文档库 最新最全的文档下载
当前位置:文档库 › 非线性控制系统分析样本

非线性控制系统分析样本

非线性控制系统分析样本
非线性控制系统分析样本

第八章非线性控制系统分析

教学目的 :

经过学习本章, 使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。

教学要求:

(1)认识非线性系统区别于线性系统的运动过程特点.

(2)掌握描述函数法和相平面法的特点及应用范围.

(3)明确函数的定义及相关概念,熟悉典型非线性的妙描述和负倒描述函数

特性,掌握用描述函数法分析非线性系统的稳定性和分析自振,计算自振参数的方法.

教学课时: 12学时

教学重点: (1) 非线性的相关概念.

(2) 典型系统的相平面表示.

(3) 典型非线性系统的描述函数形式.

教学难点:

非线性系统的描述函数求法;

利用负倒数法分析系统稳定性.

本章学时: 12学时

主要内容:

8.1 非线性系统的概述

8.2 描述函数法

8.3 相平面法分析线性控制系统

8.4 利用非线性特性改进系统的控制性能

8.1非线性系统的概述

8.1.1 非线性模型

㈠组成

---------x-------非线性环节---------线性环节------------

组成: 非线性环节+线性环节

㈡. 分类

①从输入输出关系上分: 单值非线性

非单值非线性

1,从形状特性上分: 饱和

死区

回环

继电器

㈢特点

稳定性与结构, 初始条件有关 ; 响应

㈣分析方法

注意: 不能用叠加原理

1. 非线性常微分方程没有同意的求解方法, 只有同意求近似解的方法:

a. 稳定性( 时域, 频域) : 由李亚普洛夫第二法和波波夫法判断

b. 时域响应: 相平面法( 实际限于二阶非线性系统) 较精确, 因高阶作用

太复杂

描述函数法: 近似性, 高阶系统也很方便

研究非线性系统并不需求得其时域响应的精确解, 而重要关心其时域响应的性质, 如: 稳定性, 自激震荡等问题, 决定它的稳定性范围, 自激震荡的条件, 震荡幅度与频率等。

2,死区继电器: f(e)

+m

-△e

3

4.滞环特性( 间隙)

-m

8.2 描述性函数

X0(S)

一描述性函数的定义

非线形元件的输入为正弦波时, 将起输出的非正弦波的一次谐波( 基波) 与输入正弦波的复数比, 定义为给非线形环节的描述性函数。

输入:

输出: ) y=f(Asinwt)

=y0+∑x(t)=Asinwt (Bksinkwt+Ckcoskwt)

假设输出为对称奇函数, y0=0;只取基波分量( 假设具有低通滤波特性, 高次谐波忽略) , 则y(t)=B1sinwt+C1coswt=y(sinwt+¢)

二典型非线形特性的描述函数

1,计算方法设非线形特性为: y=f(x)

令X=Asinwt,则y(t)由富式级数展开为: Y(t)=Ao+∑(Ancosnwt+Bnsinnwt)

=Ao+∑Ynsin(nwt+¢)

式中: An=

Ao=0,谐波线性略去高次谐波, 只取基波, 具有低如果非线性特性是中心对称的, 则y(t)具有奇次对称性,

通滤波特性。

Y1=A1coswt+B1sinwt=Y1sin(wt+¢1)

N(A)=Y1/A×exp(j¢1)=Y1/Acos¢1+jY1/Asin¢1

=B1/A+jA1/A=b(A)+ja(A)

与频率材料比较, 方式形式类似, 相当于用一个等效线性元件代替原来非线性元件, 而等效线性元件幅相特性N(a)是输入信号A的函数。

2.举例求饱和限幅特性的描述函数( 固有非线性)

Y y

X ωt

A1=1/π∫y(t)coswtd(wt)=0

B1=1/π∫y(t)sinwtd(wt)=2/π∫y(t)sinwtd(wt)

= 2/π(∫y(t)sinwtd(wt)+∫y(t)sinwtd(wt)+∫y(t)sinwtd(wt))

若A>0,y(t)=Kasinwt 0<=wt

kc=B a<=wt<=

Kasinwt

比较线性系统特征方程 G(jω)=–1

线性系统, ( –1, j0) 点是判断稳定的关键点。

非线性系统, 判断稳定性不是点( –1, j0) ,而是一条线–1∕N。( A∕d) 。由线形部分与描述函数负侧特性之间相对位置能够判断非线性系统的稳定及自激振荡, 即可利用奈奎斯稳定判据进行分析。

3.判据内容:

在开环幅相平面上, G(jω)条件, 最小位相, 无右极点。

1) 若K。G(jω)轨迹不包围时线性负侧特性–1∕N。( A∕d) ,则此非线性系统稳定。

2) 若K。G(jω)轨迹包围–1∕N。( A∕d) , 则非线性系统不稳定。

3) 若K。G(jω)与–1∕N。( A∕d) 相交, 则在交点处, 系统处于临界稳定, 可能产生周期持续震荡, 这种持续震荡能够用正弦振荡来近似, 其振荡的振幅和频率能够分别用交点处

–1∕N。( A∕d) 轨迹上的A 值K。G(jω)曲线上对应的ω值来表征。

工程设计中, 一般在线性部分加入校正, 改变K。G(jω)与–1∕N。( A∕d) 的相对位置, 以消除持续振荡, 提高系统稳定性。

例2.判定自振点并求自振参数

解: 理想继电器的描述函数

N(A)=4B ∕лA (B=π∕2) N(A)=2∕A

–1∕N 。( A ∕d) =–A ∕2 K 。— 非线性环节的传递函数( K 。=1)

K G(jw) K 。G(j ω)与–1∕N 。( A ∕d) 两曲线交于M 点, 稳定自振点。 交点坐标由K 。G(j ω)=–1∕N 。( A ∕d) 亦可求出。

10 ∕j ω( j ω+1) ( j ω+3) =10∕–ωω+ j ω( 3-ωω) = -A ∕2 虚部=0 j ω( 3-ωω) =0 因此ω=0 ( 舍去) ω=1.732

