文档库 最新最全的文档下载
当前位置:文档库 › ASTM E 1921-2003

ASTM E 1921-2003

ASTM E 1921-2003
ASTM E 1921-2003

Designation:E1921–03

Standard Test Method for

Determination of Reference Temperature,T o,for Ferritic Steels in the Transition Range1

This standard is issued under the?xed designation E1921;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.

1.Scope

1.1This test method covers the determination of a reference temperature,T o,which characterizes the fracture toughness of ferritic steels that experience onset of cleavage cracking at elastic,or elastic-plastic K Jc instabilities,or both.The speci?c types of ferritic steels(3.

2.1)covered are those with yield strengths ranging from275to825MPa(40to120ksi)and weld metals,after stress-relief annealing,that have10%or less strength mismatch relative to that of the base metal.

1.2The specimens covered are fatigue precracked single-edge notched bend bars,SE(B),and standard or disk-shaped compact tension specimens,C(T)or DC(T).A range of specimen sizes with proportional dimensions is recommended. The dimension on which the proportionality is based is specimen thickness.

1.3Median K Jc values tend to vary with the specimen type at a given test temperature,presumably due to constraint differences among the allowable test specimens in1.

2.The degree of K Jc variability among specimen types is analytically predicted to be a function of the material?ow properties(1)2 and decreases with increasing strain hardening capacity for a given yield strength material.This K Jc dependency ultimately leads to discrepancies in calculated T o values as a function of specimen type for the same material.T o values obtained from C(T)specimens are expected to be higher than T o values obtained from SE(B)specimens.Best estimate comparisons of several materials indicate that the average difference between C(T)and SE(B)-derived T o values is approximately10°C(2). C(T)and SE(B)T o differences up to15°C have also been recorded(3).However,comparisons of individual,small datasets may not necessarily reveal this average trend.Datasets which contain both C(T)and SE(B)specimens may generate T o results which fall between the T o values calculated using solely C(T)or SE(B)specimens.It is therefore strongly recommended that the specimen type be reported along with the derived T o value in all reporting,analysis,and discussion of results.This recommended reporting is in addition to the requirements in11.1.1.

1.4Requirements are set on specimen size and the number of replicate tests that are needed to establish acceptable characterization of K Jc data populations.

1.5The statistical effects of specimen size on K Jc in the transition range are treated using weakest-link theory(4) applied to a three-parameter Weibull distribution of fracture toughness values.A limit on K Jc values,relative to the specimen size,is speci?ed to ensure high constraint conditions along the crack front at fracture.For some materials,particu-larly those with low strain hardening,this limit may not be sufficient to ensure that a single-parameter(K Jc)adequately describes the crack-front deformation state(5).

1.6Statistical methods are employed to predict the transi-tion toughness curve and speci?ed tolerance bounds for1T specimens of the material tested.The standard deviation of the data distribution is a function of Weibull slope and median K Jc. The procedure for applying this information to the establish-ment of transition temperature shift determinations and the establishment of tolerance limits is prescribed.

1.7The fracture toughness evaluation of nonuniform mate-rial is not amenable to the statistical analysis methods em-ployed in this standard.Materials must have macroscopically uniform tensile and toughness properties.For example,multi-pass weldments can create heat-affected and brittle zones with localized properties that are quite different from either the bulk material or weld.Thick section steel also often exhibits some variation in properties near the surfaces.Metallography and initial screening may be necessary to verify the applicability of these and similarly graded materials.Paticular notice should be given to the2%and98%tolerance bounds on K Jc presented in 9.3.Data falling outside these bounds may indicate nonuniform material properties.

1This test method is under the jurisdiction of ASTM Committee E08on Fatigue

and Fracture and is the direct responsibility of E08.08on Elastic-Plastic Fracture

Mechanics Technology.

Current edition approved Nov.1,2003.Published December2003.Originally

approved https://www.wendangku.net/doc/5513422075.html,st previous edition approved in2002as E1921–02.

2The boldface numbers in parentheses refer to the list of references at the end of

this standard.

1

Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

1.8This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents 2.1ASTM Standards:3

E 4Practices for Force Veri?cation of Testing Machines E 8M Test Methods for Tension Testing of Metallic Mate-rials (Metric)

E 23Test Methods for Notched Bar Impact Testing of Metallic Materials

E 74Practice for Calibration of Force Measuring Instru-ments for Verifying the Force Indication of Testing Ma-chines

E 208Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels

E 399Test Method for Plane-Strain Fracture Toughness of Metallic Materials

E 436Test Method for Drop-Weight Tear Tests of Ferritic Steels

E 561Practice for R-Curve Determination

E 812Test Method for Crack Strength of Slow-Bend,Pre-cracked Charpy Specimens of High-Strength Metallic Materials

E 1820Test Method for Measurement of Fracture Tough-ness

E 1823Terminology Relating to Fatigue and Fracture Test-ing 3.Terminology

3.1Terminology given in Terminology E 1823is applicable to this test method.3.2De?nitions :

3.2.1ferritic steels —are typically carbon,low-alloy,and higher alloy grades.Typical microstructures are bainite,tem-pered bainite,tempered martensite,and ferrite and pearlite.All ferritic steels have body centered cubic crystal structures that display ductile-to-cleavage transition temperature fracture toughness characteristics.See also Test Methods E 23,E 208and E 436.

N OTE 1—This de?nition is not intended to imply that all of the many possible types of ferritic steels have been veri?ed as being amenable to analysis by this test method.

3.2.2stress-intensity factor,K[FL –3/2]—the magnitude of the mathematically ideal crack-tip stress ?eld coefficient (stress ?eld singularity)for a particular mode of crack-tip region deformation in a homogeneous body.

3.2.3Discussion —In this test method,Mode I is assumed.See Terminology E 1823for further discussion.

3.2.4J-integral,J[FL –1]—a mathematical expression;a line or surface integral that encloses the crack front from one crack surface to the other;used to characterize the local stress-strain ?eld around the crack front (6).See Terminology E 1823for further discussion.

3.3De?nitions of Terms Speci?c to This Standard:

3.3.1control load,P M [F]—a calculated value of maximum load used in Test Method E 1820,Eqs.A1.1and A2.1to stipulate allowable precracking limits.

3.3.1.1Discussion —In this method,P M is not used for precracking,but is used as a minimum load above which partial unloading is started for crack growth measurement.3.3.2crack initiation —describes the onset of crack propa-gation from a preexisting macroscopic crack created in the specimen by a stipulated procedure.

3.3.3effective modulus,E e [FL –2]—an elastic modulus that can be used with experimentally determined elastic compliance to effect an exact match to theoretical (modulus-normalized)compliance for the actual initial crack size,a o .

3.3.4elastic modulus,E 8[FL –2]—a linear-elastic factor re-lating stress to strain,the value of which is dependent on the degree of constraint.For plane stress,E 8=E is used,and for plane strain,E /(1–v 2)is used,with v being Poisson’s ratio.3.3.5elastic-plastic K J [FL –3/2]—An elastic-plastic equiva-lent stress intensity factor derived from J -integral.

3.3.5.1Discussion —In this test method,K J also implies a stress intensity factor determined at the test termination point under conditions determined to be invalid by 8.9.2.

3.3.6elastic-plastic K Jc [FL –3/2]—an elastic-plastic equiva-lent stress intensity factor derived from the J -integral at the point of onset of cleavage fracture,J c .

3.3.7Eta (h )—a dimensionless parameter that relates plas-tic work done on a specimen to crack growth resistance de?ned in terms of deformation theory J -integral (7).

3.3.8failure probability,p f —the probability that a single selected specimen chosen at random from a population of specimens will fail at or before reaching the K Jc value of interest.

3.3.9initial ligament length,b o [L]—the distance from the initial crack tip,a o ,to the back face of a specimen.

3.3.10pop-in —a discontinuity in a load versus displace-ment test record (8).

3.3.10.1Discussion —A pop-in event is usually audible,and is a sudden cleavage crack initiation event followed by crack arrest.A test record will show increased displacement and drop in applied load if the test frame is stiff.Subsequently,the test record may continue on to higher loads and increased displace-ment.

3.3.11precracked charpy specimen —SE(B)specimen with W =B =10mm (0.394in.).

3.3.12reference temperature,T o [°C]—The test temperature at which the median of the K Jc distribution from 1T size specimens will equal 100MPa =m (91.0ksi =in.).

3.3.13SE(B)specimen span,S[L]—the distance between specimen supports (See Test Method E 1820Fig.3).

3.3.14specimen thickness,B[L]—the distance between the sides of specimens.

3

For referenced ASTM standards,visit the ASTM website,https://www.wendangku.net/doc/5513422075.html,,or contact ASTM Customer Service at service@https://www.wendangku.net/doc/5513422075.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM

website.

3.3.1

4.1Discussion—In the case of side-grooved speci-mens,thickness,B N,is the distance between the roots of the side-groove notches.

3.3.15specimen size,nT—a code used to de?ne specimen dimensions,where n is expressed in multiples of1in.

3.3.15.1Discussion—In this method,specimen proportion-ality is required.For compact specimens and bend bars, specimen thickness B=n inches.

3.3.16temperature,T Q[°C]—For K Jc values that are devel-oped using specimens or test practices,or both,that do not conform to the requirements of this test method,a temperature at which K Jc(med)=100MPa=m is de?ned as T Q.T Q is not a provisional value of T o.

3.3.17Weibull?tting parameter,K0—a scale parameter located at the63.2%cumulative failure probability level(9).

