文档库 最新最全的文档下载
当前位置:文档库 › SATA硬盘接口基础知识

SATA硬盘接口基础知识

SATA硬盘接口基础知识
SATA硬盘接口基础知识

SATA硬盘接口

SATA的由来

未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。Serial ATA 采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。

串口硬盘

串口硬盘是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而知名。相对于并行ATA来说,就具有非常多的优势。首先,Serial ATA以连续串行的方式传送数据,一次只会传送1位数据。这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA的起点更高、发展潜力更大,Serial ATA 1.0定义的数据传输率可达150MB/s,这比目前最新的并行ATA(即ATA/133)所能达到133MB/s的最高数据传输率还高,而在Serial ATA 2.0的数据传输率将达到300MB/s,最终SATA将实现

600MB/s的最高数据传输率。

SATAII接口

定义

SATA II是在SATA的基础上发展起来的,其主要特征是外部传输率从SATA的

1.5Gbps(150MB/sec)进一步提高到了3Gbps(300MB/sec),此外还包括NCQ(Native

Command Queuing,原生命令队列)、端口多路器(Port Multiplier)、交错启动(Staggered Spin-up)等一系列的技术特征。单纯的外部传输率达到3Gbps并不是真正的SATA II。

性能

SATA II的关键技术就是3Gbps的外部传输率和NCQ技术。NCQ技术可以对硬盘的指令执行顺序进行优化,避免像传统硬盘那样机械地按照接收指令的先后顺序移动磁头读写

硬盘的不同位置,与此相反,它会在接收命令后对其进行排序,排序后的磁头将以高效率的顺序进行寻址,从而避免磁头反复移动带来的损耗,延长硬盘寿命。另外并非所有的SATA 硬盘都可以使用NCQ技术,除了硬盘本身要支持NCQ之外,也要求主板芯片组的SATA 控制器支持NCQ。此外,NCQ技术不支持FAT文件系统,只支持NTFS文件系统。

发展变化

由于SATA设备市场比较混乱,不少SATA设备提供商在市场宣传中滥用“SATA II”的现象愈演愈烈,例如某些号称“SATA II”的硬盘却仅支持3Gbps而不支持NCQ,而某些只具有1.5Gbps的硬盘却又支持NCQ,所以,由希捷(Seagate)所主导的SATA-IO(Serial ATA International Organization,SATA国际组织,原SATA工作组)又宣布了SATA 2.5规范,收录了原先SATA II所具有的大部分功能——从3Gbps和NCQ到交错启动(Staggered Spin-up)、热插拔(Hot Plug)、端口多路器(Port Multiplier)以及比较新的eSATA(External SATA,外置式SATA接口)等等。

值得注意的是,部分采用较早的仅支持1.5Gbps的南桥芯片(例如VIA VT8237和NVIDIA nForce2 MCP-R/MCP-Gb)的主板在使用SATA II硬盘时,可能会出现找不到硬盘或蓝屏的情况。不过大部分硬盘厂商都在硬盘上设置了一个速度选择跳线,以便强制选择

1.5Gbps或3Gbps的工作模式(少数硬盘厂商则是通过相应的工具软件来设置),只要把硬

盘强制设置为1.5Gbps,SATA II硬盘照样可以在老主板上正常使用。

SATA硬盘在设置RAID模式时,一般都需要安装主板芯片组厂商所提供的驱动,但也有少数较老的SATA RAID控制器在打了最新补丁的某些版本的Windows XP系统里不需要加载驱动就可以组建RAID。

应用

那么,SATA2和SATA3又怎样呢?实际上SATA2和SATA3外型上是没有区别的,就象是USB2.0接口和USB3.0接口一样,只是一个传输速度不同而已。如果主板不支持SATA3,你接上去是没什么效用的,只能当SATA2一样用。也许在不久的将来,SATA3就是主流接口,而SATA4,SATA5甚至SATA6……他们已经悄悄地向我们走来了。

固态硬盘基础知识

固态硬盘基础知识 作者:长风傲天 写在前面:最近固态硬盘降价,看论坛的情况也有不少景友入手了,只是没见过几位同学真正理解固态硬盘的原理和使用方法。所以写一些东西出来,还请各位方家指正。 部分内容及配图来自PCEVA论坛超级版主neeyuese,在此表示最诚挚的敬意和感谢。 我已经尽量避免写过多不易理解的概念,所以难免会有一些说法有问题,还请谅解。 ------------------------------------------------------------------------------------------------------------------------------ 1楼:固态硬盘基本原理 2楼:固态硬盘正常使用指南 3楼:固态硬盘选购的品牌参考 不想看原理的童鞋请往下走。鸡蛋板砖随意。 ------------------------------------------------------------------------------------------------------------------------------ 机械硬盘的工作原理 要理解固态硬盘(Solid State Drive)的基本原理,首先得研究一下普通机械硬盘。借用网上的一 张图片: 上图是一款双碟的机械硬盘。任何机械硬盘的结构都是一样的:电路板上的主控制器芯片负责与芯片组之间的通信并且控制硬盘内部的运转;盘片是用磁性材料做成的,固定在硬盘中部的马达上旋转(这里就有了转速的区别:5400rpm指的是每分钟盘片旋转5400转,7200rpm则是每分钟7200转);磁头(图中那个近似于三角形的部件)则沿着盘片的径向移动。磁头的移动过程就是硬盘寻道的过程(这句话不太严谨,但是除了断电归位等情况之外绝大部分情况下都是)。至于“寻道”,则是和盘片的结构有关。