实部≠0 ω=1.732 代入原式 -10∕4ωω=-A ∕2 A=1.7

故自振点ω=1.732∕s A=5∕3

稳定运行区为初始值大于5∕3 →∞

大初始值能稳定 小初始值不能稳定

例 Y /2

实验八 非线性控制系统分析

实验八非线性控制系统分析 【实验目的】 1.掌握二阶系统的奇点在不同平衡点的性质。 2.运用Simulink构造非线性系统结构图。 3.利用Matlab绘制负倒描述函数曲线,运用非线性系统稳定判据进行稳定性分析,同 时分析交点处系统的运动状态,确定自振点。 【实验原理】 1.相平面分析法 相平面法是用图解法求解一般二阶非线性系统的精确方法。它不仅能给出系统稳定性信息和时间特性信息,还能给出系统运动轨迹的清晰图像。 设描述二阶系统自由运动的线性微分方程为 分别取和为相平面的横坐标与纵坐标,并将上列方程改写成 上式代表描述二阶系统自由运动的相轨迹各点处的斜率。从式中看出在及,即 坐标原点(0,0)处的斜率。这说明,相轨迹的斜率不能由该点的坐标值单值的确定,相平面上的这类点成为奇点。 无阻尼运动形式()对应的奇点是中心点; 欠阻尼运动形式()对应的奇点是稳定焦点; 过阻尼运动形式()对应的奇点是稳定节点; 负阻尼运动形式()对应的奇点是不稳定焦点; 负阻尼运动形式()对应的奇点是不稳定节点; 描述的二阶系统的奇点(0,0)称为鞍点,代表不稳定的平衡状态。2.描述函数法 设非线性系统经过变换和归化,可表示为非线性部分与线性部分相串联的典型反馈结构如图所示。 从图中可写出非线性系统经谐波线性化处理线性化系统的闭环频率响应为

由上式求得图中所示非线性系统特征方程为 ,还可写成 其中 称为非线性特性的负倒描述函数。若有 使上式成立,便有 或 ,对应着一个正弦周期运动。若系统扰动后,上述周期运 动经过一段时间,振幅仍能恢复为 ,则具有这种性质的周期运动,称为自激振荡。 可见自激振荡就是一种振幅能自动恢复的周期运动。周期运动解 可由特征方程式 求得,亦可通过图解法获得。 由等式在复数平面上分别绘制 曲线和 曲线。两曲线的 交点对应的参数 即为周期运动解。有几个交点就有几个周期运动解。至于该解是 否对应着自激振荡状态,取决于非线性系统稳定性分析。 【实验内容】 1. 相平面分析法 (1)二阶线性系统相平面分析不同奇点的性质 例8-1 设一个二阶对象模型为 2 2 2 ()2n n n G s s s ωξωω= ++ 绘制2,n ωζ=分别为0.5、-0.5、1. 25、0时系统的相平面图及2 4()4 G s s = -的相平面图。 图8-1 当2,0.5n ωζ==时,系统的单位阶跃响应曲线和相平面图

城轨列车网络控制系统第3次作业 -

一、不定项选择题(有不定个选项正确,共7道小题) 1. 程控数字电话交换机的组成包括()[不选全或者选错,不算完成] (A) 控制系统; (B) 数字交换网络; (C) 用户接口卡; (D) 外围设备。 正确答案:A B D 解答参考: 2. 数字交换网络的数字接线器包括以下哪些类型?()[不选全或者选错,不算完成] (A) 空分接线器; (B) 时分接线器; (C) 时空接线器; (D) 总线接线器 正确答案:A B C 解答参考: 3. 常规广播是在列车的正常运营过程中所使用的广播,包括()[不选全或者选错,不算完成] (A) 离开广播; (B) 运营延误; (C) 到达广播; (D) 故障延误。 正确答案:A C 解答参考: 4. 紧急广播为在运营中出现紧急情况时列车使用的广播信息,包括()[不选全或者选错,不算完成] (A) 区间清客; (B) 疏散乘客; (C) 紧急撒离; (D) 故障延误。 正确答案:A B C 解答参考: 5. 旅客信息系统按控制功能划分为:()[不选全或者选错,不算完成] (A) 信息源; (B) 中心播出控制层; (C) 车站车载播出控制层;

(D) 车站车载播出显示终端设备。 正确答案:A B C D 解答参考: 6. 旅客信息系统按结构划分为四部分:()[不选全或者选错,不算完成] (A) 中心子系统; (B) 车站子系统; (C) 网络子系统; (D) 车载子系统。 正确答案:A B C D 解答参考: 7. 实现多址连接的无线通信多址方式有()[不选全或者选错,不算完成] (A) 频分多址(FDMA); (B) 时分多址(TDMA); (C) 空分多址(SDMA); (D) 码分多址(CDMA)。 正确答案:A B C D 解答参考: 二、判断题(判断正误,共18道小题) 8. 在旅客信息系统中,紧急灾难信息的优先级最高,然后依次是列车服务信息、旅客导向信息、站务信息、公共信息和商业信息。() 正确答案:说法正确 解答参考: 9. 在旅客信息系统中,高优先级的信息可中断低优先级信息的播出,低优先级的信息也可中断高优先级信息的播出。() 正确答案:说法错误 解答参考: 10. 二级母钟自动接收标准时间信号,校准自身的时间精度,并分配精确时间给一级母钟。() 正确答案:说法错误 解答参考: 11. 当一级母钟不能正常接收GPS信号时,则通过自身高稳晶振运作提供时间信号给二级母钟等终端用户,以满足地铁运营的要求。() 正确答案:说法正确 解答参考:

过程控制系统管理实施细则

过程控制系统管理实施细则 1.1 过程控制系统管理要求 1.1.1 过程控制系统硬件日常维护 (1) 每日按时巡检,检查主机、硬件系统、冷却风扇的运行状况,检查机柜室温度和湿度,并如实认真填写《机柜室巡检记录》。 (2) 按照规定周期做好各设备的清洁工作。 (3) 每日检查系统状态画面(或设备故障记录),检查运行中模块及卡件的指示灯状态,检查系统的网络通讯状况,具备自诊断功能的系统要检查系统诊断情况是否正常,并对以上内容进行记录。 (4) 系统的关键部件和易损件要有足够的备品备件,依据系统厂商所提供的维护手册,按照使用周期和使用年限,在具备条件的情况下,定期更换系统风扇、过滤网、冷却风扇、供电单元、硬盘、后备电池、显示单元、键盘、鼠标等易损易耗件。 (5) 建立《过程控制系统台帐》,对每套过程控制系统

的硬件组成、型号规格、技术参数、数量以及软件构成、软件版本号等信息进行全面、仔细地记录。 1.1.2 过程控制系统日常软件管理 (1) 控制系统相关软件(包括系统软件、组态工程文件、授权盘、其他相关软件等)必须有双备份,分别存放在班组和仪表车间,软件备份要注明软件名称、使用装置、备份日期、备份人,并建立软件备份管理台帐。在条件具备的情况下,每年对控制系统软件进行一次备份。 (2) 过程控制系统组态变更后,必须及时进行软件备份,并对软件备份台帐进行更新。 1.1.3 过程控制系统密码管理 (1) 过程控制系统工程师站,包括DCS系统、ESD系统、PLC系统、机组控制系统、计算机监控系统等工程师组态密码须由所在班长和技术员掌握和操作。 (2) 仪表班组人员须掌握SOE站密码,用于联锁事件查寻、故障判断及处理。 (3) 软联锁密码管理:机柜间内各控制系统及DCS系统