K

Jc =K0when p f=0.632.

3.3.18Weibull slope,b—with p f and K Jc data pairs plotted in linearized Weibull coordinates obtainable by rearranging Eq. 15,b is the slope of a line that de?nes the characteristics of the typical scatter of K Jc data.

3.3.18.1Discussion—A Weibull slope of4is used exclu-sively in this method.

3.3.19yield strength,s ys[FL–2]—a value of material strength at0.2%plastic strain as determined by tensile testing.

4.Summary of Test Method

4.1This test method involves the testing of notched and fatigue precracked bend or compact specimens in a tempera-ture range where either cleavage cracking or crack pop-in develop during the loading of specimens.Crack aspect ratio, a/W,is nominally0.

5.Specimen width in compact specimens is two times the thickness.In bend bars,specimen width can be either one or two times the thickness.

4.2Load versus displacement across the notch at a speci?ed location is recorded by autographic recorder or computer data acquisition,or both.Fracture toughness is calculated at a de?ned condition of crack instability.The J-integral value at instability,J c,is calculated and converted into its equivalent in units of stress intensity factor,K Jc.Validity limits are set on the suitability of data for statistical analyses.

4.3Tests that are replicated at least six times can be used to estimate the median K Jc of the Weibull distribution for the data population(10).Extensive data scatter among replicate tests is expected.Statistical methods are used to characterize these data populations and to predict changes in data distributions with changed specimen size.

4.4The statistical relationship between specimen size and

K

Jc fracture toughness can be assessed using weakest-link

theory,thereby providing a relationship between the specimen size and K Jc(4).Limits are placed on the fracture toughness range over which this model can be used.

4.5For de?nition of the toughness transition curve,a master curve concept is used(11,12).The position of the curve on the temperature coordinate is established from the experimental determination of the temperature,designated T o,at which the median K Jc for1T size specimens is100MPa=m(91.0 ksi=in.).Selection of a test temperature close to that at which the median K Jc value will be100MPa=m is encouraged and a means of estimating this temperature is suggested.Small specimens such as precracked Charpys may have to be tested at temperatures below T o where K Jc(med)is well below100 MPa=m.In such cases,additional specimens may be required as stipulated in8.

5.

4.6Tolerance bounds can be determined that de?ne the range of scatter in fracture toughness throughout the transition range.The standard deviation of the?tted distribution is a function of Weibull slope and median K Jc value,K Jc(med).

5.Signi?cance and Use

5.1Fracture toughness is expressed in terms of an elastic-plastic stress intensity factor,K Jc,that is derived from the J-integral calculated at fracture.

5.2Ferritic steels are inhomogeneous with respect to the orientation of individual grains.Also,grain boundaries have properties distinct from those of the grains.Both contain carbides or nonmetallic inclusions that can act as nucleation sites for cleavage microcracks.The random location of such nucleation sites with respect to the position of the crack front manifests itself as variability of the associated fracture tough-ness(13).This results in a distribution of fracture toughness values that is amenable to characterization using statistical methods.

5.3Distributions of K Jc data from replicate tests can be used to predict distributions of K Jc for different specimen sizes. Theoretical reasoning(9),con?rmed by experimental data, suggests that a?xed Weibull slope of4applies to all data distributions and,as a consequence,standard deviation on data scatter can be calculated.Data distribution and specimen size effects are characterized using a Weibull function that is coupled with weakest-link statistics(14).An upper limit on constraint loss and a lower limit on test temperature are de?ned between which weakest-link statistics can be used.

5.4The experimental results can be used to de?ne a master curve that describes the shape and location of median K Jc transition temperature fracture toughness for1T specimens (15).The curve is positioned on the abscissa(temperature coordinate)by an experimentally determined reference tem-perature,T o.Shifts in reference temperature are a measure of transition temperature change caused,for example,by metal-lurgical damage mechanisms.

5.5Tolerance bounds on K Jc can be calculated based on theory and generic data.For added conservatism,an offset can be added to tolerance bounds to cover the uncertainty associ-ated with estimating the reference temperature,T o,from a relatively small data set.From this it is possible to apply a margin adjustment to T o in the form of a reference temperature shift.

5.6For some materials,particularly those with low strain hardening,the value of T o may be in?uenced by specimen size due to a partial loss of crack-tip constraint(5).When this occurs,the value of T o may be lower than the value that would be obtained from a data set of K Jc values derived using larger specimens.

6.Apparatus

6.1Precision of Instrumentation—Measurements of applied loads and load-line displacements are needed to obtain work done on the specimen.Load versus load-line

displacements

may be recorded digitally on computers or autographically on x-y plotters.For computers,digital signal resolution should be 1/32,000of the displacement transducer signal range and 1/4000of the load transducer signal range.

6.2Grips for C(T)Specimens—A clevis with?at-bottom holes is recommended.See Test Method E399-90,Fig.A6.2, for a recommended design.Clevises and pins should be fabricated from steels of sufficient strength to elastically resist indentation loads(greater than40Rockwell hardness C scale (HRC)).

6.3Bend Test Fixture—A suitable bend test?xture scheme is shown in Fig.A3.2of Test Method E399-90.It allows for roller pin rotation and minimizes friction effects during the test. Fixturing and rolls should be made of high-hardness steel (HRC greater than40).

6.4Displacement Gage for Compact Specimens:

6.4.1Displacement measurements are made so that J values can be determined from area under load versus displacement test records(a measure of work done).If the test temperature selection recommendations of this practice are followed,crack growth measurement will probably prove to be unimportant. Results that fall within the limits of uncertainty of the recommended test temperature estimation scheme will prob-ably not have signi?cant slow-stable crack growth prior to instability.Nevertheless,crack growth measurements are rec-ommended to provide supplementary information,and these results may be reported.

6.4.2Unloading compliance is the primary recommendation for measuring slow-stable crack growth.See Test Method E1820.When multiple tests are performed sequentially at low test temperatures,there will be condensation and ice buildup on the grips between the loading pins and?ats of the clevis holes.Ice will interfere with the accuracy of the unloading compliance method.Alternatively,crack growth can be mea-sured by other methods such as electric potential,but care must be taken to avoid specimen heating when low test temperatures are used.

6.4.3In compact C(T)specimens,displacement measure-ments on the load line are recommended for J determinations. However,the front face position at0.25W in front of the load line can be used with interpolation to load-line displacement, as suggested in

7.1.

6.4.4The extensometer calibrator shall be resettable at each displacement interval within0.0051mm(0.0002in.).Accuracy of the clip gage at test temperature must be demonstrated to be within1%of the working range of the gage.

6.4.5All clip gages used shall have temperature compensa-tion.

6.5Displacement Gages for Bend Bars,SE(B):

6.5.1The SE(B)specimen has two displacement gage locations.A load-line displacement transducer is primarily intended for J computation,but may also be used for calcula-tions of crack size based on elastic compliance,if provision is made to subtract the extra displacement due to the elastic compliance of the?xturing.The load-line gage shall display accuracy of1%over the working range of the gage.The gages used shall not be temperature sensitive.

6.5.2Alternatively,a crack-mouth opening displacement (CMOD)gage can also be used to determine the plastic part of J.However,it is necessary to employ a plastic eta(h p)value developed speci?cally for that position(16)or to infer load-point displacement from mouth opening using an expression that relates the two displacements(17).In either case,the procedure described in9.1.4is used to calculate the plastic part of J.The CMOD position is the most accurate for the compliance method of slow-stable crack growth measurement.

6.5.3Crack growth can be measured by alternative methods such as electric potential,but care must be taken to minimize specimen heating effects in low-temperature tests(see also 6.4.2)(18).

6.6Force Measurement:

6.6.1Testing shall be performed in a machine conforming to Practices of E4-93and E8M-95.Applied force may be measured by any transducer with a noise-to-signal ratio less than1/2000of the transducer signal range.

6.6.2Calibrate force measurement instruments by way of Practice E74-91,10.2.Annual calibration using calibration equipment traceable to the National Institute of Standards and Technology is a mandatory requirement.

6.7Temperature Control—Specimen temperature shall be measured with thermocouple wires and potentiometers.It is recommended that the two thermocouple wires be attached to the specimen surface separately,either by welding,spot weld-ing,or by being affixed mechanically.Mechanical attachment schemes must be veri?ed to provide equivalent temeprature measurement accuracy.The purpose is to use the test material as a part of the thermocouple circuit(see also8.6.1).Accuracy of temperature measurement shall be within3°C of true temperature and repeatability among specimens shall be within 2°C.Precision of measurement shall be61°C or better.The temperature measuring apparatus shall be checked every six months using instruments traceable to the National Institute of Standards and Technology in order to ensure the required accuracy.

7.Specimen Con?guration,Dimensions,and Preparation 7.1Compact Specimens—Three recommended C(T)speci-men designs are shown in Fig.1.One C(T)specimen con?gu-ration is taken from Test Method E399-90;the two with cutout sections are taken from E1820.The latter two designs are modi?ed to permit load-line displacement measurement.Room is provided for attachment of razor blade tips on the load line. Care should be taken to maintain parallel alignment of the blade edges.When front face(at0.25W in front of the load line)displacement measurements are made with the Test Method E399design,the load-line displacement can be inferred by multiplying the measured values by the constant 0.73(19).The ratio of specimen height to width,2H/W is1.2, and this ratio is to be the same for all types and sizes of C(T) specimens.The initial crack size,a o,shall be0.5W60.05W. Specimen width,W,shall be2B.

