应物A与反应物B在催化剂C的作用下,在反应温度70±1.0℃发生反应,生成产物D。反应初期用热水诱发,当反应开始后由冷却水通过蛇管与夹套进行冷却。图1中,各参数含意如下:F4、F5 和F6 分别反应物A、B和催化剂 C 的进料流量,V4、V5 和V6 分别是A、B和C的进料阀。A为反应器内主产物D重量百分比浓度,反应温度为T1,液位为L4。反应器出口浆液流量为F9,由出口阀V9控制其流量。出口泵及出口泵开关为S5。反应器出口为混合液,由产物D与未反应的 A、B以及催化剂C 组成。F7为夹套冷却水入口流量,由阀V7进行控制。F8为蛇管冷却水入口流量,由阀V8 进行控制。此外,在反应初期,需要由反应器夹套加热热水来触发反应。该热水由开关阀S6引入。反应器搅拌电机开关为S8。

1.2 被控对象特性描述

本设计中的被控对象主要是反应釜的温度部分。由于被控对象有其特殊特性,直接影响着操纵变量和控制方案的选取,因此对于被控变量的特性分析显得尤为重要。下面就针对反应釜反应温度分析和描述。

该反应属于放热反应,放热反应属于非自衡的危险过程,反应温度高将导致反应速度加快,释放出热量导致反应温度进一步升高,温度迅速升高的同时,反应压力也会迅速加大,从而有可能导致火灾或者爆炸事故。因此有必要对反应温度加以控制,其主要手段是控制夹套以及蛇管冷却水的流量。冷却水流量的变化随阀门的开关变化较快、时间常数较小。当冷却水压力下降时(这种干扰在现场时有发生),即使阀位不变,冷却水流量也会下降,冷却水带走的热量减少,反应器中物料温度会上升。反应温度和反应转化率的变化属于时间常数较大的高阶特性。由于温度变化的滞后,用常规控制器进行调节效果不佳。

2 仪表的选取

温度控制系统主要由温度传感器、温度调节仪、执行装置、被控对象四个部分组成,其系统结构图如图2.1所示。

图2-1 温度控制系统结构图

2.1过程检测与变送器的选取

过程检测是生产过程自动控制系统的重要组成部分。过程检测装置及时而准确的把被控参数检测出来,并变成调节、控制装置可识别的方式,作为过程控制装置判断生产过程的依据。根据工业的要求,为了具有较高的精度,采用热电阻温度计。热电阻温度计广泛应用于-200~600℃范围内的温度测量。

用于制造热电阻的材料,要求电阻率、电阻温度系数要大,热容量、热惯性要小,电阻与温度的关系最好近于线性,另外,材料的物理化学性质要稳定,复现性好,易提纯,同时价格便宜。热电阻的选取可以根据表2-1确定:

表2-1 工业常用热电阻

由表2-1,根据釜内温度的一般变化范围选用铂电阻,为提高检测精度采用三线制的接法,如图2-2所示。

采用三线制是为了消除连接导线电阻引起的测量误差。这是因为测量热电阻的电路一般是不平衡电桥。热电阻作为电桥的一个桥臂电阻,其连接导线(从热

电阻到中控室)也成为桥臂电阻的一部分,这一部分电阻是未知的且随环境温度变化,造成测量误差。采用三线制,将导线一根接到电桥的电源端,其余两根分别接到热电阻所在的桥臂及与其相邻的桥臂上,这样消除了导线线路电阻带来的测量误差。所以工业上一般都采用三线制接法。温度变送器我们选择DDZ-Ⅲ型温度变送器如图2-3所示。

图2-2 热电阻三线直接法

图2-3 变送器的测量接线示意图

其特点:

(1)采用线性集成放大电路,使仪表的精确性、可靠性、稳定性以及其他指标均符合国家规定的标准。

(2)采用了通用模块和专用模块相结合的设计方法,使用灵活、方便。

(3)在与热电阻的接入单元中,采用了线性化电路,从而保证了变送器的输出信号与被测温度呈线性关系,大大方便了变送与系统的配接。

(4)采用了统一的24V DC集中供电,变送器内无电源,实现了“三线制”的接线方式。

(5)采取了安全火花防爆措施,适用于具有爆炸危险场合中的温度或直流毫伏信号的检测。

2.2执行器的选取

执行器是过程控制系统的重要组成部分,其特性好坏直接影响系统的控制质量。它接受控制器输出的控制信号,并将其转换为直线位移和角位移,操纵控

制机构,自动改变操作变量,从而实现对过程变量的自动控制。

2.2.1执行器的选型

本设计采用气动薄膜调节阀,其工作原理:当气室输入了0.02~0.10MPa 信号压力之后,薄膜产生推力,使推力盘向下移动,压缩弹簧,带动推杆、阀杆、阀芯向下移动,阀芯离开了阀座,从而使压缩空气流通。当信号压力维持一定时,阀门就维持在一定的开度上。

气动薄膜调节阀的结构可以分为两部分,上面是执行机构,下面是调节机构。它主要由膜片、弹簧、推杆、阀芯、阀座等零部件组成。当来自控制器的信号压力通入到薄膜气室时,在膜片上产生一个推力,并推动推杆部件向下移动,使阀芯和阀座之间的空隙减小,流体受到的阻力增大,流量减小。推杆下移的同时,弹簧受压产生反作用力,直到弹簧的反作用力与信号压力在膜片上产生的推力相平衡为止,此时,阀芯与阀座之间的流通面积不再改变,流体的流量稳定。出于安全的原因,在此次设计中使用VBD 气动端面密封蝶阀,VBD 气动端面密封蝶阀是一种重量轻,结构简单的后座式端面密封蝶阀。阀体、阀板均用钢板焊接或铸造加工而成。适用于低压状态的空气或其他气体的流量、压力控制。

气动执行器分气开和气关两种形式,有压力信号时阀关,无压力信号时阀开为气关式执行器;反之,则为气开式。它的选择首先应根据调节器输出信号为零时使生产处于安全状态的原则确定;其次,还应考虑是否有利于节能、是否有利于开车、停车等进行选择。最后,气开、气关的选择主要是考虑在不同生产工艺条件下安全生产的要求。考虑的原则是:信号压力中断时,应保证设备和工作人员的安全。根据工业的要求,本设计选择了气关方式。