CRA型动车组和CRA型动车组列车网络控制系统的技术特点

CRH2A型动车组和CRH1A型动车组列车网络控制系统的技术特点 一、CRH2A型动车组网络控制系统: 1、网络控制概述: CRH2动车组列车网络控制系统采用贯穿全车的总线来传送信息,从而减轻了列车的重量,并且通过对列车运行以及车载设备动作的运行信息进行集中管理,可以有效地实现对司机和乘务员的辅助作用,加强对设备的保养和提高对乘客的服务质量。 2、网络控制系统的组成: CRH2动车组列车网络控制系统由监控器和控制传输部分两部分组成。硬件一体化装置,但各自独立构成网络,系统为自律分散型。 控制传输部分为双重系统,确保系统的冗余性。通信采用ARCNET网络标准。头车设置的中央装置为双重系统构成,确保其可靠性。前后中心的控制单元采用母线仲裁。 CRH动车组网络控制系统中引用额车载信息装置和类车信息终端装置构成,同时还有监控显示器以及显示控制器、车内信息显示器、IC读卡器等附属设施。 3、网络控制系统的功能: 1)牵引、制动指令传输; 2)设备启动、关闭指令的传输;3)显示灯/蜂鸣器控制指令传输;4)乘务员支持信息传输;5)服务设备控制信息传输;6)数据记录功能;7)车上试验;8)自我诊断传送线;9)远程装载功能;10)列车信息装置的自我诊断功能;11)信息显示功能。 4、网络控制系统的拓扑结构: CRH2动车组网络控制系统采用列车和车辆两级网络结构。列车网络为连接编组各车辆的通信网络,以列车运行控制为目的,以光纤和双绞线为传输介质,连接各中央装置和终端装置,采用双重环结构。车辆级网络结构为连接车厢内设备的通信网络,主要传输介质为光纤和电流环传输线。 1)列车总线 列车总线有两种类型:其一为列车信息传输线,以光纤为传输介质,连接所有中央装置和终端装置,采用ARCNET协议,传送速度为2.5Mb/s;其二为自我诊断传输网,以双绞线作为传输介质,连接中央装置和终端装置,采用HLC作为通信协议。 列车总线的设备由中央装置、终端装置、显示器、显示控制装置、IC卡架以及车内信息显示器构成。在光纤网中,中央装置和终端装置由双重环形构成的光纤连接,采用不易发生故障的双向环形网络方式。它具有向左和向右两条线路,是一种分散型的系统。如果在一个方向的环绕中检测到没有应答的情况,就向另一个方向的环绕传送,即使在2处以上的线路发生故障,环路网络断开时,也可以继续有其他连接着的正常线路进行传送,避开故障部位。 2)车辆总线: 车辆总线是指中央装置/终端装置与车辆内设备之间信息交换通道。各车的中央/终端装置与车辆设备之间的接口以光传送、电流环传送,DIO等形式传送,他们构成信息网络节点与车载设备的联系通道,车载设备与网络控制系统节点之间爱用点对点通信方式,有多种通信规格,总结如下: 终端装置——设备(牵引变流器/制动控制装置)之间的传送: ①通过点对点连接进行的光纤2线式半双工传送; ②轮询方式; ATC检查记录部和车内引导显示器、空调显示器、自动播放装置、辅助电源装置—监视器部之间的传送。

MES对过程控制系统(PCS)的数据采集

MES对过程控制系统(PCS)的数据采集1 引言 随着计算机信息技术的高速发展、软件应用技术的不断普及、企业信息化建设经验的不断积累和计算机信息管理系统应用水平的提高,使企业深刻地认识到走信息集成化道路的重要性。实施信息集成化技术,已成为企业信息化建设发展的一种必然选择。在流程制造行业的企业信息化建设中,位于底层车间进行生产控制的是以先进控制、操作优化为代表的过程控制系统(PCS),PCS强调的是通过控制优化,减少人为因素的影响,提高产品的质量与系统的运行效率;而位于上层的企业计划系统(ERP),强调的是企业的计划性。尽管这两类系统的推广取得了一定效果,但却忽略了两者之间的有效配合,导致企业上层经营管理缺乏有效的实时信息支持、下层控制环节缺乏优化的调度与协调。为此,将经营计划与生产过程统一起来的生产执行系统(MES)应运而生。 2 MES系统功能及构成 MES(Manufacturing Execution System)即制造执行系统,俗称生产执行系统。MES位于企业信息计划系统(ERP/SCM)和过程控制系统(PCS)的中间位置,过程控制系统包括分散控制系统(DCS)和安全仪表系统(SIS)等。ERP作为业务管理系统,DCS/SIS属于控制系统,而MES则是生产执行系统。MES与上层ERP等业务系统和底层DCS等生产设备控制系统一起构成企业的神经系统,一是把业务计划指令传达到生产现场,二是将生产现场的信息及时收集、上传和处理。MES不单是面向生产现场的系统,而是作为上、下两个层次之间双方信息的传递系统,连结现场层和经营层,通过实时数据库传输基本信息系统的理论数据和工厂的实际数据,并提供企业计划系统与过程控制系统之间的通信功能,是应用于企业的重要信息系统。其具体功能如下: 2.1 资源分配、状态及人力资源管理 管理设备、工具、人员物料、以及其他生产实体,满足生产计划的要求对其所作的预定和调度,用以保证生产的正常进行;提供资源使用情况的历史记录和实时状态信息,确保设备能够正确安装和运转。为单位提供每个人的状态,通过时间对比,出勤报告,行为跟踪及行为(包含资财及工具准备作业)为基础的费用等为基准,实现对人力资源间接行为的跟踪管理。 2.2 工序详细调度及生产单元分配 提供与指定生产单元相关的优先级(Priorities)、属性(Attributes)、特征(Characteristic)以及处方(Recipes)等,通过基于有限能力的调度考虑生产中的交错、重叠和并行操作来准确计算出设备上下料和调整时间,实现良好的作业顺序,并最大限度地减少生产过程中的准备时间。以作业、订单、批量、成批和工作单等形式来管理生产单元间的工作流。通过调整车间已制订的生产进