7.2Disk-shaped Compact Specimens—A recommended DC(T)specimen design is shown in Fig.2.Initial crack size,

a o,shall be0.5W60.05W.Specimen width shall be2B.

7.3Single-edge Notched Bend—The recommended SE(B) specimen designs,shown in Fig.3,are made for use with

a

span-to-width ratio,S/W =4.The width,W,can be either 1B or 2B.The initial crack size,a o ,shall be 0.5W 60.05W.7.4Machined Notch Design —The machined notch plus fatigue crack for all specimens shall lie within the envelope shown in Fig.4.

7.5Specimen Dimension Requirements —The crack front straightness criterion de?ned in 8.9.1must be satis?ed.The specimen remaining ligament,b o ,must have sufficient size to maintain a condition of high crack-front constraint at fracture.The maximum K Jc capacity of a specimen is given by:

K Jc ~limit !5

?

Eb o s ys 30~12v 2!

(1)

where:

s ys =material yield strength at the test temperature.

K Jc data that exceed this requirement may be used in a data censoring procedure.Details of this procedure are described in section 10.2.2for single-temperature data and 10.4.2for multi-temperature data.

7.6Small Specimens —At high values of fracture toughness relative to specimen size and material ?ow properties,the values of K Jc that meet the requirements of Eq 1may not always provide a unique description of the crack-front stress-strain ?elds due to some loss of constraint caused by excessive plastic ?ow (5).This condition may develop in materials

with

N OTE 1—A surfaces shall be perpendicular and parallel as applicable to within 0.002W TIR.

N OTE 2—The intersection of the crack starter notch tips with the two specimen surfaces shall be equally distant from the top and bottom extremes of the disk within 0.005W TIR.

N OTE 3—Integral or attached knife edges for clip gage attachment may be used.See also Fig.6,Test Method E 399.

FIG.2Disk-shaped Compact Specimen DC(T)Standard

Proportions

N OTE 1—All surfaces shall be perpendicular and parallel within 0.001W TIR;surface ?nish 64v.N OTE 2—Crack starter notch shall be perpendicular to specimen surfaces to within 62°.

FIG.3Recommended Bend Bar Specimen

Design

low starin hardening.When this occurs,the highest K Jc values of the valid data set could possibly cause the value of T o to be lower than the value that would be obtained from testing speciemens with higher constraint.

7.7Side Grooves —Side grooves are optional.Precracking prior to side-grooving is recommended,despite the fact that crack growth on the surfaces might be slightly behind.Speci-mens may be side-grooved after precracking to decrease the curvature of the initial crack front.In fact,side-grooving may be indispensable as a means for controlling crack front straightness in bend bars of square cross section.The total side-grooved depth shall not exceed 0.25B.Side grooves with an included angle of 45°and a root radius of 0.560.2mm (0.0260.01in.)usually produce the desired results.

7.8Precracking —All specimens shall be precracked in the ?nal heat treated condition.The length of the fatigue precrack extension shall not be less than 5%of the total crack size.Precracking may include two stages—crack initiation and ?nish sharpening of the crack tip.To avoid growth retardation from a single unloading step,intermediate levels of load shedding can be added,if desired.One intermediate level usually suffices.To initiate fatigue crack growth from a machined notch,use K max /E =0.00013m 1/2(0.00083in.1/2)65%.4Stress ratio,R,shall be controlled within the following range:0.01

?nish sharpening is to be 0.000096m 1/2(0.0006in.1/2)65%and stress ratio shall be maintained in the range 0.01

8.Procedure

8.1Testing Procedure —The objective of the procedure described here is to determine the J -integral at the point of crack instability,J c .Crack growth can be measured by partial unloading compliance,or by any other method that has precision and accuracy,as de?ned below.However,the J -integral is not corrected for slow-stable crack growth in this test method.

8.2Test Preparation —Prior to each test,certain specimen dimensions should be measured,the clip gage checked,and the starting crack size estimated from the average of the optical side face measurements.5

8.2.1The dimensions B,B N ,and W shall be measured to within 0.05mm (0.002in.)accuracy or 0.5%,whichever is larger.

4

Elastic (Young’s)modulus,E,in units of MPa will result in K max in units of MPa =m.Elastic (Young’s)modulus,E,in units of ksi will result in K max in units of ksi =in.

5

When side-grooving is to be used,?rst precrack without side grooves and optically measure the fatigue crack growth on both

surfaces.

N OTE 1—Notch width need not be less than 1.6mm (1?16in.)but not exceed W/16.

N OTE 2—The intersection of the crack starter surfaces with the two specimen faces shall be equidistant from the top and bottom edges of the specimen within 0.005W.

FIG.4Envelope Crack Starter

Notches

8.2.2Because most tests conducted under this method will terminate in specimen instability,clip gages tend to be abused,thus they shall be examined for damage after each test and checked electronically before each test.Clip gages shall be calibrated at the beginning of each day of use,using an extensometer calibrator as speci?ed in 6.4.4.

8.2.3Follow Test Method E 1820,8.5for crack size mea-surement,8.3.2for testing compact specimens and 8.3.1for testing bend specimens.

8.3The required minimum number of valid K Jc tests is speci?ed according to the value of K Jc(med).See also 8.5.8.4Test Temperature Selection —It is recommended that the selected temperature be close to that at which the K Jc(med)values will be about 100MPa =m for the specimen size selected.Charpy V-notch data can be used as an aid for predicting a viable test temperature.If a Charpy transition temperature,T CVN ,is known corresponding to a 28J Charpy V-notch energy or a 41J Charpy V-notch energy,a constant C can be chosen from Table 1corresponding to the test specimen size (de?ned in 3.3.15),and used to estimate 6the test tempera-ture from (12,20).

T 5T CVN 1C

(2)

TABLE 1Constants for Test Temperature Selection Based on

Charpy Results

Specimen Size,

(nT )

Constant C (°C)28J 41J 0.4A ?32?380.5?28?341?18?242?8?143?1?74

2

?4

A

For precracked Charpy specimens,use C =?50or ?56°C.

8.4.1This correlation is only appropriate for determining an initial test temperature.The iterative scheme described in 10.4.3may be necessary to re?ne this test temperature in order to increase T o accuracy.Testing below the temperature speci-?ed in Eq 2may be appropriate for low upper-shelf toughness materials to avoid crack growth,and for low yield strength materials to avoid specimen size invalidity (Eq 1).7

8.5Testing Below Temperature,T o —When the equivalent value of K Jc(med)for 1T specimens is greater than 83MPa =m,the required number of valid K Jc values to perform the analyses covered in Section 10is six.However,small specimens such as precracked Charpy specimens (Test Method E 812)can de-velop excessive numbers of invalid K Jc values by Eq 1when testing close to the T o temperature.In such cases it is advisable to test at temperatures below T o ,where most,if not all,K Jc data developed can be valid.The disadvantage here is that the uncertainty in T o determination increases as the lower-shelf toughness is approached.This increase in uncertainty can be countered by testing more specimens thereby increasing the K Jc(med)accuracy.Table 2establishes the number of valid K Jc test results required to evaluate T o according to this test method.If

K Jc(med)of a data set is lower than 58MPa =m,then the T o determination using that data set shall not be allowed.

TABLE 2Number of Valid K Jc Test Results Required to Evaluate

T o

(T ?T o )i range

(°C)K Jc(med)range A

(MPa =m)Number of valid K Jc required

Possible number of invalid tests by Eq 1B

50to ?14212to 8463?15to ?3583to 6671?36to ?50

65to 58

8

A Convert K Jc(med)equivalence using Eq.16.Round off to nearest whole digit.B

Established speci?cally for precracked Charpy https://www.wendangku.net/doc/5513422075.html,e this column for total specimen needs.

8.6Specimen Test Temperature Control and Measurement —For tests at temperatures other than ambient,any suitable means (liquid,gas vapor,or radiant heat)may be used to cool or heat the specimens,provided the region near the crack tip can be maintained at the desired temperature as de?ned in 6.7during the conduct of the test.

8.6.1The most dependable method of monitoring test tem-perature is to weld or spot weld each thermocouple wire separately to the specimen,spaced across the crack plane.The specimen provides the electrical continuity between the two thermocouple wires,and spacing should be enough not to raise any question of possible interference with crack tip deforma-tion processes.Alternative attachment methods can be me-chanical types such as drilled hole,or by a ?rm mechanical holding device so long as the attachment method is veri?ed for accuracy and these practices do not disturb the crack tip stress ?eld of the specimen during loading.

8.6.2To verify that the specimen is properly seated into the loading device and that the clip gage is properly seated,repeated preloading and unloading in the linear elastic range shall be applied.Load and unload the specimen between loads of 0.2P max and P max (where P max is the top precracking load of the ?nishing cycles)at least three times.Check the calcu-lated crack size from each unloading slope against the average precrack size de?ned in 8.2.Refer also to Test Method E 1820,Eq.A2.12for C(T)specimens and to Eq.A1.10for SE(B)specimens.Be aware that ice buildup at the loading clevis hole between tests can affect accuracy.Therefore,the loading pins and devices should be dried before each test.For working-in ?xtures,the elastic modulus to be used should be the nominally known value,E ,for the material,and for side-grooved speci-mens,the effective thickness for compliance calculations is de?ned as:

B e 5B N ~2–B N /B !