硬盘基本知识(磁道、扇区、柱面、磁头数、簇、MBR、DBR)

硬盘的DOS管理结构 1.磁道,扇区,柱面和磁头数 硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。每个盘片有两面,都可记录信息。盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。在DOS中每扇区是128×2的2次方=512字节,盘片表面上以盘片 中心为圆心,不同半径的同心圆称为磁道。硬盘中,不同盘片相同半径的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,帮这些参数可以得到硬盘的容量,基计算公式为: 存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 要点:(1)硬盘有数个盘片,每盘片两个面,每个面一个磁头 (2)盘片被划分为多个扇形区域即扇区 (3)同一盘片不同半径的同心圆为磁道 (4)不同盘片相同半径构成的圆柱面即柱面 (5)公式:存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 (6)信息记录可表示为:××磁道(柱面),××磁头,××扇区 2.簇 “簇”是DOS进行分配的最小单位。当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间,而是占有整个一簇。DOS视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的大小也不一样。簇的大小可在称为磁盘参数块(BPB)中获取。簇的概念仅适用于数据区。 本点:(1)“簇”是DOS进行分配的最小单位。 (2)不同的存储介质,不同容量的硬盘,不同的DOS版本,簇的大小也不一样。 (3)簇的概念仅适用于数据区。 3.扇区编号定义:绝对扇区与DOS扇区 由前面介绍可知,我们可以用柱面/磁头/扇区来唯一定位磁盘上每一个区域,或是说柱面/磁头/扇区与磁盘上每一个扇区有一一对应关系,通常DOS将“柱面/磁头/扇区”这样表示法称为“绝对扇区”表示法。但DOS不能直接使用绝对扇区进行磁盘上的信息管理,而是用所谓“相对扇区”或“DOS扇区”。“相对扇区”只是一个数字,如柱面140,磁头3,扇区4对应的相对扇区号为2757。该数字与绝对扇区“柱面/磁头/扇区”具有一一对应关系。当使用相对扇区编号时,DOS是从柱面0,磁头1,扇区1开始(注:柱面0,磁头0,扇区1没有DOS扇区编号,DOS下不能访问,只能调用BIOS访问),第一个 DOS扇区编号为0, 该磁道上剩余的扇区编号为1到16(设每磁道17个扇区),然后是磁头号为2,柱面为0的17个扇区,形成的DOS扇区号从17到 33。直到该柱面的所有磁头。然后再移到柱面1,磁头1,扇区1继续进行DOS扇区的编号,即按扇区号,磁头号,柱面号(磁道号)增长的顺序连续地分配 DOS扇区号。

电脑硬盘的基础知识

电脑硬盘的基础知识 电脑硬盘的基础知识 市场上的硬盘主要分为IDE和SCSI两大类。SCSI硬盘有速度快、容量大、使用稳定的特点,是硬盘技术的排头兵,但其价格太贵, 主要用于较专业的场合。而IDE硬盘虽然说在技术水准上尚同SCSI 硬盘有一些的差距,但无庸置疑其差距已越来越小,现如今的IDE 硬盘同样具有转速快、容量大的特点,而且其价格便宜,已成为家 用场合的首选。 而IDE硬盘按其内部盘片直径的大小,又可分为5.25、3.5、 2.5和1.8英寸的硬盘等。2.3和1.8英寸盘片直径大小的硬盘主要 用于笔记本电脑等设备;5.25和3.5盘片直径的硬盘主要用在台式 机上,现在台式机上最常用的就是3.5寸盘片直径大小的硬盘。 1.硬盘的容量 我们在购买硬盘时首先会问,这硬盘是多大的呀?回答:40GB、80GB,就是指的硬盘的容量。它一般指的是硬盘格式化后的容量。 硬盘的容量越大越好。 其次,在选择容量时你还可优先选择单碟容量大的产品。单碟容量越大技术越先进而且更容易控制成本。举例来讲,同样是40GB的 硬盘,若单碟容量为10GB,那么需要4张盘片和8个磁头,要是单 碟容量上升为20GB,那么需要2张盘片和4个磁头,对于单碟容量 达40GB的硬盘来说,只要1张盘片和2个磁头就够了,能够节约很 多成本及提高硬盘工作稳定性。 2.硬盘的转速 这也是大家比较留心的问题。它是指硬盘内主轴的转动速度。如今市场上的IDE硬盘主要分为5400RPM(转),7200RPM(转)两种转速。在容量价格都差不多的情况下,可首选转速快的7200转的硬盘产品。

3.硬盘的传输率 硬盘的传输率也是硬盘重要参数之一。它主要指硬盘的外部和内部数据的传输率,它们的单位为Mb/s(兆位/秒)或MB/s(1MB=8Mb)。硬盘的外部传输率(burstdatatransferrate)即硬盘的.突发数据传输率,它一般指硬盘的数据接口的速率。现在的ATA/66/100/133接口的硬盘的传输率可达66-133MB/S。 而硬盘的内部数据传输率(internaldatatransferrate)是指磁头至硬盘缓存间的最大数据传输率,在这方面市场上主流硬盘的最大内部数据传输率一般都可达350Mb/S以上,优秀的硬盘其最大内部数据传输率可达500Mb/S。 4.硬盘的缓存 硬盘的缓存的大小也是硬盘的重要指标之一。硬盘的缓存是指在硬盘内部的高速存储器。如今硬盘采用的缓存类型多为SDRAM,但也有例外的如采用EDODRAM的。缓存的容量越大越好,它直接关系到硬盘的读取速度,如今的硬盘缓存容量大都是2M,并向8M的更大容量过度。但也有少数只有512K缓存的产品,这点大家需注意。 5.硬盘的磁头 硬盘上采用的磁头类型,主要有MR和GMR两种。GMR巨磁阻磁头已开始取代MR磁头成为硬盘磁头的主流。 MR磁阻磁头,采用的是写入和读取磁头分离式的磁头结构,它是通过阻值的变化去感应信号幅度,对信号的变化相当敏感,使其读取数据的准确性也相应提高,而且由于其读取的信号幅度与磁道宽度无关,因而磁道可以做得很窄,从而就提高了盘片的密度,这就使硬盘的容量能够做得很大。 而GMR磁头同MR磁头相比它使用了磁阻效应更好的材料和多层薄膜结构,它比MR磁头更敏感,因而可以实现更高的存储密度。现在的MR磁头的盘片存储密度可达到3Gbit-5Gbit/in2(每平方英寸每千兆位),而GMR磁头则可达10Gbit-40Gbit/in2以上。 6.硬盘的寻道时间