2.2.2调节阀尺寸的选取

调节阀的尺寸主要是指调节阀的开度和口径,他们的选择对系统的正常运行影响很大。若调节阀口径选择过小,当系统受到较大扰动时,调节阀既是运行在全开状态,也会使系统出现暂时失控现象;若口径选择过大,则在运行中阀门会经常处于小开度状态,容易造成流体对阀芯和阀座的频繁冲蚀,甚至使调节阀失灵。因此,结合本设计的工业要求,调节阀开度应处于15%~85%之间。

2.2.3调节阀流量特性选取

调节阀是控制系统非常重要的一个环节,它接受控制器的输出信号,改变操纵变量,执行最终控制任务。控制阀的流量特性是指流体通过阀门的相对流量与相对开度之间的函数关系,如下式中所示。 ()L l f Q Q =max (2-1) 其中max Q Q ——相对流量。即控制阀在某一开度下的流量与最大流量之比; L l ——相对开度。即控制阀在某一开度下的行程与全行程之比。

常用的理想流量特性的控制阀有:线性型、对数(等百分比)型和快开型等。

其理想流量特性如图2-5 所示。

图2-5 控制阀理想流量特性

而在实际工作时,阀两端的压降会随流量而变化,这时的流量特性称为工作

特性。设管路系统的总压差为ΔP

T ,由液体提升高度引起的压差为ΔP

h

,阀两端

的压降为ΔP

V ,管路其他部分的压降为ΔP

l

。工程中通常采用经验法来选择调节

阀的流量特性。表2-1给出了理想流量特性的经验,本方案将依据这个表来选取理想流量特性。然而当控制系统中某一环节出现故障或意外时,应考虑人身、设备装置的安全;考虑介质性质;还要考虑减少经济损失等。

表2-1 控制阀理想流量特性经验选择表

2.3控制器仪表的选择

采用模拟控制器:DDZ-III型调节器,DDZ―Ⅲ基型控制器框图如图4.3 。控制器的输入信号为1~5V的测量信号。设定信号有内设定和外设定两种。内设定信号为1~5V,外设定信号为4~20mA。测量信号和设定信号通过输入电路进行减法运算,输出偏差到比例积分微分电路进行比例积分微分运算后,由输出电路转换为4~20mA信号输出。手动电路和保持电路附于比例积分微分电路之中,

手动电路可实现软手动和硬手动两种操作,当处于手动状态时,用手指按下软手动操作键,使控制器输出积分式上升或下降,当手指离开操作键时,控制器的输出值保持在手指离开前瞬间的数值上,当控制器处于硬手动状态时,移动硬手动操作杆,能使控制器的输出快速改变到需要的数值,只要操作杆不动,就保持这一数值不变。由于有保持电路,使自动与软手动相互切换,硬手动只能切换到软手动,都是无平衡无扰动切换,只有软手动和自动切换到硬手动需要事先平衡才能实现无扰动切换。

3.控制方案的整体设定

3.1控制方式的选择

采用单回路控制方式,将反应温度T1 取一阶微分,得到温度变化率,再与升温速率设定值0.1℃/s 作比较,将偏差作为控制器的输入。控制系统框图如图 3-1所示:

图3-1 控制系统框图

传递函数框图如图3-2所示:

图3-2 传递函数框图

系统的开环传递函数为:

)()()()()(s G S G S G S G s G m V O C = (3-1)

闭环传递函数为: )

()()()(1)()()()(s G S G S G S G S G S G S G s W m V O C V O C +=

(3-2) 3.2阀门特性及控制器选择

阀门V8选线性阀。

对于釜式反应器,在升温阶段65℃以下由夹套冷却水阀控制冷却水流量来实现对反应温度的控制。根据反馈控制的基本原理,要使系统能够正常工作,构成系统开环传递函数静态增益的乘积必须为正。由图3-2可知,由于阀门V8选择的是气关的形式,被控对象釜式反应器是正作用,温度变送器选择正值,所以控制器应选择正作用方式。对于釜式反应器这类控制对象,是一个时滞过程,而且控制对象特性复杂,故采用数字PID 控制器可以得到满意的控制效果。 数字调节中的PID 控制算式是将PID 的模拟表达式进行离散化而得到的。

PID 的模拟表达式为: )1(?++=dt

de T edt T e K p d i p (3-3) 式中 p ——调节器的输出信号;

e ——调节器的偏差输入信号,是测量值m 与r 之差,m r e -=; d i p T T K 、、——调节器的比例增益、积分时间常数、微分时间常熟。

因为采样周期s T 相对于信号变化周期是很小的,这样可用矩形法计算积分,用后相差分代替微分,则上式可变成离散PID 算式 ??????-++=-=∑)(10n n s d n

i i i s

n p n e e T T e T T e K p (3-4) 式中 n p ——第n 次采样时调节器的输出;

n e ——第n 次采样的偏差值;

n ——采样序号。

采用增量式的算法,上式可变换为 []

)2()2()(21211-----+-=??????+-++-=?n n n p n n n s d n i s n n p n e e e K e e e T T e T T e E K p (3-5)

利用增量式方法的优点是:

1)计算机只输出控制增量,即执行机构位置的变化部分,误动作时影响小必要时通过逻辑判断进行保护,不会严重影响系统状态。

2)易于实现手动和自动的无忧切换。

为了改善控制质量和控制的要求,选用了微分先行PID 控制模式,其结构如图3-3所示。

这是一个PD 与PI 的串联结构,他只对测量值M 进行微分,而不是对偏差进行微分,这样在给定值R 变化时,不产生输出的大幅度变化,即可避免给定值扰动。

图3-3 微分先行PID结构图

PID控制器是根据输出量对于输入量偏差的变化情况,根据一定的规则进行计算,实时的整定PID 控制器的参数。此次设计选用FX2N-2LC温度调节模块。该模块配有2通道的温度输入和2通道晶体管输出,即一块能组成两个温度调节系统。模块提供了自调节的PID控制和PI控制,控制的运行周期为500ms,占用8个I/O点数。

3.3 控制系统仿真

对于本设计,为了检验PID的控制效果,针对此反应器的温度控制,在MATLAB 中进行了仿真。控制器的仿真结构如图3-4所示,控制器跟踪升温曲线的仿真结果如图3-5 所示。