(3)

8.6.3For J calculations in Section 9,B N is used as the thickness dimension.All calculated crack sizes should be within 10%of the visual average and replicate determinations within 1%of each other.If the repeatability of determination is outside this limit,the test setup is suspect and should be thoroughly rechecked.After working-in the test ?xtures,the load shall be returned to the lowest practical value at which the ?xture alignment can be maintained.

8.7Testing for K Jc —All tests shall be conducted under displacement control.Load versus load-point displacement measurements shall be recorded.Periodic partial unloading can

6Standard deviation on this estimate has been determined to be 15°C.7

Data validation is covered in 8.9.2and Section

10.

be used to determine the extent of slow-stable crack growth if it occurs.Alternative methods of measuring crack extension, for example the potential drop method,can be used(18).If displacement measurements are made at a location other than at the load point,the ability to infer load point displacement within2%of the absolute values shall be demonstrated.In the case of the front face for compact specimens(7.1),this requirement has been sufficiently proven so that no demonstra-tion is required.For bend bars,see6.5.2.Crack size prediction from partial unloading slopes at a different location will require different compliance calibration equations than those recom-mended in8.6.2.Table2in Practice E561-92a contains equations that de?ne compliance for other locations on the compact specimen.

8.7.1Load specimens at a rate such that the time of loading taken to reach load P M lies between0.1and10min.P M is nominally40%of limit load;see Test Method E1820,Eqs. A1.1and A2.1.The crosshead speed during periodic partial unloadings may be as slow as needed to accurately estimate crack growth,but shall not be faster than the rate speci?ed for loading.

8.7.2Partial unloadings that are initiated between load levels P M and1.5P M can be used to establish an“effective”elastic modulus,E e,such that the modulus-normalized elastic compliance predicts an initial crack size within0.001W of the actual initial crack size.The resulting E e should not differ from an expected or theoretical E of the material by more than10% (see also Practice E561-92a,Section10).A minimum of two such unloadings should be made and the slopes should be repeatable within1%of the mean value.Slow-stable crack growth usually develops at loads well above1.5P M and the spacing of partial unloadings depends on judgement.As an aim,every0.01a o increment of crack growth is https://www.wendangku.net/doc/5513422075.html,e E e in place of E and B e for thickness to calculate crack growth.

8.8Test Termination—After completion of the test,opti-cally measure initial crack size and the extent of slow-stable crack growth or crack extension due to crack pop-in,or both, when applicable.

8.8.1When the failure event is full cleavage fracture, determine the initial fatigue precrack size,a o,as follows: measure the crack length at nine equally spaced points centered about the specimen centerline and extending to0.01B from the free surfaces of plane sided specimens or near the side groove roots on side grooved specimens.Average the two near-surface measurements and combine the average of these two readings with the remaining seven crack measurements.Determine the average of those eight values.Measure the extent of slow-stable crack growth if it develops applying the same procedure. The measuring instruments shall have an accuracy of0.025 mm(0.001in.).

8.9Quali?cation of Data:

8.9.1The K Jc datum shall be considered a non-test and discarded if any of the nine physical measurements of the starting crack size differ by more than5%of thickness dimension,B,or0.5mm,whichever is larger,from the average de?ned in8.8.1.

8.9.2A K Jc datum is invalid if the specimen exceeds K Jc(limit)requirement of7.5,or if a test has been discontinued at a value of K J without cleavage fracture after surpassing K Jc(limit).For tests that terminate in cleavage after more than 0.05(W?a o)or1mm(0.040in.),whichever is smaller,of slow-stable crack growth,corresponding to the longest crack length dimension measured by section8.8.1,resulting K Jc value also shall be regarded as invalid.Should both the K Jc(limit)and the maximum crack growth validity criteria be violated,the lower value of the two shall prevail for data censoring purposes.When K J or K Jc values are invalid,these data contain statistically useable information that can be applied as censored data in10.2.2or10.4.2as appropriate.

8.9.3For any test terminated with no cleavage fracture,and for which the?nal K J value does not exceed either validity limit,cited in8.9.2,the test record is judged to be a nontest,the result of which shall be discarded.

8.9.4Data sets that contain all valid K Jc values can be used without modi?cation in Section10.Data sets that contain some invalid data but that meet the requirements of8.5can be used with data censoring(10.2.2).Remedies for excessive invalid data include(1)testing at a lower test temperature,(2)testing with larger specimens,or(3)testing more specimens to satisfy the minimum data requirements.

8.9.5A discontinuity in a load-displacement record,that may be accompanied by a distinct sound like a click emanating from the test specimen,is probably a pop-in event.All pop-in crack initiation K values for cracks that advance by a cleavage-driven mechanism are to be regarded as eligible K Jc data.It is recognized that test equipment can at times introduce false pop-in indications in test records.If a questionable discontinu-ity develops,stop the loading as soon as possible and assess the compliance ratio by9.2.If the compliance change leads to a ratio calculated by9.2that is greater than the calculated ratio corresponding to more than a1%increase in crack size,the recommended practice is to assume that a pop-in event has occurred and to terminate the test,followed by heat tinting and breaking the specimen open at liquid nitrogen temperature. Measure the initial crack size and calculate K Jc,for the pop-in load,based on that crack size.Measure the post pop-in crack size visually and record it.If there is no evidence of crack extension by cleavage,then the K Jc value at the discontinuity point is not a part of the K Jc data distribution.

9.Calculations

9.1Determine the J-integral at onset of cleavage fracture as the sum of elastic and plastic components:

J c5J e1J p(4) 9.1.1For compact specimens,C(T),the elastic component of J is calculated as follows:

J e5

~12v2!K e2

E(5) where:

K e=[P/(BB N W)1/2]f(a o/W),

f~a o/W!5

~21a o/W!

~1–a o/W!3/2

@0.88614.64~a o/W!–13.32~a o/W!2

114.72~a o/W!3–5.6~a o/W!4#,(6) and a o=initial crack

size.

9.1.2For disk-shaped compact specimens,DC(T),the elas-tic component of J is calculated as follows:

J e 5~12v 2!K e

2E

(7)

where:

K e =[P/(BB N W)1/2]f (a o /W ),

f ~a o /W !5

~21a o /W !

~1–a o /W !3/2

@0.7614.8~a o /W !–11.58~a o /W !

2

111.43~a o /W !3–4.08~a o /W !4#,

(8)

and a o =initial crack size.

9.1.3For SE(B)specimens of both B 3B and B 32B cross sections and span-to-width ratios of 4,the elastic component of J is calculated as follows:

J e 5

~12v 2!K e

2E

(9)

where:

K e ={PS /[(BB N )1/2W 3/2]}f (a o /W ),

f ~a o /W !5

3~a o /W !1/2

2[112~a o /W !#

1.99–~a o /W !~1–a o /W !@

2.15–

3.93~a o /W !12.7~a o /W !2#

~1–a o /W !,

(10)

and a o =the initial crack size.

9.1.4The plastic component of J is calculated as follows:

J p 5h A p

B N b

o

(11)

where:

A p =A –1/2C o P 2,A =A e +A p (see Fig.5),

C o =reciprocal of the initial elastic slope,V/P (Fig.5),

and

b o =initial remaining ligament.

9.1.4.1For standard and disk-shaped compact specimens,A p is based on load-line displacement (LLD)and h =2+0.522b o /W .For bend bar specimens of both B 3B and B 32B cross sections and span-to-width ratios of 4,A p may be based on

either LLD or crack-mouth opening displacement (CMOD).Using LLD,h =1.9.Values of h for bend bars based on CMOD are discussed in 6.5.2.

9.1.5K Jc is determined for each datum from J at onset of cleavage fracture,J c .Assume plane strain for elastic modulus,E:

K Jc 5

?

J c

E 12v 2

(12)

9.1.6All data with K Jc in excess of the limits prescribed in 8.9.2are considered invalid,but values can be used in the censoring analysis that is described in 10.2.2or 10.4.2as appropriate.Invalid data developed as a part of a data set disquali?es that data set for analysis by 10.2.1.

9.2Pop-in Evaluation —Test records that can be used for K Jc analyses are those that show complete specimen separation due to cleavage fracture and those that show pop-in.If a load-displacement record shows a small but perceptible dis-continuity without the audible click of the typical pop-in,a mid-test decision will be needed.Following Fig.6,determine the post pop-in to initial compliance ratio,C i /C o ,and compare this to the value of the right-hand side of the following inequality which implies that a pop-in has occurred:

C i C o .F 110.01h S

W a o –1

D –1

G

(13)

where:

a o =nominal initial crack size (high accuracy on dimen-sion a o is not required here),and

h =parameter based on LLD de?ned in 9.1.4.1.

Eq 13involves the use,by approximation,of the plastic parameter,h ,in an otherwise elastic equation,as suggested in Test Method E 1820.When a o /W =0.5,C i /C o shall be greater than 1.02,to follow the pop-in evaluation procedure prescribed in 8.9.5.

9.3Outlier —Occasionally,an individual K Jc datum will appear to deviate greatly from the remainder of the data set.The impact and character of this datum can be evaluated as follows.First determine the 2%and 98%tolerance bounds using the equations

below:

FIG.5De?nition of the Plastic Area for J p

Calculations

K Jc ~0.02!50.415K Jc ~med !111.70MPa =m (14)

K Jc ~0.98!51.547K Jc ~med !210.94MPa =m

If the suspected datum is outside the tolerance bounds dictated by Eqs.(14)(for example,K Jc K Jc (0.98))it may be possible to reduce the in?uence of the outlier datum on K Jc(med)by testing additional specimens.Typically,a total of 12replicate specimens is sufficient.However,outliers shall not be discarded from the data utilized to calculate K Jc(med).The emergence of additional outliers may indicate that the test material is not homogenious.