数字硬盘录像基础知识

数字硬盘录像基础知识

也已广泛用于高质量图像压缩,如DVD产品等。 为什么目前的DVR产品大都采用MPEG4压缩标准呢?在图像及伴音质量方面,它远高于电视电话的图像及伴音质量,与VHS录像机的图像质量和光盘CD-ROM的放像质量相当。即使在通常的计算机显示屏上这些质量也是基本令人满意的。在存储方面,可以存储于多种媒体如光盘,数字录音带DAT,硬盘,可写光盘等。在压缩率或传输码率方面,普遍认为符合目前计算机网络的传输码率,以MPEG4的压缩比在目前容量的硬盘上可以存储一个月甚至更长时间的视音频数据(根据选择的压缩比和硬盘大小决定)。由于目前采用了一种可变码率的MPEG4压缩方法,给用户在容量和质量的选择上以更大的自由空间。在视频图像传输方面,压缩存储的图像可转存于光盘形成国内应用广泛的VCD格式,方便日后查看。 3.2 文件系统 数字硬盘录像系统的录像文件搜索查询功能要做到强大、高效、准确、方便实用。 对用户而言,一切与Windows系统有关的文件操作都应是透明的,即用户无需知道文件怎样放置,怎么样查询,以及如何自动覆盖。当用户查找到某一文件时他甚至无需知道文件存放在哪个硬盘上。这样就增强了对系统的安全保护,也极大地方便了用户。 在JH8000系统中的文件操作封装了快速文件的查找,文件大小的判断,逻辑硬盘的快速搜索,最小空间的快速判断,文件属性的快速动态修改,以及在硬盘总空间非常小时对报警的快速处理等。快速文件按摄像机通道号及日期时间排序。同时,对于文件备份,该系统封装了快速动态查找备份盘的函数,而且为文件备份单独开了一个线程,使备份能与系统其它操作同时进行而不相互影响。通过对文件属性的判断实现数据备份,在重要文件来不及备份前先实行有效地保护。在后台录像,前台播放历史文件时,把正在播放队列中的文件进行保护,使之不受系统自动覆盖的影响。 此外该设备在系统录像启动后会自动启动一个时钟,这个时钟每过一分钟自动侦测当前正用于录像的硬盘空间大小,如果空间不够会自动跳转查找下一个或上一个空间较大的硬盘,文件系统相应地做出处理。如果总的硬盘空间不够,系统会启动自动或手动覆盖方式,覆盖最早一天的部分未保护文件,并给出相应的提示。 总之,数字硬盘录像系统的文件系统要给用户一个安全、快速、方便的文件操作手段。 3.3 图像处理 图像处理也是数字硬盘录像系统的一个重要方面。对于历史影像的重现和处理可有助于对重要事件画面的辨认。 1.图像变换 图像变换,主要是指数字图像的几何变换,或称为图像的空间变换,即图像中点与点之间的空间映射关系。图像变换是图像变形的基础,被广泛应用于遥感图像的几何校正、医学成像、计算机视觉、电视监控以及电影、电视和媒体广告等的影像特技处理中。 数字图像的几何变换或空间变换,是指一种建立一幅图像与其变形后的图像中所有各点之间映射关系的函数,可表示为: [x,y]=[X(u,v),Y(u,v)] 或 [u,v]=[U(x,y),V(x,y)] 式中,[u,v]表示输入图像中像素的坐标,[x,y]表示变换后的坐标。X,Y,U,V表示惟一确定空间变换关系的映射函数,即它们惟一地定义了输入图像和输出图像中所有点之间的几何(或空间)对应关系。X,

硬盘基本知识

硬盘 1、盘面 硬盘的每一个盘片都有两个盘面(side),即上、下盘面,每一个有效盘面都有一个盘面号,按顺序从上至下从“0”开始依次编号。 在硬盘系统中,盘面号又叫磁头号,因为每一个有效盘面都有一个对应的读写磁头。 硬盘的盘片组在2-14片不等,通常有2-3个盘片,故盘面号(磁头号)为0-3或0-5. 2、磁道 磁盘在格式化时,被划分成许多同心圆,这些同心圆轨迹叫做磁道(Track)。磁道从外向内开始顺序编号。硬盘的每一个盘面有300-1024个磁道。 信息以脉冲串的形式记录在这些轨迹中,这些同心圆不是连续记录数据,而是被划分成一段段的圆弧,这些圆弧的角速度是一样的。 每段圆弧叫做一个扇区,扇区从“1”开始编号。每个扇区中的数据作为一个单元同时读出或写入。 3、柱面 所有盘面上的同一磁道构成一个圆柱,通常称为柱面(Cylinder),每个圆柱上的磁头由上而下从“0”开始编号。 数据的读/写按柱面进行,首先在同一柱面内从“0”磁头开始进行操作,依次向下在同一柱面的不同盘面(即磁头)上进行操作,只有同一柱面所有的磁头全部读/写完毕后,磁头才转到下一柱面。 因为选取磁头是电子切换,选取柱面是机械切换,电子切换比机械切换快得多。 4、扇区 每一个磁道又按512个字节为单位划分为等分,叫做扇区(Sector),在一些硬盘的参数列表上你可以看到描述每个磁道的扇区数的参数,它通常用一个范围标识,例如373~746,这表示,最外圈的磁道有746个扇区,而最