图3-4控制器仿真

图3-5控制器跟踪升温曲线仿真

3.4 控制参数整定

控制器参数整定:需要对PID控制器进行初始化的参数整定,这里打算采用临界比例度法对控制器进行参数整定。大致步骤为:首先设定比例增益K

C

=1.0,

置积分时间最大T

i =99999,微分时间为T

d

=0。将增益K

C

从1.0开始以1.0为增

量逐渐增大,每变化一次增益K

C

,观察一次阶跃响应曲线,直到出现等幅振荡曲

线为止。测量并记录此时的临界增益K

cmax 和等幅振荡周期T

max

,根据计算公式计

算可得到K

C ,T

i

和T

d

。将计算得到的数据设置为温度控制器的PID参数,即完成

了控制器的PID参数整定。

4 报警和紧急停车设计

该工艺过程中,如果反应釜中的温度过高而导致压力增大,就有发生爆炸的危险,因此有必要当反应釜内压力过大时发出报警并紧急停车,以免发生事故。为此有必要设计报警系统和紧急停车系统,为了提高其安全性,可同时采用自动手动两种方式。其框图如图3-6所示。

图3-6 报警系统和紧急停车系统

其工作过程为:通过温度的升高,压力变送器检测反应釜内气体压力P7,在报警给定器内设置压力上限1.2MPa,一旦发现压力越界,报警给定器发出警报,并改变其输出开关量的值,以示出现危险。经逻辑运算的判定,如果确实存在危险,改变其输出开关量的值以开始停车过程。停车包含以下几个措施:关闭进料阀V4、V5、V6,以切断进料;将蛇管冷却阀V7和夹套冷却阀V8开到最大,加大冷却水流量,以便快速降温;将出料阀V9开到最大,清空釜内的物料;关闭搅拌器开关。该系统与以上各个控制系统是相互独立的,通过选择型开关实施切换。这个过程也可以通过手动操作来完成。

本文根据釜式反应器的工艺流程和控制要求,设计了一套温度过程控制系统。在明确控制要求并且确定了被控量之后,为了取得更好的控制效果,在深入分析被控量的影响因素、影响因素之间的制约关系、被控量间的制约关系以及被控对象的特性的基础上,选用了PID的数字式控制方法,FX2N-2LC温度调节模块,

通过MATLAB仿真结果表明,有更好的控制效果;为了提高系统安全性,设计了报警和紧急停车系统。对于工艺流程、对象特性及其它的一些细节问题,

通过这次的课程设计我懂得了,过程控制与自动化仪表这门课所应用的领域,让我对带搅拌时反应器的过程控制有了进一步的认识。以及所起的作用使我更进一步了解我们今后要学习很多的东西,并且要不断地提高自己的实力。不但提高了分析解决问题的能力,也提高了理论学习的能力,同时也增强了自己的动手能力。通过本次设计把我所学的书本上的知识与实际联系起来,在实践中检验自己的知识掌握程度和熟练程度,对画图软件有了进一步的掌握。

这次设计让我知道了自己还有很多不足之处。虽然知道了过程控制的一些理论,但在实际应用中还是力不从心,不知道怎么用。还有就是过程控制技术的广泛应用使得这门技术所涉及的越来越宽。

参考文献

[1] 潘永湘.杨延西.赵跃过程控制与自动化仪表(第二版)机械工业出版社 2007

[2] 夏晨,李朴反应釜设计及其温度控制系统化工自动化及仪表 2004,

[3] 陆会明控制装置与仪表机械工业出版社 2007

[4] 何淤庆,俞金寿,蒋慰孙.工业生产过程控制.化学工业出版社,2004

[5] 范永胜.王岷电气控制与PLC.应用(第二版)2007

[6] 侯志林过程控制与自动化仪表机械工业出版社 2006

[7] 张晓华控制系统数字仿真与CAD 机械工业出版社 2005

反应釜温度过程控制课程设计

过程控制系统课程设计 课题:反应釜温度控制系统 系别:电气与控制工程学院 专业:自动化 姓名:彭俊峰 学号:092413238 指导教师:李晓辉 河南城建学院 2016年6月15日

引言 (1) 1系统工艺过程及被控对象特性选取 (2) 1.1 被控对象的工艺过程 (2) 1.2 被控对象特性描述 (4) 2 仪表的选取 (5) 2.1过程检测与变送器的选取 (5) 2.2执行器的选取 (6) 2.2.1执行器的选型 (7) 2.2.2调节阀尺寸的选取 (7) 2.2.3调节阀流量特性选取 (7) 2.3控制器仪表的选择 (8) 3.控制方案的整体设定 (10) 3.1控制方式的选择 (10) 3.2阀门特性及控制器选择 (10) 3.3 控制系统仿真 (12) 3.4 控制参数整定 (13) 4 报警和紧急停车设计 (14) 5 结论 (15) 6 体会 (16) 参考文献 (17)

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC温度调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

反应釜温度智能控制系统设计 (6)

中北大学 毕业设计开题报告 学生姓名:李依遥学号:0805054101 学院、系:信息与通信工程学院电气工程系专业:自动化 设计题目:反应釜温度智能控制系统设计 ——软件部分 指导教师:孟江 2012 年 3 月 15 日

开题报告填写要求 1.开题报告作为毕业设计答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计工作前期内完成,经指导教师签署意见及所在系审查后生效; 2.开题报告内容必须用按教务处统一设计的电子文档标准格式(可从教务处网页上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见; 3.学生写文献综述的参考文献应不少于15篇(不包括辞典、手册)。文中应用参考文献处应标出文献序号,文后“参考文献”的书写,应按照国标GB 7714—87《文后参考文献著录规则》的要求书写,不能有随意性; 4.学生的“学号”要写全号(如020*******),不能只写最后2位或1位数字; 5. 有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“2004年3月15日”或“2004-03-15”; 6. 指导教师意见和所在系意见用黑墨水笔工整书写,不得随便涂改或潦草书写。