10.Prediction of Size Effects and Transition Temperature 10.1Weibull Fitting of Data Sets :

10.1.1Test Replication —A data set consists of at least six valid replicate test results determined at one test temperature,or the equivalent thereof;see also 8.5for single temperature and 10.4for multi-temperature requirements.

10.1.2Determination of Scale Parameter,K o ,and median K [K Jc(med)]—The three-parameter Weibull model is used to de?ne the relationship between K Jc and the cumulative prob-ability for failure,p f .The term p f is the probability for failure at or before K Jc for an arbitrarily chosen specimen taken from a large population of specimens.Data samples of six or more specimens are used to estimate the true value of scale param-eter,K o ,for the following Weibull model:

p f 51–exp $–[~K Jc –K min !/~K o –K min !#b %

(15)

10.1.3Ferritic steels of yield strengths ranging from 275to 825MPa (40to 120ksi)will have fracture toughness cumu-

lative probability distributions of nearly the same shape,independent of specimen size and test temperature,when K min is set at 20MPa =m (18.2ksi =in.).The shape of the distribution is de?ned by the Weibull exponent,b ,which tends to be near 4.Scale parameter,K o ,is the data ?tting parameter determined when using the maximum likelihood statistical method of data ?tting (21).When K Jc and K o in Eq.15are equal,P f =0.632.

10.1.4Size Effect Predicitons —The statistical weakest-link theory is used to model specimen size effect in the transition range between lower shelf and upper shelf fracture toughness.The following Eq.16can be used to size adjust individual K Jc values,K Jc(med),or K o .K Jc serves as the example case:

K Jc ~x !5K min 1[K Jc ~o !–K min #S B o

B

x

D

1/4

(16)

where:

K Jc(o)=K Jc for a specimen size B o ,

B o

=gross thickness of test specimens (side grooves ignored),

B x

=gross thickness of prediction (side grooves ig-nored),and

K min

=20MPa =m (18.2ksi =in.).10.2The recommendation advanced by this standard test method is to perform K Jc data replication at a single test temperature,as near as possible to an estimated T o temperature.However,all data obtained at temperatures within the range ?50oC #(T ?T o )#50oC shall be considered in the determi-nation of T o .Therefore,if testing is performed at more than

one

FIG.6Schematic of Pop-in Magnitude

Evaluation

temperature,the multi-temperature procedure described in 10.4.2shall be used.In this case,the combination of valid specimen numbers and test temperatures shall satisfy Eq.(22) in10.4.1.Iteration in terms of testing additional specimens may be required.For single-temperature tests,use8.4or8.5for test temperature estimation assistance.The following sections 10.2.1and10.2.2can be used to calculate the scale parameter, K o,for data developed at a single test temperature and consisting of at least six valid K Jc values,or the equivalent thereof,see also8.5.Data sets containing only valid data(as de?ned in8.9.2)shall be analyzed as per10.2.1.Paragraph 10.2.2shall be applied if any invalid data(as de?ned in8.9.2) exist.

10.2.1Determination of K o with all Valid Data—If the data are generated from specimens of other than1T size,the data must?rst be converted to1T size equivalence using Eq.(16) (see section3.3.15).The following Eq.(17)shall be then

applied to determine K o:

K o5F(i51N~K Jc~i!–K min!4N G1/41K min(17)

where:

N=number of specimens tested as de?ned in8.9,and K min=20MPa=m(18.2ksi=in.).

See X1.2for an example solution.

10.2.2Determination of K o with Censored Data—Replace all invlaid K Jc values(8.9.2)with dummy K Jc values.If invalidity was due to violation of K Jc(limit),Eq.(1),the experimental K Jc value shall be replaced by K Jc(limit)for the specimen size https://www.wendangku.net/doc/5513422075.html,e the material yield strength at the test temperature.In the case of K Jc invalidity due to exceeding the 0.05(W?a o)or1-mm(0.04-in.)limitation on stable crack growth(8.9.2),the K Jc test value shall be replaced with the highest valid K Jc in the data set for any specimen size.The Weibull scale parameter,K o,shall be calculated using the following Eq.(18),in which all K Jc(i)and dummy values for specimens other than1T size are converted to1T size equiva-lence,using Eq.(16).See section3.3.15and X1.3for example

solution.

K o5F(i51N~K Jc~i!–K min!4r G1/41K min(18)

where:

r=number of valid data as de?ned in8.9,

K min=20MPa=m(18.2ksi=in.),and

N=number of data(valid and invlaid).

10.2.3K o to K Jc(med)Conversion—The scale parameter,K o calculated according to either,10.2.1or10.2.2,corresponds to a63%cumulative probability level for specimen failure by cleavage.The median K Jc of a data population corresponds to 50%cumulative probability for fracture and K Jc(med)can be determined from K o using the following:

K Jc~med!5K min1~K o2K min![1n~2!#1/4(19) where:

K min=20MPa=m(18.2ksi=in.).

10.3Establishment of a Transition Temperature Curve (Master Curve)—Transition temperature K Jc data tend to con-form to a common toughness versus temperature curve shape in the same manner as the ASME K lc and K IR lower-bound design curves(21,22).For this method,the shape of the median K Jc toughness,K Jc(med),for1T specimens(3.3.15)is described by:

K Jc~med!530170exp[0.019~T–T o!#,MPa=m,(20) where:

T=test temperature(°C),and

T o=reference temperature(°C).

10.3.1Master curve positioning involves the determination of T o using the computational steps presented below.

10.3.2Determine Reference Temperature(T o)—Use only 1T K Jc(med)values,converted by Eq.16if necessary.

T o5T–S10.019

D ln F K Jc~med!–3070G(21)

Units of K Jc(med)are in MPa=m;units of T o are in°C. 10.4Multi-temperature Option—The reference tempera-ture,T o,should be relatively independent of the test tempera-ture that has been selected.Hence,data that are distributed over a restricted temperature range,namely T o650oC,can be used to determine T o.As it is with the single test temperature option, a minimum of six valid K Jc data(8.9.2)or the equivalence,by weight factor,described in10.4.1below is required.In the case of data generated at test temperatures from14oC below T o to 50oC above T o,the minimum requirement of six valid data will be satisfactory.

10.4.1Data generated at test temperatures in the range of T o -50to T o-14°C are considered to make reduced accuracy contribution to T o determinations.As a consequence,more data development within the aforementioned temperature range is required.The following weighting system speci?es the re-quired number of data:

(

i51

3

r i n i$1(22)

where r i is the number of valid specimens within the i-th temperature range,(T?T o),and n i is the specimen weighting factor for the same temperature range as shown in Table3.

10.4.2All K Jc data,including valid and dummy values resulting from Eq.1violation at each test temperature,must ?rst be converted to1T equivalence using Eq.16.If the slow-stable crack growth limitation is violated as speci?ed in 8.9.2,the highest valid K Jc shall be used for censoring.The K Jc(limit)in8.9.2shall be chosen from data at any temperature as this value should be largely temperature insensitive.Also this value is specimen-size-independent and size correction of this limit shall not be performed.The K J value corresponding to J Ic also can be used for crack growth censoring if J Ic is

TABLE3Weight Factors for Multi-Temperature Analysis

(T?T o)range A

(°C)

1T K Jc(med)range A

(MPa=m)

Weight factor

n i 50to?14212to841/6

?15to?3583to661/7

?36to?5065to581/8

A Rounded off to the closest

integer.

known for the test material.The following equality shall be used to determine T o for tests made at varied temperatures (21,23):

(i 51N

d i exp [0.019~T i 2T o

!#

11177exp [0.019~T i 2T o !#(23)

2(i 51N

~K Jc ~i !220!4exp [0.019~T i 2T o !#

$11177exp [0.019~T i 2T o !#%

550where:

N =number of specimens tested,T i =test temperature corresponding to K Jc(i),

K Jc(i)=either a valid K Jc datum or dummy value substitute

for an invalid datum (section 8.9.2).All K Jc input values,valid or dummy K Jc ,must be converted to 1T equivalence (section 3.3.15)before entry,d i

= 1.0if the datum is valid or zero if the datum is a dummy substitute value,

11=integer equivalent of 10/(ln2)1/4MPa =m,and 77=integer equivalent of 70/(ln2)1/4MPa =m.Solve Eq.23for T o temperature by iteration.

10.4.3Since the valid test temperature range is only known after T o has been determined,the following iterative scheme may be helpful for identifying proper test temperature.Choose an initial test temperatures as described within 8.4using the value of “C”appropriate for the test specimen size.Conduct 3-4valid tests at this temperature and evaluate a preliminary T o value using 10.2to determine K o .Base all subsequent test temperatures on this preliminary value of T o .See Appendix X3for an example solution.

10.4.4Certain multi-temperature data sets may result in an oscillating iteration between two (or more)distinct T o values upon satisfying the T o 650°C limit of 10.4.In these instances,the T o value reported shall be the average of the calculated values.One example is for hypothetical data with toughness values such that the initial T o estimation requires that data at one temperature be excluded.The second iteration then results in the inclusion of this same data.Subsequent T o iterations will then oscillate between the original ?rst and second estimations.This phenomenon is more likely for sparse data sets when test results exist near the T o 650°C limit.More testing near the average T o will likely resolve this problem.