里面的磁道有373个扇区,因此可以算出来,磁道的容量分别是从373KB 到186.5KB。 5、簇 扇区是磁盘最小的物理存储单元,但由于操作系统无法对数目众多的扇区进行寻址,所以操作系统就将相邻的扇区组合在一起,形成一个簇(cluser),然后对簇进行管理。每个簇可以包括2、4、8、16、32或64个扇区,显然,簇是操作系统使用的逻辑概念,并非磁盘的物理特性。 硬盘存储容量=磁头数*磁道(柱面)*每道扇区数*每扇区字节数

硬盘基本知识

磁道 磁盘在格式化时被划分成许多同心圆,这些同心圆轨迹叫做磁道(Track)。磁道从外向内从0开始顺序编号。信息以脉冲串的形式记录在这些轨迹中,这些同心圆不是连续记录数据,而是被划分成一段段的圆弧,每段圆弧叫做一个扇区,扇区从“1”开始编号,每个扇区中的数据作为一个单元

同时读出或写入。一个标准的3.5in硬盘盘面通常有几百到几千条磁道。磁道是“看”不见的,只是盘面上以特殊形式磁化了的一些磁化区,在磁盘格式化时就已规划完毕。 扇区 操作系统以扇区(Sector)形式将信息存储在硬盘上,每个扇区包括512个字节的数据和一些其他信息。一个扇区有两个主要部分:存储数据地点的标识符和存储数据的数据段,标识符就是扇区头标,包括组成扇区三维地址的三个数字:扇区所在的磁头(或盘面)、磁道(或柱面号)以及扇区在磁道上的位置即扇区号。 簇 簇就是更大的扇区,它可以是一个扇区、也可以是2个、4个、8个等等,它究竟有

多大是在高级格式化的时候决定的。把相邻的若干个扇区组合起来就是一个簇,和扇区一样,一个簇内不允许存在两个文件,因此当储存一段比单个簇的容量还要小的数据时,会浪费一些储存空间。比如镞是64K,那么那怕只有一个字节的文档,也会占用64K的空间,对于QQGAME之类的小文件极多的游戏,浪费的空间是很大的.(查看当前硬盘簇大小的方式:在要查看的分区建立一个文本文档,随意输入几个字母,保存后查看文件属性中的占用空间,即为当前磁盘簇大小。) 簇就是我们在格式化的时候,可以选择的区块大小,从512B---128K不等,如果我们选择比较大的簇,空间会比较浪费,但是虚拟盘出盘的流量会大为减少.列如一个1.5的硬盘, 分区是用64KB为单位进行格式化的,几乎装满游戏后,出盘却仅仅只要读取3M数据,

SATA硬盘接口基础知识

SATA硬盘接口 SATA的由来 未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA 1.0规范,2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。Serial ATA 采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。 串口硬盘 串口硬盘是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而知名。相对于并行ATA来说,就具有非常多的优势。首先,Serial ATA以连续串行的方式传送数据,一次只会传送1位数据。这样能减少SATA接口的针脚数目,使连接电缆数目变少,效率也会更高。实际上,Serial ATA 仅用四支针脚就能完成所有的工作,分别用于连接电缆、连接地线、发送数据和接收数据,同时这样的架构还能降低系统能耗和减小系统复杂性。其次,Serial ATA的起点更高、发展潜力更大,Serial ATA 1.0定义的数据传输率可达150MB/s,这比目前最新的并行ATA(即ATA/133)所能达到133MB/s的最高数据传输率还高,而在Serial ATA 2.0的数据传输率将达到300MB/s,最终SATA将实现 600MB/s的最高数据传输率。 SATAII接口 定义 SATA II是在SATA的基础上发展起来的,其主要特征是外部传输率从SATA的 1.5Gbps(150MB/sec)进一步提高到了3Gbps(300MB/sec),此外还包括NCQ(Native Command Queuing,原生命令队列)、端口多路器(Port Multiplier)、交错启动(Staggered Spin-up)等一系列的技术特征。单纯的外部传输率达到3Gbps并不是真正的SATA II。 性能 SATA II的关键技术就是3Gbps的外部传输率和NCQ技术。NCQ技术可以对硬盘的指令执行顺序进行优化,避免像传统硬盘那样机械地按照接收指令的先后顺序移动磁头读写