毕业设计开题报告

式一般有锚式、桨式、涡轮式、推进式或框式等,搅拌装置在高径比较大时,可用多层搅拌桨叶,也可根据用户的要求任意选配。并在釜壁外设置夹套,或在器内设置换热面,也可通过外循环进行换热。加热方式有电加热、热水加热、导热油循环加热、远红外加热、外(内)盘管加热等,冷却方式为夹套冷却和釜内盘管冷却,搅拌桨叶的形式等。支承座有支承式或耳式支座等。转速超过160转以上宜使用齿轮减速机.开孔数量、规格或其它要求可根据用户要求设计、制作。反应釜在设定恒温条件下,在密闭的容器内,在常压或负压下进行搅拌、反应,并能控制反应溶液的蒸发与回流,是现代化学小样实验、生物制药及新材料合成的理想设备[6]。 3.反应釜的温度控制 反应釜温度控制是通过控制两个阀门即加热水阀门和冷却水阀门来实现的,通过搅拌机的搅拌使物料均匀。在升温阶段,打开加热水阀门,对釜内的蛇管通以加热水,使釜温升高,通过控制阀门开度来控制温度升高的速率,当加热到预订反应温度后就停止加热,反应过程中在夹套中通以冷却水,将反应产生的多余热量移走,控制温度保持恒定。导热介质的选择根据各种不同展品的工艺温度要求确定,常见的导热介质又通过热蒸汽和导热油。温度测量常用热电阻或热电偶及其变送器组成。通入反应釜的热导介质要求保持温度恒定,通过调节流入反应夹套的导热介质的流量,来控制反应釜内物料的温度符合工艺要求[7]。 二、对反应釜采用的控制技术 1.常规PID控制 PID控制器应用的非常广泛,其设计技术成熟,长期以来形成了典型的结构,它的参数整定方便,结构更改灵活,能满足大多数工业控制要求。PID技术比较简单,易于掌握,是常用的控制技术之一。对于参数不变的控制对象或模型参数变化不显著的控制对象来说,使用PID控制能够达到比较理想的控制效果,而且实现起来非常简单[8]。 在本课题的系统设计中,作为被控对象的反应釜由于模型较为复杂,无法建立精确的数学模型,采用PID算法比较方便,但PID算法也存在现场参数调整麻烦,被控对象模型参数难以确定以及外界干扰会使控制漂离最佳工况等问题。针对这些问题,本课题在反应釜温度控制系统中,采用了模糊控制技术与PID相结合的方法来弥补只用PID调节器时的缺憾。 2.模糊控制技术

计算机控制课程设计电阻炉温度控制系统

计算机控制课程设计 报告 设计题目:电阻炉温度控制系统设计 年级专业:09级测控技术与仪器 化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量。因而设计一种较为理想的温度控制系统是非常有价值的。本设计就是利用单片机来控制高温加热炉的温度,传统的以普通双向晶闸管(SCR)控制的高温电加热炉采用移相触发电路改变晶闸管导通角的大小来调节输出功率,达到自动控制电加热炉温度的目的。这种移相方式输出一种非正弦波,实践表明这种控制方式产

生相当大的中频干扰,并通过电网传输,给电力系统造成“公害”。采用固态继电器控温电路,通过单片机控制固态继电器,其波形为完整的正弦波,是一种稳定、可靠、较先进的控制方法。为了降低成本和保证较高的控温精度,采用普通的ADC0809芯片和具有零点迁移、冷端补偿功能的温度变送器桥路,使实际测温范围缩小。 1.1电阻炉组成及其加热方式 电阻炉是工业炉的一种,是利用电流通过电热体元件将电能转化为热能来加热或者熔化元件或物料的热加工设备。电阻炉由炉体、电气控制系统和辅助系统组成,炉体由炉壳、加热器、炉衬(包括隔热屏)等部件组成。由于炉子的种类不同,因而所使用的燃料和加

热方法也不同;由于工艺不同,所要求的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,对控温精度要求不同,因而控制系统的组成也不相同。电气控制系统包括主机与外围电路、仪表显示等。辅助系统通常指传动系统、真空系统、冷却系统等,因炉种的不同而各异。电阻炉的类型根据其热量产生的方式不同,可分为间接加热式和直接加热式两大类。间接加热式电阻炉,就是在炉子内部有专用的电阻材料制作的加热元件, (4)电阻炉温度按预定的规律变化,超调量应尽可能小,且具有良好的稳定性; (5)具有温度、曲线自动显示和打印功能,显示精度为±1℃; (6)具有报警、参数设定、温度曲线修改设置等功能。

过程控制工程课程设计

过程控制工程 课程设计任务书 设计名称:扬子烯烃厂丁二烯装置控制模拟设计设计时间:2006.2.20~2006.3.10 姓名:毛磊 班级:自动化0201 学号:05号 南京工业大学自动化学院 2006年3月

1.课程设计内容: 学习《过程控制工程》课程和下厂毕业实习2周后,在对扬子烯烃厂丁二烯装置的实际过程控制策略、实习环节的控制系统以及相应的组态软件有一定的认识和了解的基础上,针对扬子烯烃厂丁二烯装置,设计一个复杂控制系统(至少包含一个复杂回路和3-5个简单回路),并利用组态软件进行动态仿真设计,调节系统控制参数,使控制系统达到要求的控制效果。 1)独立完成设计任务,每个人根据下厂具体实习装置,确定自己的课程设 计题目,每1-3人/组; 2)选用一种组态软件(例如:采用力控组态软件)绘制系统工艺流程图; 3)绘制控制系统原有的控制回路; 4)利用下厂收集的实际数据和工艺要求,选择被控对象模型,利用组态软 件,对控制系统进行组态; 5)改进原有的控制回路,增加1-2个复杂回路,并进行组态; 6)调节控制参数,使性能指标达到要求; 7)写出设计工作小结。对在完成以上设计过程所进行的有关步骤:如设计 思想、指标论证、方案确定、参数计算、元器件选择、原理分析等作出 说明,并对所完成的设计做出评价,对自己整个设计工作中经验教训, 总结收获。 2. 进度安排(时间3周) 1)第1周选用一种组态软件绘制系统工艺流程图;绘制控制系统原有的 控制回路; 2)第2周利用下厂收集的实际数据和工艺要求,选择被控对象模型,利 用组态软件,对控制系统进行组态; 3)第3周(1-3) 改进原有的控制回路,增加1-2个复杂回路,并进行组态; 调节控制参数,使性能指标达到要求; 4)第3周(4) 书写课程设计说明书 5)第3周(5) 演示、答辩

某加热炉温度控制 过程控制

学号 天津城建大学 过程控制课程设计 设计说明书 某加热炉温度控制 起止日期:2014 年6 月23 日至2014 年6 月27 日 学生姓名 班级 成绩 指导教师(签字) 控制与机械工程学院 2014年6月27 日