非线性控制系统分析

3描述函数法一.本质非线性特性的谐波线性化 1.谐波线性化具有本质非线性的非线性元件在正弦输入作用下在其非正弦周期函数的输出响应中假设只有基波分量有意义从而将本质非线性特性在这种假设下视为线性特性的一种近似 3.应用描述函数法分析非线性系统的前提 a 非线性特性具有奇对称心 b非线性系统具有图a所时的典型结构 c非线性部分输出xt中的基波分量最强 d非线性部分Gs的低通滤波效应较好 b非线性特性的描述函数的求取方法二.典型非线性特性的描述函数 1饱和特性的描述函数 2死区特性描述函数 3间隙特性的描述函数 1 引言第七章非线性控制系统分析非线性指元件或环节的静特性不是按线性规律变化非线性系统如果一个控制系统包含一个或一个以上具有非线性静特性的元件或环节则称这类系统为非线性系统其特性不能用线性微分方程来描述一.控制系统中的典型非线性特性下面介绍的这些特性中一些是组成控制系统的元件所固有的如饱和特性死区特性和滞环特性等这些特性一般来说对控制系统的性能是不利的另一些特性则是为了改善系统的性能而人为加入的如继电器特性变增益特性在控制系统中加入这类特性一般来说能使系统具有比线性系统更为优良的动态特性非线性系统分析饱和特性 2死区特性危害使系统输出信号在相位上产生滞后从而降低系统的相对稳定性使系统产生自持振荡危害使系统输出信号在相位上产生滞后从而降低系统的相对稳定性使系统产生自持振荡 4继电器特性功能改善系统性能的切换元件 4继电器特性特点使系统在大误差信号时具有较大的增益从而使系统响应迅速而在小误差信号时具有较小的增益从而提高系统的相对稳定性同时抑制高频低振幅噪声提高系统响应控制信号的准确度本

神经网络实现非线性系统设计范本

神经网络实现非线性系统设计

毕业设计(论文) 中文题目神经网络实现非线性系统设计英文题目 Neural Network Nonlinear System 院系: 年级专业: 姓名: 学号: 指导教师: 职称: 月日

【摘要】神经网络具有极强的非线性及自适应自学习的特性,常被用来模拟判断、拟合和控制等智能行为,成功渗透了几乎所有的工程应用领域,是一个在人工智能方向迅速发展的具有重大研究意义的前沿课题。 本文前两章主要介绍了神经网络的发展背景和研究现状,还有BP 网络的结构原理及相关功能。然后,对如何利用GUI工具和神经网络原理设计非线性系统的基本流程进行了详细的阐述。最后,经过利用Matlab软件进行编程,以及是经过对BP神经网络算法及函数的运用,研究其在函数逼近和数据拟合方面的应用,并分析了相关参数对运行结果的影响。 【关键词】BP网络,GUI,非线性系统 【ABSTRACT】Neural network has a strong nonlinear and adaptive self-organizing properties, often used to simulate the behavior of intelligent decision-making, cognitive control, and the successful penetration of almost all engineering applications, is a rapid development in the direction of artificial intelligence

列车网络系统

目录 列车网络控制系统 (2) 一、列车网络控制系统概述 (2) 1. 列车网络系统的发展 (2) 2. 列车网络控制系统的功能 (4) 二、我国城市轨道交通列车网络控制系统的应用 (5) 1. SIBAS系统 (5) 2. MITRAC.系统 (6) 3. AGATE系统 (9) 4. TIS信息系统 (13) 5. DETECS系统 (15)

列车网络控制系统 一、列车网络控制系统概述 列车网络控制系统是列车的核心部件,它包括以实现各功能控制为目标的单元控制机、实现车辆控制的车辆控制机和实现信息交换的通信网络。列车网络系统的发展过程从系统功能来看经历了由单一的牵引控制到车辆(列车)控制,再到现在已经进入分布式控制系统的发展阶段。 1. 列车网络系统的发展 70年代末至80年代初,车载微机的雏形分别在西门子公司和BBC公司出现。开始仅仅是用于传动装置的控制,随着控制、服务对象的增多,人们把铁道系统依次划分为 6 个层次:公司管理、铁路运营、列车控制、机车车辆控制、传动控制和过程驱动,于是列车通信网络在初期的串行通信总线的基础上应运而生,并从原来不同公司的企业标准推向国际标准,逐步形成了列车通信与控制系统的标准化、模块化的硬件系列和全方位的开发、调试、维护、管理软件工具。 1988年IEC第9 技术委员会TC9成立了第22工作组WG22,其任务是制订一个开放的通信系统,从而使得各种铁道机车车辆能够相互联挂,车上的可编程电子设备能够互换。 1992年6 月, TC9WG22以委员会草案CD(committee Draft)的形式向各国发出列车通信网TCN(Train Communication Network)的征求意见稿。该稿分成4个部分:第1 部分总体结构,第 2 部分实时协议,第 3 部分多功能车辆总线MVB,第4部分绞式列车总线WTB。 总体结构把列车通信网规定为由多功能车辆总线MVB和绞式列车总线WTB 组成。MVB的传输介质可以是双绞线,也可以是光纤。在后一种场合,其跨距为2000m,最多可连接256个职能总线站。数据划分为过程数据、消息数据和监管数据。对过程数据的传输作了优化。发送的基本周期是lms或2ms。 WTB的传输介质为双绞线,最多可连接32个节点,总线跨距860m。WTB 具有列车初运行和接触处防氧化功能。发送的基本周期是25ms。 1994年5 月至1995年9 月,欧洲铁路研究所(ERRI)耗资300万美元,在瑞士的Interlaken至荷兰的阿姆斯特丹的区段,对由瑞士SBB、德国DB、意大利FS、荷兰NS的车辆编组成的运营试验列车进行了全面的TCN试验。 1999年6 月,TCN标准草案正式成为国际标准,即IEC61735。该标准对列

过程控制作业答案2014[精品文档]

第一章 概述 1.1 过程控制系统由哪些基本单元构成?画出其基本框图。 控制器、执行机构、被控过程、检测与传动装置、报警,保护,连锁等部件 1.2 按设定值的不同情况,自动控制系统有哪三类? 定值控制系统、随机控制系统、程序控制系统 1.3 简述控制系统的过渡过程单项品质指标,它们分别表征过程控制系统的什么性能? a.衰减比和衰减率:稳定性指标; b.最大动态偏差和超调量:动态准确性指标; c.余差:稳态准确性指标; d.调节时间和振荡频率:反应控制快速性指标。 第二章 过程控制系统建模方法 习题2.10 某水槽如图所示。其中F 为槽的截面积,R1,R2和R3均为线性水阻,Q1为流入量,Q2和Q3为流出量。要求: (1) 写出以水位H 为输出量,Q1为输入量的对象动态方程; (2) 写出对象的传递函数G(s),并指出其增益K 和时间常数T 的数值。 (1)物料平衡方程为123d ()d H Q Q Q F t -+= 增量关系式为 123d d H Q Q Q F t ??-?-?= 而22h Q R ??= , 33 h Q R ??=, 代入增量关系式,则有23123 ()d d R R h h F Q t R R +??+=? (2)两边拉氏变换有: 23 123 ()()()R R FsH s H s Q s R R ++ =