硬盘基础知识

一、硬盘基础知识 硬盘的DOS管理结构 1.磁道,扇区,柱面和磁头数 硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。每个盘片有两面,都可 记录信息。盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。在DOS 中每扇区是128×2的2次方=512字节,盘片表面上以盘片中心为圆心,不同半径的同心圆称为磁道。硬盘中,不同盘片相同半径 的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁 盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,帮这些 参数可以得到硬盘的容量,基计算公式为: 存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 要点:(1)硬盘有数个盘片,每盘片两个面,每个面一个磁头 (2)盘片被划分为多个扇形区域即扇区 (3)同一盘片不同半径的同心圆为磁道 (4)不同盘片相同半径构成的圆柱面即柱面 (5)公式: 存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 (6)信息记录可表示为:××磁道(柱面),××磁头,××扇区 2.簇 “簇”是DOS进行分配的最小单位。当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间, 而是占有整个一簇。DOS视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的大小也不一样。簇的大小可在称为磁盘 参数块(BPB)中获取。簇的概念仅适用于数据区。 本点:(1)“簇”是DOS进行分配的最小单位。 (2)不同的存储介质,不同容量的硬盘,不同的DOS版本,簇的大小也不一样。 (3)簇的概念仅适用于数据区。 3.扇区编号定义:绝对扇区与DOS扇区 由前面介绍可知,我们可以用柱面/磁头/扇区来唯一定位磁盘上每一个区域,或是说柱面/磁头/扇区与磁盘上每一个扇区有一一对应关系,通

机械硬盘基础知识

第一章整体設計觀念

1.1 概論 想成就一件事情,整体觀是非常重要的,因此,在進入硬碟机設計及各獨立章節前,我們特別安排此章,主要目的,即在幫助讀者,在研究此書進能隨時掌握此書之重點。 觀念一:整体設計之最高准則為,這時進入市場(Time to the Market),价格(Cost),功能(Performance ),品質(Quality) 觀念二:一切設計的開始進行,一定是基于於市場的評估,已被充份肯定,而設計之精神,又一定是無時無刻,環繞在,如何將資料籍者磁頭有效無誤地寫入磁碟中。 1-2 基本理論 從上節概論中,讀者應該很清楚,全書之精神,其實就在研究如何將資料 ,從電腦主机存入硬碟机中,現在,我們即將從硬体(肉眼看得見的)与軟体(肉眼看不見的)之理論,展開一連串的定義与研究。首先,我們先介紹主要之硬体結构,并簡單扼要地說明其功能,至於,詳細之功能將在以后各章節中說明。 重點如下: ?硬碟机之硬体結构 ?碟碟机之軟体結构 ?碟片瑕疵之處理A.硬碟机之硬体結构 電路板部分(俗稱PCBA,PCB Assembly) 1.介面控制器(Interface Controller) : (1)將電腦中之資料接收,再經同讀寫通道IC.(Read /Write Channel)寫入磁 碟中。 (2)將磁碟中之資料,藉由讀定通道IC讀出,再將之傳回電腦主机。 2.讀寫通道 IC (Read /Write Channel Chip): 負責接收Controller 過來的命令,將資料寫入磁碟中或將磁碟中之資料 讀出。 3.特制基体電路(Application Specific Integrated Circuit ,簡稱ASIC): 處理或辨別特殊訊號,如磁軌訊號(Gray Code )、磁區訊號(Sector ID)等,然后再將這些資料,傳中央處理單位(CPU)使用。 4.中央處理單位(CentralProcessingUnit,簡稱CPU):硬碟机之頭腦,負責指 揮整体碟机。 5.主軸馬達(Spindle Motor )及音圈馬達(Voice Coil Motor ,簡稱VCM)之 啟動器(Driver ): 負責將磁頭送到适當的磁區(Sector) 机构部分(俗稱HAD ,Head Disk Assembly) 1.主軸馬達(Spindle Motor ): 負責帶動磁碟的旋轉,使磁頭以在特定磁 上任意地點,存放資料。 2.音圈馬達(Voice Coil Motor):負責帶動磁頭的徑向轉動,使磁頭得以 任意更換磁軌。

详解硬盘的基本知识

详解硬盘的基本知识 硬盘的DOS管理结构 1.磁道,扇区,柱面和磁头数 硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。每个盘片有两面,都可 记录信息。盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。在DOS 中每扇区是128×2的2次方=512字节,盘片表面上以盘片中心为圆心,不同半径的同心圆称为磁道。硬盘中,不同盘片相同半径 的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁 盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,帮这些 参数可以得到硬盘的容量,基计算公式为: 存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 要点:(1)硬盘有数个盘片,每盘片两个面,每个面一个磁头 (2)盘片被划分为多个扇形区域即扇区 (3)同一盘片不同半径的同心圆为磁道 (4)不同盘片相同半径构成的圆柱面即柱面 (5)公式:存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 (6)信息记录可表示为:××磁道(柱面),××磁头,××扇区 2.簇 “簇”是DOS进行分配的最小单位。当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间, 而是占有整个一簇。DOS视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的大小也不一样。簇的大小可在称为磁盘 参数块(BPB)中获取。簇的概念仅适用于数据区。 本点:(1)“簇”是DOS进行分配的最小单位。 (2)不同的存储介质,不同容量的硬盘,不同的DOS版本,簇的大小也不一样。 (3)簇的概念仅适用于数据区。 3.扇区编号定义:绝对扇区与DOS扇区 由前面介绍可知,我们可以用柱面/磁头/扇区来唯一定位磁盘上每一个区域,或是说柱面/磁头/扇区与磁盘上每一个扇区有 一一对应关系,通常DOS将“柱面/磁头/扇区”这样表示法称为“绝对扇区”表示法。但DOS不能直接使用绝对扇区进行磁盘上的 信息管理,而是用所谓“相对扇区”或“DOS扇区”。“相对扇区”只是一个数字,如柱面140,磁头3,扇区4对应的相对扇区号 为2757。该数字与绝对扇区“柱面/磁头/扇区”具有一一对应关系。当使用相对扇区编号时,DOS是从柱面0,磁头1,扇区1开始 (注:柱面0,磁头0,扇区1没有DOS扇区编号,DOS下不能访问,只能调用BIOS访问),第一个DOS 扇区编号为0,该磁道上剩余