天津城建大学 课程设计任务书 2013 -2014学年第2学期 控制与机械工程学院电气工程及其自动化专业班级13电气11班 姓名学号 课程设计名称:过程控制 设计题目:某加热炉温度控制 完成期限:自2014 年6 月23 日至2014 年 6 月27 日共1 周设计依据、要求及主要内容: 一、设计任务 某温度过程在阶跃扰动1/ ?=作用下,其温度变化的数据如下: q t h 试根据实验数据设计一个超调量25% δ≤的无差控制系统。具体要求如下: p (1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等);(3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路

三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料 [1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 指导教师(签字): 教研室主任(签字): 批准日期:年月日

单片机课程设计(温度控制器)

基于单片机的温度控制器设计 内容摘要:该温度报警系统以AT89C51单片机为核心控制芯片,实现温度检测报警功能的方案。该系统能实时采集周围的温度信息,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。该系统实现了对温度的自动监测和自动调温功能。 关键词:AT89C51ADC0808 温度检测报警自动调温 Abstract:The temperature alarm system AT89C51 control chip, realize temperature detection alarm function scheme. The system can collect real-time temperature information around that internal procedures set alarm equipped, according to different application environment can be set different alarm upper. The system realizes the automatic monitoring of temperature. The instrument can achieve the automatic thermostat function. Keywords:AT89C51 ADC0808Temperature detectingalarmautomatic thermostat 引言:本课题是基于单片机的温度控制器设计,经过对对相关书籍资料的查阅确定应用单片机为主控模块通过外围设备来实现对温度的控制。实现高低温报警、指示和低温自加热功能(加热功能未在仿真中体现)。 1.设计方案及原理 1.1设计任务 基于单片机设计温度检测报警,可以实时采集周围的温度信息进行显示,并且可以根据应用环境不同设定不同的报警上下限。 1.2设计要求 (1)实时温度检测。 (2)具有温度报警功能。 (3)可以设报警置温度上下限。 (4)低于下限时启动加热装置。 1.3总体设计方案及论证

温度控制系统课程设计

前言 温度是一种最基本的环境参数,日常生活和工农业生产中经常要检测温度。传统的方式是采用热电偶或热电阻,但是由于模拟温度传感器输出为模拟信号,必须经过AD 转换环节获得数字信号后才能与单片机等微处理器接口,使得硬件电路结构复杂,制作成本较高。近年来,美国DALLAS公司生产的DSI18B20为代表的新型单总线数字式温度传感器以其突出优点广泛使用于仓储管理、工农业生产制造、气象观测、科学研究以及日常生活中。 随着科学技术的不断进步与发展,温度传感器的种类日益繁多,数字温度传感器更因适用于各种微处理器接口组成的自动温度控制系统具有可以克服模拟传感器与微处理器接口时需要信号调理电路和A/D转换器的弊端等优点,被广泛应用于工业控制、电子测温计、医疗仪器等各种温度控制系统中.其中,比较有代表性的数字温度传感器有DS1820、MAX6575、DS1722、MAX6635等. 智能温度传感器(亦称数字温度传感器)是在20世纪90年代中期问世的。它是微电子技术、计算机技术和自动测试技术(ATE_)的结晶.目前,国际上已开发出多种智能温度传感器系列产品。智能温度传感器内部包含温度传感器、A/D传感器、信号处理器、存储器(或寄存器)和接口电路.有的产品还带多路选择器、中央控制器(CPU)、随机存取存储器(RAM)和只读存储器(ROM)。智能温度传感器能输出温度数据及相关的温度控制量,适配各种微控制器(MCU),并且可通过软件来实现测试功能,即智能化取决于软件的开发水平。 为了准确获取现场的温度和方便现场控制,本系统采用了软硬件结合的方式进行设计,利用LED数码管显示温度,利用DS18B20检测当前的温度值,通过和设定的参数进行比较,若实测温度高于设定温度,则通过555定时器产生频率可变的报警信号,若实测温度低于设定温度,则加热电路自动启动,到达设定温度后停止。在软件部分,主要是设计系统的控制流程和实现过程,以及各个芯片的底层驱动设计已达到所要求的功能。在近端与远端通信过程中,采用串行MAX232标准,实现PC机与单片机间的数据传输。

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

反应釜温度过程控制课程设计

过程控制系统课程课题:反应釜温度控制系统 系另I」:电气与控制工程学院 专业:自动化_____________ 姓名: ________ 彭俊峰_____________ 学号:__________________ 指导教师: _______ 李晓辉_____________ 河南城建学院 2016年6月15日

反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 由于非线性和温度滞后因素很多,使得常规方法对釜式反应器的控制效果不是很理想。本文以带搅拌釜式反应器的温度作为工业生产被控对象,结合PID 控制方式,选用FX2N-PLC 调节模块,同时为了提高系统安全性,设计了报警和紧急停车系统,最终设计了一套反应釜氏的温度过程控制系统。

1系统工艺过程及被控对象特性选取 被控对象的工艺过程 本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。 反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm, 反应器总容积,耐压。为安全起见,要求反应器在系统开、停车全过程中压力不超过。反应器压力报警上限组态值为。反应器的工艺流程如图1-1所示。 S8Q A a珑厲娜口 图1-1釜式反应器工艺流程图 该装置主要参数如表1-1所示。各个阀门的设备参数如表1-2所示,其中,D g为阀门公称直径、K v为国际标准流通能力。 表1-1主要测控参数表

武汉理工大学模电课设温度控制系统设计

课程设计任务书 学生姓名:张亚男专业班级:通信1104班 指导教师:李政颖 工作单位:信息工程学院 题目: 温度控制系统的设计 初始条件:TEC半导体制冷器、UA741 运算放大器、LM339N电压比较器、稳压管、LM35温度传感器、继电器 要求完成的主要任务: 一、设计任务:利用温度传感器件、集成运算放大器和Tec(Thermoelectric Cooler, 即半导体致冷器)等设计一个温度控制器。 二、设计要求:(1)控制密闭容器内空气温度 (2)控制容器容积>5cm*5cm*5cm (3)测温和控温范围0℃~室温 (4)控温精度±1℃ 三、发挥部分:测温和控温范围:0℃~(室温+10℃) 时间安排:19周准备课设所需资料,弄清各元件的原理并设计电路。 20周在仿真软件multisim上画出电路图并进行仿真。 21周周五前进行电路的焊接与调试,周五答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