10.5K Jc values that are developed using specimens or test practices or both,that do not conform to the requirements of this method can be used to establish the temperature of 100MPa =m fracture toughness.Such temperatures shall be re-ferred to as T Q .Currently existing experimental evidence indicates that data populations developed without the con-trolled constraint conditions required by the present standard method are apt to have Weibull slopes that are other than 4and,as such,the use of the equations provided here and the use of the master curve toughness trend to determine T Q is not technically justi?able.Hence,values of T Q are of use for unique circumstances only and are not to be regarded as provisional values of T o .

10.6Uses for Master Curve —The master curve can be used to de?ne a transition temperature shift related to metallurgical damage mechanisms.Fixed values of Weibull slope and median K Jc de?ne the standard deviation;hence the represen-

tation of data scatter.This information can be used to calculate tolerance bounds on toughness,for the specimen reference size chosen.The data scatter characteristics modeled here can also be of use in probabilistic fracture mechanics analysis,bearing in mind that the master curve pertains to a 1T size specimen.The master curve determined by this procedure pertains to cleavage fracture behavior of ferritic steels.Extensive ductile tearing beyond the validity limit set in 8.9.2,may precede cleavage as the upper-shelf range of temperature is approached.Such data can be characterized by separate methods (see Test Method E 1820).

11.Report

11.1Report the following information:

11.1.1Specimen type,specimen thickness,B ,net thickness,B N ,specimen width,W ,

11.1.2Specimen initial crack size,

11.1.3Visually measured slow-stable crack growth to fail-ure,if evident,

11.1.4Crack plane orientation according to Terminology E 1823,

11.1.5Test temperature,

11.1.6Number of valid specimens and total number of specimens tested at each temperature,

11.1.7Crack pop-in and compliance ratio,C i /C o ,11.1.8Material yield strength and tensile strength,

11.1.9The location of displacement measurement used to obtain the plastic component of J (load-line or crack-mouth),11.1.10A list of individual K Jc values and the median K Jc(med)(MPa =m)obtained from that list,

11.1.11Reference temperature on master curve,T o (°C),11.1.12Fatigue precracking condition in terms of K max for the last 0.64mm (0.025in.)of precrack growth,and

11.1.13Difference between maximum and minimum crack length measurement expressed as a percentage of the initial crack size.

11.2The report may contain the following supplementary information:

11.2.1Specimen identi?cation codes,

11.2.2Measured pop-in crack extensions,and 11.2.3Load-displacement records.

12.Precision and Bias

12.1Precision —The variability of material toughness in the transition range is an accepted fact and the modeling of the data scatter is an integral feature of this test procedure.It has been observed that when K min of 20MPa =m is used as a determin-istic parameter in the three-parameter Weibull statistical model,K Jc data distributions will tend to display a Weibull slope of approximately 4.Small sample sizes,such as required by 8.5,are prone at times to show slopes that vary randomly above and below 4,but such behavior does not necessarily indicate a lack-of-precision problem.This variability becomes small only with extremely large sets of specimens (11).Despite slope variations with sample sizes,the median K Jc will be within 20%of the true median of the full data population and it is this value that is used to establish the reference temperature,T o .The number of specimens required by this standard is increased for tests performed at temperatures below T o .Tests that

use

more than the minimum number of six specimens have increased precision of K Jc(med)determination.This is required at test temperatures approaching lower shelf where more precision is needed to maintain an equal uncertainty level in the T o determination.If reference temperatures,T o,are calculated from K Jc(med)values determined at several test temperatures, some scatter can be expected.The standard deviation of this scatter is de?ned by Eq X4.1in Appendix X4.Eq X4.3solved using the sample size required for validity and applied with a standard normal deviate for85%con?dence suggests that T o values determined at different temperatures can be expected to be within a scatter band of20°C(15,22).

12.2Bias—As discussed in1.3,there is an expected bias among T o values as a function of the standard specimen type.The bias size is expected to increase inversely to the strain hardening ability of the test material at a given yield strength. On average,T o values obtained from C(T)specimens are higher than T o values obtained from SE(B)specimens.Best estimate comparison indicates that the average difference between C(T)and SE(B)-derived T o values is approximately 10°C(2).C(T)and SE(B)T o differences up to15°C have also been recorded(3).However,comparisons of individual,small datasets may not necessarily reveal this average trend.Datasets which contain both C(T)and SE(B)specimens may generate T o results which fall between the T o values calculated using solely C(T)or SE(B)specimens.

APPENDIXES

(Nonmandatory Information)

X1.WEIBULL FITTING OF DATA

X1.1Description of the Weibull Model:

X1.1.1The three-parameter Weibull model is used to?t the

relationship between K Jc and the cumulative probability for

failure,p f.The term p f is the probability for failure at or before

K Jc for an arbitrarily chosen specimen from the population of

specimens.This can be calculated from the following:

p f51–exp$–[~K Jc–K min!/~K o–K min!#b%(X1.1)

X1.1.2Ferritic steels of yield strengths ranging from275to

825MPa(40to120ksi)will have fracture toughness distri-

butions of nearly the same shape when K min is set at20

MPa=m(18.2ksi=in.).This shape is de?ned by the Weibull

exponent,b,which is constant at4.Scale parameter,K o,is a

data-?tting parameter.The procedure is described in X1.2.

X1.2Determination of Scale Parameter,K o,and Median

K Jc—The following example illustrates the use of10.2.1.The

data came from tests that used4T compact specimens of A533

grade B steel tested at-75°C.All data are valid and the chosen

equivalent specimen size for analysis will be1T.

Rank (i)

K Jc(4T)

(MPa=m)

K Jc(1T)

Equivalent

(MPa=m)

159.175.3 268.388.3 377.9101.9 497.9130.2 5100.9134.4 6112.4150.7

K o~1T!5F(i51N~K Jc~i!–20!4N G1/4120(X1.2)

N56

K o~1T!5123.4MPa=m

X1.2.1Median K Jc is obtained as follows:

K Jc~med!5201~K o~1T!–20!~0.9124!MPa=m(X1.3)

5114.4MPa=m

X1.2.2

T o5T2S10.019

D ln F K Jc~med!23070G(X1.4)

5285°C

X1.3Data Censoring Using the Maximum Likelihood Method:

X1.3.1Censoring When K Jc(limit)is Violated—The follow-ing example uses10.2.2where all tests have been made at one test temperature.The example data set is arti?cially generated for a material that has a T o reference temperature of0°C.Two specimen sizes are1/2T and1T with six specimens of each size.Invalid K Jc values and their dummy replacement K Jc(limit) values will be within parentheses.

X1.3.2The data distribution is developed with the follow-ing assumptions:

Material yield strength=482MPa or70ksi

T o temperature=0°C

Test temperature=38°C

1/2T and1T specimens;all a/W=0.5

X1.3.3K Jc(limit)values in MPa=m from Eq.1.

0.5T1T

Specimen size206291

1T equivalent176291

X1.3.4Simulated Data Set:

Raw Data

(K Jc,MPa=m)

Size Adjusted

(K Jc(1T),MPa=m) 1/2T1T1/2T A1T

138.8119.9119.9119.9

171.8147.6147.6147.6

195.2167.3167.3167.3

(216.2)185.0(176)185.0

(238.5)203.7(176)203.7

(268.3)228.8(176)228.8

A K

Jc(1T)

=(K Jc(0.5T)

?20)(1/2/1)1/4+20MPa=m

K o ~1T !5[(i 51

N

~K Jc ~i !220!4r #1/4

120(X1.5)

where:N =12,r =9,

K o(1T)

=188MPa =m,K Jc(med)

=174MPa =m,and T o =0°C.

X1.3.5Censoring When D a p #0.05(W ?a p ),not to Exceed 1mm Limit is Violated —The following example uses 10.2.2where all tests have been made at a single test temperature of 38°C.Assume that the test material has properties as de?ned in X1.3.2and toughness data as de?ned in X1.3.4.However,for this example assume that the steel has a low upper shelf.The crack growth limit (see 8.9.2)is 0.64mm and 1mm for 0.5T and 1T specimen respectively.The K J value after 0.64mm of slow-stable growth is only 197MPa =m and after 1mm of slow-stable growth is only 202MPa =m.Therefore,the crack growth limit controls all censoring.The K j ?R curve is speci-men size independent so that both 0.5T and 1T specimens will have censored data.In this case the dummy replacement value as per 10.2.2is the highest ranked valid K Jc value.

Raw Data

1T Size Adjusted Data 0.5T

1T

0.5T A

1T

D a p ,

mm K Jc ,Mpa =m D a p ,mm K Jc ,Mpa =m K Jc ,Mpa =m 0.00138.80.00119.9119.9119.90.25171.80.15147.6147.6147.60.50195.20.20167.3167.3167.30.67(216.2)0.55185.0(167.3)1850.70(238.5) 1.10(203.7)(167.3)(185)0.71

(268.3)

1.15

(228.8)

(167.3)

(185)

A

K Jc(1T)=K Jc(0.5T)?20)·(0.5/1)1/4+20Mpa =m

K o ~1T !5F

(i 51

N

~K Jc ~i !220!4

r G

1/4

120(X1.6)

where:

N =12,r =7,

K o(1T)=186MPa =m,K Jc(med)=171MPa =m,and T o

=1°C.

X2.MASTER CURVE FIT TO DATA

X2.1Select Test Temperature (see 8.4):X2.1.1Six 1?2T compact specimens,X2.1.2A 533grade B base metal,and X2.1.3Test temperature,T =–75°C.