存储基础知识

存储的介质及其存储原理? 1.磁存储介质 磁存储介质主要分为磁带存储和磁盘存储。 (1)磁带存储 磁带是所有存储媒体中单位存储信息成本最低、容量最大、标准化程度最高的常用存储介质之一。它互换性好、易于保存,近年来由于采用了具有高纠错能力的编码技术和即写即读的通道技术,大大提高了磁带存储的可靠性和读写速度。磁带存储器则是以磁带为存储介质,由磁带机及其控制器组成的存储设备,是计算机的一种辅助存储器。磁带机由磁带传动机构和磁头等组成,能驱动磁带相对磁头运动,用磁头进行电磁转换,在磁带上顺序地记录或读出数据。磁带存储器是计算机外围设备之一。磁带存储器以顺序方式存取数据。存储数据的磁带可脱机保存和互换读出。磁带存储器也称为顺序存取存储器(SequentialAccessMemory,简称SAM)即磁带上的文件依次存放。磁带存储器存储容量很大,但查找速度慢,在微型计算机上一般用做后备存储装置,以便在硬盘发生故障时,恢复系统和数据。 根据读写磁带的工作原理可分为螺旋扫描技术、线性记录(数据流)技术、DLT技术以及比较先进的LTO技术: 螺旋扫描读写技术: 以螺旋扫描方式读写磁带上数据的磁带读写技术与录像机基本相似,磁带缠绕磁鼓的大部分,并水平低速前进,而磁鼓在磁带读写过程中反向高速旋转,安装在磁鼓表面的磁头在旋转过程中完成数据的存取读写工作。其磁头在读写过程中与磁带保持15度倾角,磁道在磁带上以75度倾角平行排列。采用这种读写技术在同样磁带面积上可以获得更多的数据通道,充分利用了磁带的有效存储空间,因而拥有较高的数据存取密度。 线性记录读写技术: 以线性记录方式读写磁带上数据的磁带读写技术与录音机基本相同,平行于磁头的高速运动磁带掠过静止的磁头,进行数据记录或读出操作。这种技术可使驱动系统设计简单,读写速度较低,但由于数据在磁带上的记录轨迹与磁带两边平行,数据存储利用率较低。为了有效提高磁带的利用率和读写速度,人们研制出了多磁头平行读写方式,提高了磁带的记录密度和传输速率,但驱动器的设计变得极为复杂,成本也随之增加。 数字线性磁带技术: DLT是一种先进的存储技术标准,包括1/2英寸磁带、线性记录方式、专利磁带导入装置和特殊磁带盒等关键技术。利用DLT技术的磁带机,在带长为1828英尺、带宽为1/2英寸的磁带上具有128个磁道,使单磁带未压缩容量可高达20GB,压缩后容量可增加一倍。 线性开放式磁带技术: 这是由IBM、HP、Seagate三大存储设备制造公司共同支持的高新磁带处理技术,它可以极大地提高磁带备份数据量。LTO磁带可将磁带的容量提高到100GB,如果经过压缩可达到200GB。LTO技术不仅可以增加磁带的信道密度,还能在磁头和伺服结构方面进行全面改进,LTO技术采用了先进的磁道伺服跟踪系统来有效地监视和控制磁头的精确定位,防止相邻磁道的误写问题,达到提高磁道密度的目的。 (2)磁盘存储 磁盘分为软盘和硬盘,软盘是一个圆形而柔软的塑料薄片,它的一面或两面覆盖着铁氧化物颗粒。这些颗粒具有磁性,软盘本身并没有读写头,需要软盘驱动器来读取数据。可将软盘想象成硬盘中的一个盘片,用同一个软盘驱动器可以访问许多不同的软盘,用完一张,换上另一张即可。而硬盘与硬盘驱动器是一个紧密联系的整体,不可分割。 硬盘由一个或者多个铝制或者玻璃制的碟片组成。碟片外覆盖有铁磁性材料。 硬盘组成:

服务器基础知识(5)---服务器硬盘

服务器基础知识(5)---服务器硬盘 服务器硬盘 服务器硬盘,顾名思义,就是服务器上使用的硬盘(Hard Disk)。如果说服务器是网络数据的核心,那么服务器硬盘就是这个核心的数据仓库,所有的软件和用户数据都存储在这里。对用户来说,储存在服务器上的硬盘数据是最宝贵的,因此硬盘的可靠性是非常重要的。为了使硬盘能够适应大数据量、超长工作时间的工作环境,服务器一般采用高速、稳定、安全的SCSI硬盘。 现在的硬盘从接口方面分,可分为IDE硬盘与SCSI硬盘(目前还有一些支持PCMCIA 接口、IEEE 1394接口、SATA接口、USB接口和FC-AL(FibreChannel-Arbitrated Loop)光纤通道接口的产品,但相对来说非常少);IDE硬盘即我们日常所用的硬盘,它由于价格便宜而性能也不差,因此在PC上得到了广泛的应用,目前个人电脑上使用的硬盘绝大多数均为此类型硬盘。另一类硬盘就是SCSI硬盘了(SCSI即Small Computer System Interface小型计算机系统接口),由于其性能好,因此在服务器上普遍均采用此类硬盘产品,但同时它的价格也不菲,所以在普通PC上不常看到SCSI的踪影。 同普通PC机的硬盘相比,服务器上使用的硬盘具有如下四个特点: 1、速度快 服务器使用的硬盘转速快,可以达到每分钟7200或10000转,甚至更高;它还配置了较大(一般为2MB或4MB)的回写式缓存;平均访问时间比较短;外部传输率和内部传输率更高,采用Ultra Wide SCSI、Ultra2 Wide SCSI、Ultra160 SCSI、Ultra320 SCSI 等标准的SCSI硬盘,每秒的数据传输率分别可以达到40MB、80MB、160MB、320MB。 2、可靠性高 因为服务器硬盘几乎是24小时不停地运转,承受着巨大的工作量。可以说,硬盘如果出了问题,后果不堪设想。所以,现在的硬盘都采用了S.M.A.R.T技术(自监测、分析和报告技术),同时硬盘厂商都采用了各自独有的先进技术来保证数据的安全。为了避免意外的损失,服务器硬盘一般都能承受300G到1000G的冲击力。 3、多使用SCSI接口