故传函为: 232323123 ()()()11R R R R H s K G s R R Q s Ts F s R R +=== +++ K=2323 R R R R +, T=23 23R R F R R + 第三章 过程控制系统设计 1. 有一蒸汽加热设备利用蒸汽将物料加热,并用搅拌器不停地搅拌物料,到物料达到所需温度后排出。试问: (1) 影响物料出口温度的主要因素有哪些? (2) 如果要设计一温度控制系统,你认为被控变量与操纵变量应选谁?为什么? (3) 如果物料在温度过低时会凝结,据此情况应如何选择控制阀的开、闭形式及控制器 的正反作用? 解:(1)物料进料量,搅拌器的搅拌速度,蒸汽流量 (2)被控变量:物料出口温度。因为其直观易控制,是加热系统的控制目标。 操作变量:蒸汽流量。因为其容易通过控制阀开闭进行调整,变化范围较大且对被 控变量有主要影响。 (3)由于温度低物料凝结所以要保持控制阀的常开状态,所以控制阀选择气关式。控制 器选择正作用。 2. 如下图所示为一锅炉锅筒液位控制系统,要求锅炉不能烧干。试画出该系统的框图,判断控制阀的气开、气关型式,确定控制器的正、反作用,并简述当加热室温度升高导致蒸汽蒸发量增加时,该控制系统是如何克服干扰的? 解:系统框图如下:

过程控制系统习题解答教程文件

过程控制系统习题解 答

《过程控制系统》习题解答 1-1 试简述过程控制的发展概况及各个阶段的主要特点。 答:第一个阶段 50年代前后:实现了仪表化和局部自动化,其特点: 1、过程检测控制仪表采用基地式仪表和部分单元组合式仪表 2、过程控制系统结构大多数是单输入、单输出系统 3、被控参数主要是温度、压力、流量和液位四种参数 4、控制的目的是保持这些过程参数的稳定,消除或减少主要扰动对生产过程的影响 5、过程控制理论是以频率法和根轨迹法为主体的经典控制理论,主要解决单输入、单输出的定值控制系统的分析和综合问题 第二个阶段 60年代来:大量采用气动和电动单元组合仪表,其特点: 1、过程控制仪表开始将各个单元划分为更小的功能,适应比较复杂的模拟和逻辑规律相结合的控制系统 2、计算机系统开始运用于过程控制 3、过程控制系统方面为了特殊的工艺要求,相继开发和应用了各种复杂的过程控制系统(串级控制、比值控制、均匀控制、前馈控制、选择性控制) 4、在过程控制理论方面,现代控制理论的得到了应用 第三个阶段70年代以来:现代过程控制的新阶段——计算机时代,其特点: 1、对全工厂或整个工艺流程的集中控制、应用计算系统进行多参数综合控制 2、自动化技术工具方面有了新发展,以微处理器为核心的智能单元组合仪表和开发和广泛应用 3、在线成分检测与数据处理的测量变送器的应用 4、集散控制系统的广泛应用 第四个阶段 80年代以后:飞跃的发展,其特点: 1、现代控制理论的应用大大促进了过程控制的发展 2、过程控制的结构已称为具有高度自动化的集中、远动控制中心 3、过程控制的概念更大的发展,包括先进的管理系统、调度和优化等。 1-2 与其它自动控制相比,过程控制有哪些优点?为什么说过程控制的控制过程多属慢过程?

过程控制系统与仪表课后习题答案完整版汇总

第1章思考题与习题 1-1 过程控制有哪些主要特点为什么说过程控制多属慢过程参数控制 解答: 1.控制对象复杂、控制要求多样 2. 控制方案丰富 3.控制多属慢过程参数控制 4.定值控制是过程控制的一种主要控制形式 5.过程控制系统由规范化的过程检测控制仪表组成 1-2 什么是过程控制系统典型过程控制系统由哪几部分组成 解答: 过程控制系统:一般是指工业生产过程中自动控制系统的变量是温度、压力、流量、液位、成份等这样一些变量的系统。 组成:参照图1-1。 1-4 说明过程控制系统的分类方法,通常过程控制系统可分为哪几类 解答: 分类方法说明: 按所控制的参数来分,有温度控制系统、压力控制系统、流量控制系统等;按控制系统所处理的信号方式来分,有模拟控制系统与数字控制系统;按控制器类型来分,有常规仪表控制系统与计算机控制系统;按控制系统的结构和所完成的功能来分,有串级控制系统、均匀控制系统、自适应控制系统等;按其动作规律来分,有比例(P)控制、比例积分(PI)控制,比例、积分、微分(PID)控制系统等;按控制系统组成回路的情况来分,有单回路与多回路控制系统、开环与闭环控制系统;按被控参数的数量可分为单变量和多变量控制系统等。 通常分类: 1.按设定值的形式不同划分:(1)定值控制系统 (2)随动控制系统 (3)程序控制系统 2.按系统的结构特点分类:(1)反馈控制系统 (2)前馈控制系统 (3)前馈—反馈复合控制系统 1-5 什么是定值控制系统

解答: 在定值控制系统中设定值是恒定不变的,引起系统被控参数变化的就是扰动信号。1-6 什么是被控对象的静态特性什么是被控对象的动态特性二者之间有什么关系解答: 被控对象的静态特性:稳态时控制过程被控参数与控制变量之间的关系称为静态特性。 被控对象的动态特性:。系统在动态过程中,被控参数与控制变量之间的关系即为控制过程的动态特性。 二者之间的关系: 1-7 试说明定值控制系统稳态与动态的含义。为什么在分析过程控制系统得性能时更关注其动态特性 解答: 稳态: 对于定值控制,当控制系统输入(设定值和扰动)不变时,整个系统若能达 到一种平衡状态,系统中各个组成环节暂不动作,它们的输出信号都处于相对静 止状态,这种状态称为稳态(或静态)。 动态: 从外部扰动出现、平衡状态遭到破坏、自动控制装置开始动作,到整个系统 又建立新的稳态(达到新的平衡)、调节过程结束的这一段时间,整个系统各个环节的状态和参数都处于变化的过程之中,这种状态称为动态。 在实际的生产过程中,被控过程常常受到各种振动的影响,不可能一直工作在稳态。只有将控制系统研究与分析的重点放在各个环节的动态特性,才能设计出良好的控制系统。 1-8 评价控制系统动态性能的常用单项指标有哪些各自的定义是什么 解答: 单项性能指标主要有:衰减比、超调量与最大动态偏差、静差、调节时间、振荡频率、上升时间和峰值时间等。 衰减比:等于两个相邻的同向波峰值之比n; 过渡过程的最大动态偏差:对于定值控制系统,是指被控参数偏离设定值的最大值A; y与最终稳态值y(∞)之比的百分数σ; 超调量:第一个波峰值 1 残余偏差C:过渡过程结束后,被控参数所达到的新稳态值y(∞)与设定值之间的偏差C称为残余偏差,简称残差;