温度控制系统的设计 1.温度控制系统原理电路的设计 (3) 1.1 温度控制系统工作原理总述 (3) 1.2 方案设计 (3) 2.单元电路设计 (4) 2.1 温度信号的采集与转化单元——温度传感器 (4) 2.2 电压信号的处理单元——运算放大器 (5) 2.3 电压值表征温度单元——万用表 (7) 2.4 电压控制单元——迟滞比较器 (8) 2.5 驱动单元——继电器 (10) 2.6 TEC装置 (11) 2.7 整体电路图 (12) 3.电路仿真 (12) 3.1 multisim仿真 (12) 3.2 仿真分析 (14) 4.实物焊接 (15) 5.总结及体会 (16) 6.元件清单 (18) 7.参考文献 (19)

过程控制课程设计报告

北华航天工业学院 课程设计报告(论文) 设计课题:前馈反馈控制系统的 设计与整定 专业班级: 学生姓名: 指导教师: 设计时间:2013年12月06日

北华航天工业学院电子工程系 过程控制课程设计任务书 指导教师:教研室主任: 2013年12月06日 注:本表下发学生一份,指导教师一份,栏目不够时请另附页。 课程设计任务书装订于设计计算说明书(或论文)封面之后,目录页之前。

内容摘要 液位控制是工业中常见的过程控制,例如在饮料食品加工、化工生产、锅炉汽泡液位等多种行业的生产加工过程中都需要对液位进行适当的控制,它对生产的影响不容忽视。对于液位控制系统的方法,目前有常规的PID控制,但是PID 控制采用固定的参数,难以保证控制适应系统的参数变化和工作条件变化,得不到理想效果。而且,对于一些控制精度要求较高的场合,例如核电厂的蒸汽生成器中的液位控制,某些化工原料厂的化学溶液液位等问题,不允许在有扰动的情况下出现太大的超调量和过程的调节时间。 目前为了达到精度较高要求的先进控制策略的发展有:预测控制、自适应控制、智能控制、模糊控制等。具体采用的方法如将模糊控制和传统的PID控制两者结合,用模糊控制理论来整定PID控制器的比例,积分,微分系统;以负荷为前馈扰动量构成一个串级加前馈的三冲量闭环控制系统等。目前各种锅炉汽包水位控制绝大多数采用三冲量水位控制策略。 本文针对液位控制系统中较为基础的单容水箱作为控制对象,单容液位控制系统具有非线性,滞后,耦合等特征,能够很好的模拟工业过程特征。而对于控制系统的选择为前馈——反馈系统。一般的控制系统都属于反馈控制, 这种控制作用总是落后于扰动作用。对于时滞较大、扰动幅度大而频繁的过程控制往往不能满足生产要求。引入前馈控制可以获得显著的控制效果。前馈控制是按照扰动作用的大小进行控制, 所以控制是及时的。如果补偿作用完善可以使被控变量不产生偏差。 索引关键词:前馈—反馈控制PID 自动控制液位控制

反应釜的温度控制系统的设计毕业设计论文

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 安徽工业大学 毕业设计任务书 学院、系:电气信息学院自动化系 专业:自动化 学生姓名:学号: 设计题目: 基于HDU4000过程控制系统的反应釜温 度控制系统的设计 起迄日期: 设计地点: 指导教师: 系主任:

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 毕业设计任务书 1.毕业设计课题的任务和要求: 反应釜生产和消费应用的高速增长期,已广泛应用。化工生产等必不可缺,所以反应釜的温度控制也尤为重要,尤其是恒温阶段,本设计要求 1.介绍控制系统的硬件组成,所采用的控制方案; 2.利用可编程逻辑控制器实现反应釜温度控制; 3.使用组态软件对系统进行组态; 4.监控温度PLC 控制系统的运行情况。 2.毕业设计课题的具体工作内容(包括原始数据、技术要求、工作要求等):本系统是以PLC、WinCC为基础,利用PLC实现温度控制系统的设计和应用。设计人员应具备下列知识: 1. 以过程控制实验装置中的反应釜温度作为被控对象设计一个控制对象,实现对反应釜温度的恒值控制; 2.组态测控界面上,实时设定并显示温度给定值、测量值及控制器输出值; 3.实时显示温度给定值实时曲线、温度测量值实时曲线; 4.选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数。 5.设计的反应釜温度控制系统要能够实现反应釜温度的自动控制,控制作用又快又好,。

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

热交换器温度控制系统课程设计报告书

热交换器温度控制系统 一.控制系统组成 由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。 图1换热器出口温度控制系统流程图 控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。 二、设计控制系统选取方案 根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。多级离心泵的转速由便频器来控制。 换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。 图2换热器的温度控制系统工艺流程图 引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有: (1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。热流体的温度主要受到加热炉加热温度和管路散热的影响。 (2 )冷流体的流量和温度的扰动。冷流体的流量主要受到离心泵的压头、转速

过程控制系统课程设计报告

过程控制系统课程设计报告 题目:温度控制系统设计 姓名: 学号: 班级: 指导教师:

温度控制系统设计 一、设计任务 设计电热水壶度控制系统方案,使系统满足85度至95度热饮需要。 二、预期实现目标 通过按键设定温度,使系统水温最终稳定在设定温度,达到控制目标。 三、设计方案 (一)系统数学模型的建立 要分析一个系统的动态特性,首要的工作就是建立合理、适用的数学模型,这也是控制系统分析过程中最为重要的内容。数学模型时所研究系统的动态特性的数学表达式,或者更具体的说,是系统输入作用与输出作用之间的数学关系。 在本系统中,被控量是温度。被控对象是由不锈钢水壶、2Kw电加热丝组成的电热壶。在实验室,给水壶注入一定量的水,将温度传感器放入水中,以最大功率加热水壶,每隔30s采样一次系统温度,记录温度值。在整个实验过程中,水量是不变的。 经过试验,得到下表所示的时间-温度表: 表1 采样时间和对应的温度值

以采样时间和对应的温度值在坐标轴上绘制时间-温度曲线,得到图1所示的曲线: 图1 时间-温度曲线 采用实验法——阶跃响应曲线法对温箱系统进行建模。将被控过程的输入量作一阶跃变化,同时记录其输出量随时间而变化的曲线,称为阶跃响应曲线。 从上图可以看出输出温度值的变化规律与带延迟的一阶惯性环节的阶跃曲线相似。因此我们选用 ()1s ke G s Ts τ-= + (式中:k 为放大系数;T 为过程时间常数;τ为纯滞后时间)作为内胆温度系统的数学模型结构。 (1)k 的求法:k 可以用下式求得: ()(0) y y k x ∞-= (x :输入的阶跃信号幅值)