硬盘基础知识

? 硬盘的基本参数 硬盘的基本参数是指磁面、磁道、柱面与扇区,它们是划分硬盘存储区域的主要依据。早期的硬盘容量都非常小,设计者规定盘片上的磁性物质以磁道的形式分布,而每一条磁道都具有相同的扇区数,这就使得数据的分布具有相应规律,从而使磁头能够根据柱面与扇区找到所需数据。虽然现在这种每磁道具有相同扇区数的规律已不适合大容量硬盘,但基本参数仍是硬盘数据存储的基本依据,因此,我们在进行数据恢复工作前,有必要了解硬盘的基本参数。 ? 磁面 前面我们已经讲过,在一块硬盘中并不是只有一张盘片,而是有多个盘片,每个盘片的上、下两个面一般都会用来存储数据,即有效盘面,通常称为磁面。为方便存储数据,设计者又对每个磁面进行了编号,即按照顺序由上至下从“ 0 ”开始依次编号。由于每个磁面对应一个磁头,所以磁面号也叫磁头号。如某硬盘有 3 个磁头,则其磁面号(磁头号)为 0~2 。 ? 磁道 当盘片旋转时,磁头若保持在一个位置上,则每个磁头都会在盘片表面划出一个圆形轨迹,磁盘上的信息便是沿着这些轨迹存放的,这些圆形轨迹即磁道( Track ),如图 1-14 所示为磁道的示意图。这些磁道仅是盘片表面以特殊方式磁化了的一些磁化区,因此用肉眼无法看到。设计者同样对其进行了编号,即由外向内自“ 0 ”开始编号。 一块标准的 3.5 英寸硬盘的盘面通常有几百到几千条磁道,而大容量硬盘每面的磁道数更多。硬盘相邻磁道之间并不是紧挨着的,这是因为磁化单元相隔太近,则磁性会相互产生影响,同时也使磁头的读写变得困难。

? 柱面 通常情况下,硬盘每张盘片的上、下两面都会划分数目相等的磁道,而盘片上相同位置的磁道看上去就像在同一个圆柱体的表面上,于是我们就称之为柱面( Cylinder )。它实际就是所有位置相同的磁道的集合,因此,一个硬盘的柱面数与其某个磁面上的磁道数是相同的。同理,柱面的编号也与磁道一样由外向内自“ 0 ”开始编号。 数据的读写是按柱面进行的,即在读写数据时首先在同一柱面内从 0 磁头开始进行读写,然后依次向下操作同一柱面的不同磁头,当该柱面内的所有磁头都完成操作后,再转移到下一个柱面。即盘片的某个磁道写满数据后,会在同一柱面的下一个磁面上写数据,并不是我们通常认为的按磁道来写数据,同样,读数据也是按照这种方式进行的,这样就提高了硬盘的读写效率。 ? 扇区 为了更合理地利用空间,以及更迅速准确地读取数据,在划分磁道后,还要将其划分成更小的区间。早期的硬盘是直接从盘片的圆心引出多条射线,将每个磁道等分成若干个扇环形,如图 1-15 所示,每一个扇环形对应的区域就称之为一个扇区( Sector ),每个扇区可存放 512 个字节( Byte )的信息,硬盘驱动器在向盘片上读取和写入数据时,以扇区为单位。 虽然这种划分方式合理利用了空间,但却存在很大的缺陷,即磁道(或柱面)的半径越大,每个扇区所占用的面积就越大,这就造成了盘片空间的浪费。现在已对这种划分方式进行了改进,划分时已经不再由圆心引出的射线来等分了,而是每个磁道单独划分,使硬盘空间得到充分利用。 知识提示:磁头数(磁面数)、柱面数与扇区数统称为硬盘的 CHS 3D 参数( Disk Geometry ),通常在硬盘的标签上都标有相应的磁头数、柱面数与扇区数。据此可以计算出硬盘的容量,其计算公式为:

硬盘基本知识

硬盘基本知识 硬盘的DOS管理结构 1.磁道,扇区,柱面和磁头数 硬盘最基本的组成部分是由坚硬金属材料制成的涂以磁性介质的盘片,不同容量硬盘的盘片数不等。每个盘片有两面,都可 记录信息。盘片被分成许多扇形的区域,每个区域叫一个扇区,每个扇区可存储128×2的N次方(N=0.1.2.3)字节信息。在DOS 中每扇区是128×2的2次方=512字节,盘片表面上以盘片中心为圆心,不同半径的同心圆称为磁道。硬盘中,不同盘片相同半径 的磁道所组成的圆柱称为柱面。磁道与柱面都是表示不同半径的圆,在许多场合,磁道和柱面可以互换使用,我们知道,每个磁 盘有两个面,每个面都有一个磁头,习惯用磁头号来区分。扇区,磁道(或柱面)和磁头数构成了硬盘结构的基本参数,帮这些 参数可以得到硬盘的容量,基计算公式为: 存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 要点:(1)硬盘有数个盘片,每盘片两个面,每个面一个磁头 (2)盘片被划分为多个扇形区域即扇区 (3)同一盘片不同半径的同心圆为磁道 (4)不同盘片相同半径构成的圆柱面即柱面 (5)公式:存储容量=磁头数×磁道(柱面)数×每道扇区数×每扇区字节数 (6)信息记录可表示为:××磁道(柱面),××磁头,××扇区 2.簇 “簇”是DOS进行分配的最小单位。当创建一个很小的文件时,如是一个字节,则它在磁盘上并不是只占一个字节的空间, 而是占有整个一簇。DOS视不同的存储介质(如软盘,硬盘),不同容量的硬盘,簇的

大小也不一样。簇的大小可在称为磁盘 参数块(BPB)中获取。簇的概念仅适用于数据区。 本点:(1)“簇”是DOS进行分配的最小单位。 (2)不同的存储介质,不同容量的硬盘,不同的DOS版本,簇的大小也不一样。 (3)簇的概念仅适用于数据区。 3.扇区编号定义:绝对扇区与DOS扇区 由前面介绍可知,我们可以用柱面/磁头/扇区来唯一定位磁盘上每一个区域,或是说柱面/磁头/扇区与磁盘上每一个扇区有 一一对应关系,通常DOS将“柱面/磁头/扇区”这样表示法称为“绝对扇区”表示法。但DOS不能直接使用绝对扇区进行磁盘上的 信息管理,而是用所谓“相对扇区”或“DOS扇区”。“相对扇区”只是一个数字,如柱面140,磁头3,扇区4对应的相对扇区号 为2757。该数字与绝对扇区“柱面/磁头/扇区”具有一一对应关系。当使用相对扇区编号时,DOS是从柱面0,磁头1,扇区1开始 (注:柱面0,磁头0,扇区1没有DOS扇区编号,DOS下不能访问,只能调用BIOS 访问),第一个DOS扇区编号为0,该磁道上剩余 的扇区编号为1到16(设每磁道17个扇区),然后是磁头号为2,柱面为0的17个扇区,形成的DOS扇区号从17到33。直到该柱面的 所有磁头。然后再移到柱面1,磁头1,扇区1继续进行DOS扇区的编号,即按扇区号,磁头号,柱面号(磁道号)增长的顺序连续 地分配DOS扇区号。 公式:记DH--第一个DOS扇区的磁头号 DC--第一个DOS扇区的柱面号 DS--第一个DOS扇区的扇区号 NS--每磁道扇区数

存储的基础知识

存储基础知识 一、存储相关基础知识 1、RAID与JBOD是什么? RAID(独立磁盘冗余阵列)是一种磁盘集群技术。用户可以自 定义数据的保存方式,可以采用数据镜像(在不同磁盘上保存数据 拷贝)、条带集(数据交叉保存在多个磁盘上)、还有奇偶校验保 护(记录额外的数据以识别错误),这些技术可以根据用户对性能 和可靠性的要求单独或联合使用。 JBOD(磁盘组)是与RAID相似的一种标准,也是一组磁盘通过 一个接口连接到服务器,但与RAID不同,JBOD不提供镜像、数据 条带集和奇偶验证等功能,这些功能通常由主机上的软件来实现。JBOD是一种最简单廉价的“裸存储”设备。独立的磁盘保存在一个 机箱之中,允许不同的服务器分组访问。一般也不提供缓存和控制器。JBOD的扩展空间有限。 2、了解逻辑驱动器与物理驱动器间的关系 3、RAID 0、1、3、5、10、30、50、NRAID、JBOD ①RAID 0:称为带区级。它将两个以上的磁盘并列起来成为一个大 容量的磁盘。在存放数据时,分段后分散存储在这些磁盘中,因为 读写时都可以并行处理,所以在所有的级别中,RAID 0的速度是最 快的。但是RAID 0既没有冗余功能(指重复配置系统的一些部分, 当系统发生故障时,冗余配置的部件介入并承担故障部件的工作, 由此减少系统的故障时间。即通过多重备份来增加系统的可靠性),

也不具备容错能力(容错就是当由于种种原因在系统中出现了数据、文件损坏或丢失时,系统能够自动将这些损坏或对事的文件和数据 恢复到发生事故以前的状态,使系统能够连续正常运行的一种技术),如果一个磁盘(物理)损坏,所有数据都会丢失,危险程度 与JBOD相当。 ②RAID 1:两组以上的N个磁盘相互作镜像,在一些多线程操作系 统中能有很好的读写速度,理论上读取速度等于硬盘数量的倍数, 另外写入速度有微小的降低。只要一个磁盘正常即可维持运作,可 靠性最高。RAID 1就是镜像,其原理为在主硬盘上存放数据的同时 也在镜像硬盘上写一样的数据。当主硬盘(物理)损坏时镜像硬盘 则代替主硬盘的工作。因为有镜像硬盘做数据备份,所以RAID 1的 数据安全性在所有的RAID级别上来说是最好的。但无论用多少磁盘 做RAID 1,仅算一个磁盘的容量,是所有RAID中磁盘利用率最低 的一个级别。

相关文档