网络控制系统与传统控制系统区别

网络控制系统与传统控制系统区别 摘要:本文对网络控制系统与传统控制系统发展过程,功能特点,主要方法和当前研究热点进行了简要概述。 关键词:网络控制系统传统控制系统区别 1.前言 随着计算机技术和网络技术的不断发展,控制系统正在向智能化、数字化和网络化的方向发展。本文简要回顾了控制网络的发展, 阐述了它与信息网络发展过程的相似性,分析了目前流行的现场总线控制系统的组成及其存在的问题。对于工业以太网做了简单介绍,提出了控制网络结构发展的趋势。 2.计算机控制系统的发展 计算机及网络技术与控制系统的发展有着紧密的联系。最早在50年代中后期,计算机就已经被应用到控制系统中。60年代初,出现了由计算机完全替代模拟控制的控制系统,被称为直接数字控制(Direct Digital Control, DDC )。70年代中期,随着微处理器的出现,计算机控制系统进入一个新的快速发展的时期,1975年世界上第一套以微处理为基础的分散式计算机控制系统问世,它以多台微处理器共同分散控制,并通过数据通信网络实现集中管理,被称为集散控制系统(Distributed Control System, DCS)。 进入80年代以后,人们利用微处理器和一些外围电路构成了数字式仪表以取代模拟仪表,这种DDC的控制方式提高了系统的控制精度和控制的灵活性,而且在多回路的巡回采样及控制中具有传统模拟仪表无法比拟的性能价格比。 80年代中后期,随着工业系统的日益复杂,控制回路的进一步增多,单一的DDC控制系统已经不能满足现场的生产控制要求和生产工作的管理要求,同时中小型计算机和微机的性能价格比有了很大提高。于是,由中小型计算机和微机共同作用的分层控制系统得到大量应用。 进入90年代以后,由于计算机网络技术的迅猛发展,使得DCS系统得到进一步发展,提高了系统的可靠性和可维护性,在今天的工业控制领域DCS仍然占据着主导地位,但是DCS不具备开放性,布线复杂,费用较高,不同厂家产品的集成存在很大困难。 从八十年代后期开始,由于大规模集成电路的发展,许多传感器、执行机构、驱动装置等现场设备智能化,人们便开始寻求用一根通信电缆将具有统一的通信协议通信接口的

非线性网络控制系统的分析与设计

非线性网络控制系统的分析与设计 文章针对具有未知输入和不确定扰动信号的非线性系统,研究一类以观测器为基础的量化网络化系统故障检测问题。首先,引入时变量化器,对输出信号采用离散量化处理。模拟工业中真是的非线性系统,针对基础的原系统建立故障检测滤波器,最后,通过原系统与观测器的比较,搭建故障检测滤波器误差系统。最后,给出Matlab仿真实例,验证文中方法的有效性。 标签:故障检测滤波器;网络化系统;量化器NCS 前言 NCSs是集自动控制技术、计算机技术和通信技术发展于一体,目前被越来越多的应用于复杂的远程控制系统中,从而实现对终端的远程控制,改变了传统的控制模式。 关于非线性的NCSs的建模和设计要复杂很多,无论是在数学模型的建立,还是工业控制方面的设计,相关的非线性的研究并不是很成熟。文章的设计方法将推广到非线性网络控制系统,设计关于非线性的模型,利用对数量化器联合分析。并最终MATLAB的仿真来判断文章的NCSs模型的稳定性。 1 离散对数量化器 信息在被传输过程中,要经过量化、分割,变为离散信号,才能适用与非线性模型中。这里,首先要将输出信号进行量化,量化分段函数如式(1): 文章中采用静态对数量化器,设计如下量化标准: 其中,?字是量化密度,u0是初始向量。 每一部分分段函数对应着不同的量化条件,最终应用到整个分段函数达到全部的量化标准。对数量化器定义如式(2): 2 系统描述 非线性被控对象描述为: (3) 其中,A、B1、B2、C、N1为具有适当维数的已知实常数矩阵, 为状态向量,为输出向量,为L2范数有界的不确定扰动信号向量,为要检测的故障信号向量,g(x(k))为已知的非线性向量函数且满足g(0)=0

非线性控制系统分析样本

第八章非线性控制系统分析 教学目的: 经过学习本章, 使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。 教学要求: (1) 认识非线性系统区别于线性系统的运动过程特点. (2) 掌握描述函数法和相平面法的特点及应用范围. (3) 明确函数的定义及相关概念, 熟悉典型非线性的妙描述和负倒描述函数特 性, 掌握用描述函数法分析非线性系统的稳定性和分析自振, 计算自振参数的方法. 教学课时: 12 学时 教学重点: (1) 非线性的相关概念. (2) 典型系统的相平面表示. (3) 典型非线性系统的描述函数形式. 教学难点: 非线性系统的描述函数求法; 利用负倒数法分析系统稳定性. 本章学时: 12 学时 主要内容: 非线性系统的概述 8.1 描述函数法 8.2 相平面法分析线性控制系统 8.3 8.4利用非线性特性改进系统的控制性能 8.1 非线性系统的概述 8.1.1 非线性模型

㈠组成 -------- x ------ 非线性环节----------- 线性环节---------- 组成: 非线性环节+线性环节 ㈡. 分类 ①从输入输出关系上分: 单值非线性 非单值非线性 1,从形状特性上分: 饱和 死区 回环 继电器 ㈢特点 稳定性与结构, 初始条件有关; 响应 ㈣分析方法 注意: 不能用叠加原理 1. 非线性常微分方程没有同意的求解方法, 只有同意求近似解的方法: a. 稳定性(时域, 频域) : 由李亚普洛夫第二法和波波夫法判断 b. 时域响应: 相平面法(实际限于二阶非线性系统)较精确, 因高阶作用 太复杂 描述函数法:近似性,高阶系统也很方便 研究非线性系统并不需求得其时域响应的精确解,而重要关心其时域响应的性质,