X2.2In this data set,there are no censored data.

Rank (i )K Jc(1/2T)(MPa =m)K Jc(1T)Equivalent (MPa =m)191.480.02103.189.93120.3104.34133.5115.45144.4124.66

164.0

141.1

X2.3Determine K o using Eq X1.2:K o(1T)=115.8MPa =m,and

K Jc(med)=[ln(2)]1/4(K o –20)+20=107.4MPa =m.X2.4Position Master Curve :

T o 5T –~0.019!–1ln [~K Jc ~med !–30!/70](X2.1)

5–75–ln @~108.5–30!/70]/0.0195–80°C.

X2.5Master Curve :

K Jc ~med !530170exp[0.019~T 180!#

(X2.2)

X2.5.1See Fig.

X2.1.

X3.EXAMPLE MULTITEMPERATURE T o DETERMINATION

X3.1Material:A533Grade B plate Quenched and tempered

900°C WQ;and 440°C (5h)temper X3.2Mechanical Properties:Yield strength:641MPa (93ksi)Tensile strength:870MPa (117.5ksi)Charpy V:

28-J temperature =?5°C (23°F)41-J temperature =16°C (61°F)NDT:41°C (106°F)X3.3K Jc Limit Values:Specimen Types:

1/2T C(T)with a o /W =0.51T SE(B)with a o /W =0.5

Test Temperature

(°C)

Yield Strength (MPa)K Jc(limit)(MPa =m)1/2T 1T ?10651239338?5649238337064823833723

641

237

335

X3.4Slow-stable Crack Growth Limits:

K Jc ~1mm !5263MPa =m for 1T SE ~B !specimen;K Jc ~0.64mm !5255MPa =m for 1/2T C ~T !specimen

X3.5Estimation Procedure #1from Charpy Curve:

T o ~est !5T 28J 1C 525°218°5223°C

T o ~est !5T 41J 1C 516°224°528°C

Conduct four 1T SE(B)tests at ?20°C.

X3.6T o Estimation Procedure #2from Results of First Four Tests:

First four tests at ?20°C:

K Jc ,MPa =m

135.1108.9177.1141.7

Calculate preliminary T o(est)#2from data to determine allow-able test temperature range:

K Jc ~med !5137MPa =m ;T 0~est !#25242°C

Estimated temperature range or usable data:

5T 0~est !#2650°C 5292°C ,T i ,18°C

Now conduct additional testing within this range for T o determination.

X3.7Calculation of T o (Eq.23):

Use data between ?92°C and 8°C based on T o(est)#2

T o 5248°C

The valid test temeprature range is ?98°C to 2°C.Original claculations were performed with data in this regime.

There-fore,no iteration is required.

N OTE 1—Toughness data are converted to 1T equivalence.

FIG.X2.1Master Curve for 1T Specimens Based on

1/2T Data Tabulated in Step X2.2

X3.8Quali?ed Data Summation:

(T ?T o )range

(°C)Number of valid tests,r i

Weight factor,n i

r i ·n i 50to ?14431/67.2?15to ?3551/70.7?36to ?50

1/8

Validity check:

S r i n i 57.9.1.0

TABLE X3.1Data Tabulation

Test temperature,

(°C)Specimen K Jc

(MPa =m)

d j

Type Size Raw data 1T equivalent ?130

C(T)

1/2T

59.553.2185.174.7155.349.7156.450.61?80C(T)1/2T

51.346.3187.977.11113.498.51?65SE(B)1T 73.973.91126.8126.81?55

C(T)

1/2T

167.7144.2188.577.61115.2100.0181.471.61121.9105.71145.0125.11104.290.8164.457.3196.884.61114.599.51107.493.5181.071.3170.062.01131.8114.0169.561.6167.559.91?30C(T)1/2T

102.389.21194.0166.31170.4146.51129.5112.11118.2102.61147.9127.51178.8153.5195.983.81?20SE(B)1T

135.1135.11108.9108.91177.1177.11141.7141.71174.4174.4184.884.81132.1132.11?10C(T)1/2T

211.4180.91179.9154.51171.8147.61153.0131.81236.9(204)0156.81351?5C(T)1/2T

121.5105.31194.2166.51110.496.01197.0168.81134.7116.51264.4(203)00C(T)1/2T

277.8(198.9)0218.9187.21107.793.71269.3(203)0327.1(203)023C(T)1/2T

325A (202)0328A (202)0227

194

1

A

R-curve (no cleavage

instability).

X4.CALCULATION OF TOLERANCE BOUNDS

X4.1The standard deviation of the ?tted Weibull distribu-tion is a mathematical function of Weibull slope,K Jc(med),and K min ,and because two of these are constant values,the standard deviation is easily determined.Speci?cally,with slope b of 4and K min =20MPa =m,standard deviation is de?ned by the following (24):

s 50.28K Jc ~med ![1–20/K Jc ~med !#

(X4.1)

X4.1.1Tolerance Bounds —Both upper and lower tolerance bounds can be calculated using the following equation:

K Jc ~0.xx !5201F ln S

1

120.xx

D G

1/4

$11177exp [0.019~T 2T o !#%

(X4.2)

where temperature “T”is the independent variable of the equation;xx represents the selected cumulative probability level;for example,for 2%tolerance bound,0.xx =0.02.As an example,the 5and 95%bounds on the Appendix X2master curve are:

K Jc ~0.05!525.2136.6exp [0.019~T 180!#(X4.3)

K Jc ~0.95!534.51101.3exp [0.019~T 180!#

X4.1.2The potential error due to ?nite sample size can be considered,in terms of T o ,by calculating a margin adjustment,as described in X4.2.

X4.2Margin Adjustment —The margin adjustment is an upward temperature shift of the tolerance bound curve,Eq X4.3.Margin is added to cover the uncertainty in T o that is associated with the use of only a few specimens to establish T o .The standard deviation on the estimate on T o is given by:

s 5b /=r ~°C !,

(X4.4)

where:

r =total number of specimens used to establish the value of

T o .

X4.2.1When K Jc(med)is equal to or greater than 83MPa =m,b =18°C (25).If the 1T equivalent K Jc(med)is below 83MPa =m,values of b must be increased according to the following schedule:

K Jc(med)

1T equivalent A

(MPa =m)b (°C)83to 6618.865to 58

20.1

A

Round off K Jc(med)to nearest whole number.

X4.2.2To estimate the uncertainty in T o ,a standard two-tail normal deviate,Z ,should be taken from statistical handbook tabulations.The selection of the con?dence limit for T o adjustment is a matter for engineering judgment.The following example calculation is for 85%con?dence (two-tail)adjust-ment to Eq X4.3for the six specimens used to determine T o .

D T o 5s~Z 85!5

18

=6

~1.44!510°C (X4.5)

T o ~margin !5T o 1D T o 5–80°110°5–70°C

Then the margin-adjusted 5%tolerance bound of Eq X4.3is revised to:

K Jc ~05!525.2136.6exp [0.019~T 170!#

(X4.6)

Eq X4.6is plotted in Fig.X4.2as the dashed line

(L.B.).

FIG.X4.1Master Curve With Upper and Lower 95%Tolerance

Bounds

REFERENCES

(1)Gao,X,and Dodds,R.H.,“Constraint Effects on the Ductile-to-Cleavage Transition Temperature of Ferritic Steels:A Weibull Stress Model,”International Journal of Fracture ,102,2000,pp.43-69.(2)Wallin,K.,Planman,T.,Valo,M.,and Rintamaa,R.,“Applicability of Miniature Size Bend Specimens to Determine the Master Curve Reference Temperature T o ,”Engineering Fracture Mechanics ,V ol 68,2001,pp.1265-1296.

(3)Joyce,J. A.,and Tregoning,R.L.,“Investigation of Specimen Geometry Effects and Material Inhomogeneity Effects in A533B Steel,”ECF 14—Fracture Mechanics Beyond 2000,Proceedings of the 14th European Conference on Fracture ,Krakow,September 2002,to be published.

(4)Anderson,T.L.,Steinstra,D.,and Dodds,R.H.,“A Theoretical Framework for Addressing Fracture in the Ductile-Brittle Transition Region,”Fracture Mechanics ,24th V olume,ASTM STP 1207,ASTM,1994,pp.185-214.

(5)Ruggeri, C.,Dodds,R.H.,and Wallin,K.,“Constraint Effects on Reference Temperature,T o ,for Ferritic Steels in the Transition Region,”Engineering Farcture Mechanics ,60(1),1998,pp.19-36.(6)Paris,P.C.,“Fracture Mechanics in the Elastic-Plastic Regime,”Flaw Growth in Fracture,ASTM STP 631,ASTM,August 1976,pp.3-27.(7)Turner, C. E.,“The Eta Factor,”Post Yield Fracture Mechanics ,Second Ed.,Elsevier Applied Science Publishers,London and New York,1984,pp.451-459.

(8)McCabe,D.E.,Evaluation of Crack Pop-ins and the Determination of their Relevance to Design Considerations ,NUREG/CR-5952(ORNL/TM-12247),February 1993.

(9)Wallin,K.,“The Scatter in K lc Results,”Engineering Fracture Me-chanics ,19(6)(1984),pp.1085-1093.

(10)McCabe,D.E.,Zerbst,U.,and Heerens,J.,“Development of Test

Practice Requirements for a Standard Method of Fracture Toughness Testing in the Transition Range,”GKSS Report 93/E/81,GKSS Forschungszentrum,Geesthacht,GmBH,Germany,1993.