开题报告_化工反应釜温度控制系统的研究和设计

开题报告 化工反应釜温度控制系统的研究和设计 一.选题意义 为了满足产品的多样化的市场需要,批量或半批量过程工业得到了极大的重视和发展,使得批量过程的先进控制问题成为当前控制理论与控制工程领域的研究热点。而间歇化学反应器是高度非线性对象,包括了所有批量过程控制的难点,涌盖了顺序控制、逻辑控制、回路控制的所有控制概念。因此,开展以化学反应器为控制对象的“面向复杂工业过程集成与优化控制的应用环境建设与先进控制方法研究”,具有重要的理论和现实意义。 在传统化工生产领域,反应釜是生产化工产品如(胶水、化妆品等)的核心主要机械。反应釜生产现场污染大、气味难闻有毒。由于自动化程度低,有很多地方都是人工现场观看温控仪表监控操作,对生产人员身体健康伤害很大,且温度控制精度低,一直困扰着这个行业。在工业控制领域,如何更有效地开发针对特定对象的先进控制算法是人们普遍关心的问题。同时在工业测控系统开发过程中,实现测控系统与仿真系统的集成是当前的一个发展方向。随着社会高速发展,工业自动化技术的不断更新换代和普及,在传统化工生产领域改造和更新有力了极大的改进。 化工生产在我国国民经济建设中占有很重要的地位,而反应釜是化工生产中实现化学反应的主要设备之一。由于反应过程受外界温度、反应物质不同、浓度等因素影响较大,且系统本身具有较大的时变性和滞后性,从控制的角度来看,反应釜属于最难控制的过程之。生产过程经常在高温、高压、易燃、易爆等环境下进行,生产的安全性至关重要,因此高性能、高精度反应釜控制器的研制受到高度重视。 二.综述 1.国内外的反应釜发展现状 目前,位于化工自动化最底层的控制器仍然是以PID为主流。PID方法是一种基于过程参数的控制阀,其控制原理简单、实现方便,但在控制对象非线性时变、给定突变、大时滞系统等情况下,过程模型难以确定,参数调整往往比较困难,即使可行也因调整时间过长、超调量过大,使控制效果不佳,因此,使用先进的控制理论来弥补PID控制方法的不足,成为目前国内外自动控制方面的一个主要课题。国外如日本、美国等都生产出了一批商品化的、性能优异的温度控制器及仪器仪表,且适用于大惯性、大滞后等复杂温度控制系统,而国内与之有较大的差距,这使得反应釜温度控制器的研制在技术和市场上都将有较大的突破空间。 在催化剂的生产过程中,对反应釜的加热温度控制直接影响其生产过程的精度,最终影响产品的好坏。而反应釜的温度控制是工业控制中典型的迟滞、时变与非线性的不确定性系统。常规的PID 控制方法控制简单、容易实现且稳态性较好,但难以适应控制系统的控制参数和工作条件的变化,温度始终有较大波动,得不到理想的结果。模糊控制的最大特征是它能够将操作者或领域专家的控制经验和知识表示成语言变量描述的控制规则,然后用这些规则去控制系统。它具有高度的仿人智能特性、不依赖精确数学模型的特点,是解决间歇聚合反应过程控制问题的一种有效方法。虽说模糊控制的动态性较好,但由于控制器的输入端被控量的偏差和偏差变化率,相对于PID控制,其稳态性较差。对于温度控制需要高动态性和稳态性的情况下,采用模糊控制和PID控制的两者的结合,可以扬长避短,分别满足控制系

反应釜温度过程控制课程设计教程文件

反应釜温度过程控制 课程设计

过程控制系统课程设计 课题:反应釜温度控制系统 系别:电气与控制工程学院 专业:自动化 姓名:彭俊峰 学号: 092413238 指导教师:李晓辉 河南城建学院 2016年 6月 15日

目录 引言 反应器是任何化学品生产过程中的关键设备,决定了化工产品的品质、品种和生产能力。釜式反应器是一种最为常见的反应器,广泛的应用于化工生产的各个领域。釜式反应器有一些非常重要的过程参数,如:进料流量(进料流量比)、液体反应物液位、反应压力、反应温度等等。对于这些参数的控制至关重要,其不但决定着产品的质量和生产的效率,也很大程度上决定了生产过程的安全性。 (1) 1系统工艺过程及被控对象特性选取 (2) 1.1 被控对象的工艺过程 本设计以工业常见的带搅拌釜式反应器(CSTR)为过程系统被控对象。反应器为标准3盆头釜,反应釜直径1000mm,釜底到上端盖法兰高度1376mm,反应器总容积 0.903m,耐压2.5MPa。为安全起见,要求反应器在系统开、停车全过程中压力不超过 1.5MPa。反应器压力报警上限组态值为1.2MPa。反应器的工艺流程如图1-1所示。 . 2 1.2 被控对象特性描述 (4) 2 仪表的选取 (5) 2.1过程检测与变送器的选取 (5) 2.2执行器的选取 (7) 2.2.1执行器的选型 (8) 2.2.2调节阀尺寸的选取 (9) 2.2.3调节阀流量特性选取 (9) 2.3控制器仪表的选择 (10) 3.控制方案的整体设定 (12) 3.1控制方式的选择 (12) G S G S S (3-1) (13) G G s G ) (s ) ( ) ( ( ) ( ) C V O m 3.2阀门特性及控制器选择 (13)

过程控制课程设计--加热器温度控制

课程设计任务书 设计依据、要求及主要内容: 一、设计任务 加热器出口温度在阶跃扰动DC作用下,其输出响应数据如下: t/s012345678 y 4.0 4.0 4.2 4.5 4.8 5.1 5.4 5.7 5.8 t/s91011 y 5.85 5.9 6.0 6.0 试根据实验数据设计一个超调量的无差控制系统。具体要求如下:(1)根据实验数据选择一定的辨识方法建立对象的数学模型; (2)根据辨识结果设计符合要求的控制系统(控制系统原理图、控制规律选择等); (3)根据设计方案选择相应的控制仪表; (4)对设计的控制系统进行仿真,整定运行参数。 二、设计要求 采用MATLAB仿真;需要做出以下结果: (1)超调量 (2)峰值时间 (3)过渡过程时间 (4)余差 (5)第一个波峰值 (6)第二个波峰值 (7)衰减比 (8)衰减率 (9)振荡频率 (10)全部P、I、D的参数 (11)PID的模型 (12)设计思路 三、设计报告 课程设计报告要做到层次清晰,论述清楚,图表正确,书写工整;详见“课程设计报告写作要求”。 四、参考资料