计算机过程控制系统的应用与发展

计算机过程控制系统的应用与发展 李杰训!徐晶(大庆油田工程设计技术开发有限公司)岳绍信!石少敏(吉林油田设计院) !!在石油、化工、冶金、电力、轻工和建材等工业生产中连续的或按一定程序周期进行的生产过程的自动控制称为生产过程自动化。生产过程自动化是保持生产稳定、降低消耗、降低成本、改善劳动条件、促进文明生产、保证生产安全和提高劳动生产率的重要手段,是"#世纪科学与技术进步的特征,是工业现代化的标志。 凡是采用模拟或数字控制方式对生产过程的某一或某些物理参数进行的自动控制就称为过程控制。过程控制系统可以分为常规仪表过程控制系统与计算机过程控制系统两大类。随着工业生产规模走向大型化、复杂化、精细化、批量化,靠仪表控制系统已很难达到生产和管理要求,计算机过程控制系统是近几十年发展起来的以计算机为核心的控制系统。 $%计算机过程控制系统的发展回顾 世界上第一台电子数字计算机于$&’(年在美国问世。经历了十多年的研究,$&)&年世界上第一台过程控制计算机*+,—-##在美国德克萨斯的一个炼油厂正式投入运行。这项开创性工作为计算机控制技术的发展奠定了基础,从此,计算机控制技术获得了迅速的发展。回顾工业过程的计算机控制历史,经历了以下几个时期: ($)起步时期("#世纪)#年代)。"#世纪)#年代中期,有人开始研究将计算机用于工业过程控制。 (")试验时期("#世纪(#年代)。$&("年,英国的帝国化学工业公司利用计算机完全代替了原来的模拟控制。 (-)推广时期("#世纪.#年代)。随着大规模集成电路(/01)技术的发展,$&."年生产出了微型计算机(234 56757289:;6),其最大优点是运算速度快,可靠性高,价格便宜和体积小。 (’)成熟时期("#世纪<#年代)。随着超大规模集成电路(=/01)技术的飞速发展,使得计算机向着超小型化、软件固定化和控制智能化方向发展。<#年代末,又推出了具有计算机辅助设计(>?@)、专家系统、控制和管理融为一体的新型集散控制系统。 ())进一步发展时期("#世纪&#年代)。在计算机控制系统进一步完善,应用更加普及,价格不断下降的同时,功能却更加丰富,性能变得更加可靠。 "%计算机过程控制系统的分类 计算机控制系统的应用领域非常广泛,计算机可以控制单个电机、阀门,也可以控制管理整个工厂企业;控制方式可以是单回路控制,也可以是复杂的多变量解耦控制、自适应控制、最优控制乃至智能控制。因而,它的分类方 法也是多样的,可以按照被控参数、设定值的形式进行分类,也可以按照控制装置结构类型、被控对象的特点和要求及控制功能的类型进行分类,还可以按照系统功能、控制规律和控制方式进行分类。常用的是按照系统功能分类,分为以下几类: ($)数据处理系统(@?0),对生产过程参数作巡检、分析、记录和报警处理。 (")操作指导控制系统(AB>),计算机的输出不直接用来控制生产过程,而只是对过程参数进行收集,加工处理后输出数据,操作人员据此进行必要的操作。 (-)直接数字控制系统(@@>),计算机从过程输入通道获取数据,运算处理后,再从输出通道输出控制信号,驱动执行机构。 (’)监督控制系统(0>>),计算机根据生产过程参数和对象的数字模型给出最佳工艺参数,据此对系统进行控制。 ())多级控制系统,企业经营管理和生产过程控制分别由几级计算机进行控制,一般是三级系统,即经营管理级(C10)、监督控制级(0>>)和直接数字控制级(@@>)。 (()集散控制系统(@>0),以微处理器为核心,实现地理和功能上的分散控制,同时通过高速数据通道将分散的信息集中起来,实现复杂的控制和管理。 (.)监控与数据采集系统(0>?@?),0>?@?是以计算机、控制、通讯与>+*技术为基础的一种综合自动化系统,更适用于“点多、面广、线长”的生产过程。由于控制中心和监控点的分散而自然形成了两层控制结构。 (<)现场总线控制系统(D>0),是新一代分布式控制系统,与@>0的三层结构不同,其结构模式为“工作站—现场总线智能仪表”两层结构,降低了总成本,提高了可靠性,系统更加开放,功能更加强大。在统一的国际标准下,可实现真正的开放式互连系统结构。 (&)计算机集成过程控制系统(>1E0),利用@>0作基础,开发高级控制策略,实现各层次的优化,利用管理信息系统C10进行辅助管理和决策,将企业中有关过程控制、计划调度、经营管理、市场销售等信息进行集成,经科学加工后,为各级领导、管理及生产部门提供决策依据,实现控制、管理的一体化。 -%计算机过程控制系统国内外应用状况 近十几年,过程控制系统发展非常迅速,由于集散控制系统是这一领域的主导发展方向,各国厂商都在这一市 $ !!李杰训:计算机过程控制系统的应用与发展!! 万方数据

非线性控制系统分析样本

第八章非线性控制系统分析 教学目的 : 经过学习本章, 使学生掌握秒素函数法与相平面法分析非线性系统的理论基础与应用。 教学要求: (1)认识非线性系统区别于线性系统的运动过程特点. (2)掌握描述函数法和相平面法的特点及应用范围. (3)明确函数的定义及相关概念,熟悉典型非线性的妙描述和负倒描述函数 特性,掌握用描述函数法分析非线性系统的稳定性和分析自振,计算自振参数的方法. 教学课时: 12学时 教学重点: (1) 非线性的相关概念. (2) 典型系统的相平面表示. (3) 典型非线性系统的描述函数形式. 教学难点: 非线性系统的描述函数求法; 利用负倒数法分析系统稳定性. 本章学时: 12学时 主要内容: 8.1 非线性系统的概述 8.2 描述函数法 8.3 相平面法分析线性控制系统 8.4 利用非线性特性改进系统的控制性能

8.1非线性系统的概述 8.1.1 非线性模型 ㈠组成 ---------x-------非线性环节---------线性环节------------ 组成: 非线性环节+线性环节 ㈡. 分类 ①从输入输出关系上分: 单值非线性 非单值非线性 1,从形状特性上分: 饱和 死区 回环 继电器 ㈢特点 稳定性与结构, 初始条件有关 ; 响应 ㈣分析方法 注意: 不能用叠加原理 1. 非线性常微分方程没有同意的求解方法, 只有同意求近似解的方法: a. 稳定性( 时域, 频域) : 由李亚普洛夫第二法和波波夫法判断 b. 时域响应: 相平面法( 实际限于二阶非线性系统) 较精确, 因高阶作用

太复杂 描述函数法: 近似性, 高阶系统也很方便 研究非线性系统并不需求得其时域响应的精确解, 而重要关心其时域响应的性质, 如: 稳定性, 自激震荡等问题, 决定它的稳定性范围, 自激震荡的条件, 震荡幅度与频率等。 2,死区继电器: f(e) +m -△e 3 4.滞环特性( 间隙) -m

城轨列车网络控制系统 第2次作业 含答案

专业班学号: 姓名: 《城轨列车网络控制系统错误!未指定书签。》课程 (第2次作业) 评分 评分人 四、主观题(共20道小题) 28.列车自动防护系统(ATP)是一个什么样的系统? 参考答案:答:城市轨道交通的信号系统中,列车自动防护〔ATP)系统是非常重要的组成部分,它 为列车行驶提供安全保障,有效降低列车驾驶员的劳动强度,提高行车效率。如果没有ATP系统,列 车的行车安全需要由列车驾驶员人工来保障,这样会造成列车驾驶员过度疲劳,产生安全隐患,为行 车作业效率带来负面影响。因此在城市轨道交通中,尤其是在运营作业繁忙的线路上,信号系统中设 里列车自动防护系统是非常必要的,它是行车作业的安全保障和体现。 ATP系统是保证行车安全、防止列车进入前方列车占用区段和防止超速运行的设备。ATP负责 全部的列车运行保护。ATP系统执行以下安全功能:限制速度的接收和解码、超速防护、车门管理、 自动和手动模式的运行、司机控制台接口、车辆方向保证、永久车辆标识。 29.简述ATP系统具有的主要功能。 参考答案:答:ATP车载设备能连续检测列车的位置、监督速度限制、防护点和根据列车在站台区域 的精确停车控制列车车门和站台安全门。联锁是底层的基本防护系统。ATP轨旁设备连续监视和检查 联锁条件,比如道岔的监督、紧急停车按钮监督、侧面防护和其他进路的情况。这些信息是轨旁设备 计算移动授权的基础。 (1)速度监督与超速防护 轨旁设备从联锁和轨道空闲检测系统获得驾驶指令,整理为相应格式的数据后传输至ATP车 载设备。驾驶指令通常包括目标速度、目标距离、最大允许线路速度和线路坡度等。ATP车载设备通 过此数据计算当前位置的列车允许速度。最终将列车运行所需的数据由驾驶室显示器指示给司机。 实际的列车速度和驶过的距离由测速装置连续进行测量。ATP车载设备将列车实际速度与列车允许速 度进行比较。当列车速度超过列车允许速度时,ATP的车载设备就会发出制动命令,发出报警后控制 列车进行常用全制动或实施紧急制动,使列车自动地制动。 (2)测速与测距 列车运行速度的测量是速度控制的依据。速度值的准确和精度直接影响列车控制的效果。 在目标距离模式中,列车位置对于安全性至关重要。如果列车无法掌握它在线路中的准确位置, 那么它就无法保证在障碍物或限制区范围内减速或停下。ATP车载设备通过连续测量列车行驶的距 离,可以随时査找列车的精确位置。 (3)车门与站台安全门的控制 在通常的情况下,在车辆没有停稳在站台或是车辆段转换轨上时,ATP不允许车门开启。当列车 在车站的预定停车区域内停稳且停车点的误差在允许范围以内时,地面定位天线会收到车载定位天线 发送的停稳信号,列车从ATP轨旁设备收到车门开启命令,ATP才会允许车门操作,车载对位天线和 地面对位天线才能很好地感应耦合并进行车门开关操作。有了车门开启命令后,使ATP轨旁设备发送

自动控制原理-第8章 非线性控制系统

8 非线性控制系统 前面几章讨论的均为线性系统的分析和设计方法,然而,对于非线性程度比较严重的系统,不满足小偏差线性化的条件,则只有用非线性系统理论进行分析。本章主要讨论本质非线性系统,研究其基本特性和一般分析方法。 8.1非线性控制系统概述 在物理世界中,理想的线性系统并不存在。严格来讲,所有的控制系统都是非线性系统。例如,由电子线路组成的放大元件,会在输出信号超过一定值后出现饱和现象。当由电动机作为执行元件时,由于摩擦力矩和负载力矩的存在,只有在电枢电压达到一定值的时候,电动机才会转动,存在死区。实际上,所有的物理元件都具有非线性特性。如果一个控制系统包含一个或一个以上具有非线性特性的元件,则称这种系统为非线性系统,非线性系统的特性不能由微分方程来描述。 图8-1所示的伺服电机控制特性就是一种非线性特性,图中横坐标u 为电机的控制电压,纵坐标ω为电机的输出转速,如果伺服电动机工作在A 1OA 2区段,则伺服电机的控制电压与输出转速的关系近似为线性,因此可以把伺服电动机作为线性元件来处理。但如果电动机的工作区间在B 1OB 2区段.那么就不能把伺服电动机再作为线性元件来处理,因为其静特性具有明显的非线性。 图8-1 伺服电动机特性 8.1.1控制系统中的典型非线性特性 组成实际控制系统的环节总是在一定程度上带有非线性。例如,作为放大元件的晶体管放大器,由于它们的组成元件(如晶体管、铁心等)都有一个线性工作范围,超出这个范围,放大器就会出现饱和现象;执行元件例如电动机,总是存在摩擦力矩和负载力矩,因此只有当输入电压达到一定数值时,电动机才会转动,即存在不灵敏区,同时,当输入电压超过一定数值时,由于磁性材料的非线性,电动机的输出转矩会出现饱和;各种传动机构由于机械加工和装配上的缺陷,在传动过程中总存在着间隙,等等。 实际控制系统总是或多或少地存在着非线性因素,所谓线性系统只是在忽略了非线性因素或在一定条件下进行了线性化处理后的理想模型。常见典型非线性特性有饱和非线性、死区非线性、继电非线性、间隙非线性等。 8.1.1.1饱和非线性 控制系统中的放大环节及执行机构受到电源电压和功率的限制,都具有饱和特性。如图8-2所示,其中a x a <<-的区域是线性范围,线性范围以外的区域是饱和区。许多元件的运动范围由于受到能源、功率等条件的限制,也都有饱和非线性特性。有时,工程上还人为引入饱和非线性特

相关文档
相关文档 最新文档