[1] 何衍庆.工业生产过程控制(1版).北京:化学工业出版社,2004 [2] 邵裕森.过程控制工程.北京:机械工业出版社2000 [3] 过程控制教材 目录 一 设计内容 1.1总体思路 1.2.设计要求 二 数学模型的建立 2.1 PID参数K、T、Τ的确定 2.2传递函数的确定 三 控制系统的设计 3.1原系统方框图 3.2 PID温度控制器原理 3.3 控制规律与控制变量的确定 3.4 过程控制系统设备的选择 四 系统仿真及其分析 4.1仿真波形图 4.2系统的性能指标 五 课程设计心得体会 六 参考文献

单片机智能温控器课程设计

单片机课程设计 说明书 专业:机械设计制造及其自动化 设计题目:智能温控器 设计者: 指导老师: 设计时间:

一、课题名称:一个基于51单片机的智能温控器课程 设计 二、主要技术指标及工作内容和要求:本设计以MCS-51系列单片机为核心,采用常用电子 器件设计,一个电源开关,两个控制温度设定按键(增大/减小),四位数码管分别显示设 定温度和实际温度,量程为0~99度,打开电源开关后设定温度初始化为26度。 1,按键输入采用中断方式,两个按键分别接INT0和INT1。 2,采用铂电阻(Pt100)温度传感器进行温度测量,模数转换采用ADC0809。 3,单片机根据设定温度S和实测温度P控制继电器R的动作,死区设为2度:当P<=S-1时,控制R接通电加热回路; 当P>S+1时,控制R断开电加热回路; 当S-1

过程控制系统课程设计

步进式加热炉控制系统设计 一、步进式加热炉工艺流程 1. 步进式加热炉简介 ⑴步进式加热炉步进式加热炉是一种靠炉底或水冷金属梁的上升、前进、下降、后退的动作 把料坯一步一步地移送前进的连续加热炉。 炉子有固定炉底和步进炉底,或者有固定梁和步进梁。前者叫做步进底式炉,后者叫做步进梁式炉。轧钢用加热炉的步进梁通常由水冷管组成。步进梁式炉可对料坯实现上下双面加热。 (2)步进式炉的几种类型 步进式炉从炉子构造上分目前有:单面供热步进式炉、两面供热步进式炉、钢料可以翻转的步进式炉、交替步进式炉、炉底分段的步进式炉等等。 单面供热步进式炉也称步进底式炉,钢料放置在耐火材料炉底或铺设在炉底上的钢枕上。钢坯吸热主要来自上部炉膛,由于一面受热,这种炉子的炉底强度较低。它适用于加热薄板坯、小断面方坯或有特殊要求的场合。 两面供热步进式炉也称步进梁式炉,活动梁和固定梁上都安设有能将钢坏架空的炉底水管。在钢坯的上部炉膛和下部炉膛都设置烧嘴,因此炉底强度较高,适用于产量很高的板坯或带钢轧前加热。 钢坯可以翻转的步进式炉是每走一步炉内钢料可以翻转某一角度,步进梁和固定梁都带有锯齿形耐热钢钢枕,这是加热钢管的步进式炉,每走一步钢管可以在锯齿形钢枕上滚动一小段距离,使受热条件较差的底面逐步翻转到上面,以求加热均匀。 交替步进式炉则有两套步进机构交替动作。运送过程中,钢坯不必上升和下降,振动较小,底面不会被划伤,表面质量较好 炉底分段的步进式炉的加热段和预热段可以分开动作。例如预热段每走一步,加热段可以

走两步或两步以上。这种构造是专门为易脱碳钢的加热而设计的。钢坯在预热段放置较密,可以得到正常的预热作用,在加热段钢坯前进较快,达到快速加热,以减少脱碳。 (3)步进式炉的优缺点 步进式炉是借机械将炉内钢坯托着一步一步前进,因此钢坯与钢坯还不必紧挨着,其间距可根据需要加以改变。 原始的步进式炉只用于加热推钢机无法推进的落板坯或异形坯,随着轧机的大型化和连续化,推钢式炉已不能满足轧机产量和质量的要求。在这种情况下,近十年来造价较高的步进式炉得到了快速发展,其结构也日趋完善。 步进式炉具有以下特点:(1)炉子长度不受钢坯厚度的限制,不会拱钢,炉子可以建得很长,目前有些炉子已接近60 米长,一个步进式炉可以代替1.5—2 个推钢式炉。(2)操作上灵活性较大,可以通过改变装料间隙调节钢坯加热时间,且更换品种方便。(3)炉内钢料易于清空,减少停炉时清除炉内钢料的时间。(4)钢坯在炉内不与水管摩擦,不会造成通过轧制还不能消除的伤痕。(5)水管黑印小,即能得到尺寸准确的轧材。(6)两面加热步进式炉可以不要实底均热段,因此加热能力比推钢式炉稍大。(7)没有出料滑坡,减少了由于滑坡高差作用而吸入炉内的冷空气。(8)钢坯有侧面加热,这样可实现三面或四面加热,因此加热时间短,钢坯氧化少。( 9)生产能耗大幅度降低,从炼钢连铸后开始全连续的直接生产。( 10)产量大幅度提高,在100* 104t/a 以上。( 11)生产自动化水平非常高,原加热炉的控制系统大都是单回路仪表和继电器逻辑控制系统,传动系统也大多是模拟量控制式供电装置,现在的加热炉的控制系统大多数都具有二级过程控制系统和三级生产管理系统,传动系统都是全数字化的直流或交流供电装置。 步进式炉的缺点是炉底机械设备庞大,维护和检修都较复杂,炉子造价太高。两面供热的步进式炉炉底水管较多,热损失大。单面供热的步进式炉虽然无水冷热损失,但产量较低。因此,尽管步进式炉有很多优点,仅由于它造价太高,目前在中小型厂全面推广还不适宜。

相关文档
相关文档 最新文档