(11)Steinstra,D.I.A.,“Stochastic Micromechanical Modeling of Cleav-age Fracture in the Ductile-Brittle Transition Region,”MM6013-90-11,Ph.D.Thesis,Texas A &M University,College Station,TX,August 1990.

(12)Wallin,K.,“A Simple Theoretical Charpy V-K lc Correlation for

Irradiation Embrittlement,”ASME Pressure Vessels and Piping Con-ference,Innovative Approaches to Irradiation Damage and Fracture Analysis ,PVP-V ol 170,American Society of Mechanical Engineers,New York,July 1989.

(13)Heerens,J.,Read, D.T.,Cornec, A.,and Schwalbe,K.-H.,

“Interpretation of Fracture Toughness in the Ductile-to-Brittle Tran-sition Region by Fractographical Observations,”Defect Assessment in Components -Fundamentals and Applications ,J.G.Blauel and K.H.Schwalbe,eds.,ESIS/EGF9,Mechanical Engineering Publica-tions,London,1991,pp.659-78.

(14)Landes,J.D.,and McCabe,D.E.,“Effect of Section Size on

Transition Temperature Behavior of Structural Steels,”Fracture Mechanics:Fifteenth Symposium,ASTM STP 833,ASTM,1984,pp.378-392.

(15)Wallin,K.,“Recommendations for the Application of Fracture

Toughness Data for Structural Integrity Assessments,”Proceedings of the Joint IAEA/CSNI Specialists Meeting on Fracture Mechanics Veri?cation by Large-Scale Testing ,NUREG/CP-0131(ORNL/TM-12413),October 1993,pp.465-494.

(16)Kirk,M.T.,and Dodds,R.H.,“J and CTOD Estimation Equations

for Shallow Cracks in Single Edge Notch Bond Specimens,”Journal of Testing and Evaluation,JTEVA ,V ol 21,No.4,July 1993,pp.228-238.

(17)Scibetta,M.,“3-D Finite Element Simulation of the PCCv Specimen

Statically Loaded in Three-Point Bending,”(report R-3440)report BLG-860,SCK*CEN Mol,Belgium,March 2000.

(18)Schwalbe,K.H.,Hellmann, D.,Heerens,J.,Knaack,J.,and

Mueller-Roos,J.,“Measurement of Stable Crack Growth Including Detection of Initiation of Growth Using Potential Drop and Partial Unloading Methods,”Elastic-Plastic Fracture Test Methods,Users Experience,ASTM STP 856,ASTM,1983,pp.338-62

(19)Landes,J. D.,“J Calculation from Front Face Displacement

Measurements of a Compact Specimen,”International Journal of Fracture ,V ol 16,1980,pp.R183-86.

(20)Sokolov,M.A.,and Nanstad,R.K.,“Comparison of Irradiation-Induced Shifts of K Jc and Charpy Impact Toughness for Reactor Pressure Vessel Steels,”in Effects of Radiation on Materials:18th International Symposium,ASTM STP 1325,R.K.Nanstad,M.L.Hamilton,F.A.Garner,and A.S.Kumar,Eds.,American Society for Testing and Materials,West Conshohocken,PA,1999,pp.

167-190.

FIG.X4.2Master Curve Showing the Difference Between 5%Tolerance Bound and Lower Bound That Includes 85%

Con?dence Margin on T

o

(21)Wallin,K.,“Validity of Small Specimen Fracture Toughness Esti-

mates Neglecting Constraint Corrections,”in Constraint Effects in Fracture:Theory and Applications,ASTM STP1244,M.Kirk and A.

Bakker,eds.,ASTM,1994,pp.519-537.

(22)ASME Boiler and Pressure Vessel Code.An American National

Standard,Sect.XI,“Rules for Inservice Inspection of Nuclear Power Plant Components,”Article A-4000,American Society of Mechanical Engineers,New York,1993.

(23)Merkle,J.G.,Wallin,K.,and McCabe,D.E.,Technical Basis for an

ASTM Standard on Determining the Reference Temperature,T

o

for Ferritic Steels in the Transition Range,NUREG/CR-5504(ORNL/ TM-13631),November1998.

(24)Johnson,L.G.,The Statistical Treatment of Fatigue Experiments,

Elsevier,NY,1957.

(25)Wallin,K.,Master Curve Analysis of Ductile to Brittle Transition

Region Fracture Toughness Round Robin Data(The Euro Fracture Toughness Curve),VTT Technical Document367.58P,Espoo,Fin-land,1998.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.wendangku.net/doc/5513422075.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@https://www.wendangku.net/doc/5513422075.html,(e-mail);or through the ASTM website

(https://www.wendangku.net/doc/5513422075.html,).

美国在线学校排名标准

美国在线学校排名标准 随着美国留学的低龄化发展,越来越多的学生走上了高中申请的道路,如何选择适合的高中也成为家长和学生共同关注的问题。搜索高中最直接的方法可能就是查看高中排名,然而稍稍在网上做一些研究就会发现,高中的排名五花八门,既有公立高中的,也有走读高中的,还有寄宿制高中的,既有全国的,也有州内的,还有学区内的,甚至连一些小型培训机构都在发布自己统计的高中排名,没有一个官方标准。 一、美国新闻与世界报道排名榜 除了每年公布大学榜单外,美国的一些媒体也对全美的两万多所公立高中进行评估分析,发布全国和各州的最佳高中榜单,其中表现最优的500所高中获得金牌荣誉。此排名主要依据在校学生三种层面上的表现,首先是全校学生在本州的阅读和数学会考中的整体成绩情况,是否超出州平均水平,其次会看弱势群体学生,最后会按照高三年级参加AP/IB等高阶课程的人数比例以及统考成绩计算出“大学预备绩效指数”,综合三项表现的得分最终确认出最佳高中。除了发布综合排名外,此榜也提供针对“基础理科教育”和“重点高中”的金牌学校专项排名。 此榜单仅考察美国公立高中,对申请交流项目或在美有监护人的学生和家长而言参考价值更高。对大多数申请美国私立高中得中国学生不适合。 二、BoardingschoolReview排名 在选择寄宿制私立高中时,一个经常被引用的排名就寄宿学校评论对300余所寄宿制高中进行统计分析发布的榜单。

该榜单不设学校综合排名榜,而是按照在校生人数、寄宿学生比例、国际学生比例、学费水平、获得资助的学生比例、平均课堂人数、师生人数比例、持有最高学历的教师人数占比、捐赠规模、录取难度、课外活动、体育项目、AP等高级课程开设量、SAT平均成绩、SSAT平均成绩以及学校历史等十余项指标分别发布榜单,其中最能体现学校的学术质量的指标应该是AP课程、SAT平均成绩、SSAT平均成绩,以及录取率等。 该榜单根据考核指标的统计结果将学校分在不同等级,同一等级的学校按首字母排列,不再进行等级内排名,因此学校并不存在排名第一或者第二之说。家长选择时更多是看根据某种考核指标学校处于哪个级别。 总体来说,优秀的学校在核心指标排名中越靠前。全美排名第四的欧桥国际学院已经成功登录国内了。 三、PrepReview排名 如同国内重点高中会非常强调毕业生的985大学录取率和一本通过率一样,美国高中的毕业生走向也是对学校进行评估时的一项关键指标,PrepReview排名就是专门针对常青藤大学入学率和HYMPS录取率所发布的榜单。PrepReview每年会按照学校类别,公布前30名寄宿制高中榜单,前30名走读高中榜单,和前50名私立高中综合榜单,排名依据为学校近五年来录取至最顶尖大学的学生比例情况,在此榜的统计中显示,毕业生里42%的学生被常青藤盟校录取,17%的学生进入五大名校,成绩相当显赫,学校内部竞争的激烈程度也可想而知。

CSC公派留学出国研修计划中文版

公派出国留学研修计划中文版 拟留学研究课题:********** 拟留学单位:********* 导师:***教授 一、拟留学研究课题概况 以*****的应用在过去二十年里已经在世界范围内取得了广泛而深入的研究。然而这一课题在国内的发展仍处于起步阶段,与国外已经成型的研究体系相比,仍然有较大的差距。因此这个研究课题急需向优秀的课题组学习和借鉴。(这一部分简要介绍你要做的项目,一两句话一笔带过,重点是说明祖国在这方面还比较落后或者是急缺这一项目的人才,说出急迫与重要性。理科生就提祖国在这方面稍微落后,文科生就提祖国急缺这种人才。但是,不要盲目的拼命批评祖国在这方面做的不好,万一审核你的专家是做这个方向的。。。。你们懂得~)

该研究项目是国家留学基金管理委员会与索邦大学共同体的合作项目,属于国家重点支持学科和专业领域:材料化学。(努力往国家重点扶持和需要的学科上靠~) 二、拟留学单位简介 拟留学国家**是非常热门的留学国家,该学校位于首都**,那里华人留学生较多,安全性好且气候适宜中国人居住。留学单位*****是***最大的科学和医学集合体,在许多领域都处于顶尖水平,被多家世界大学排名机构评选为**国第一和世界顶尖大学。例如,2014年世界大学学术排名将***大学评为全球第***名。****大学还是欧洲研究型大学联盟和****联盟成员,拥有超过125个实验室,其中绝大部分都和****研究中心合作。以上这些数据说明这样一所顶尖的世界名校是留学的不二选择。(百度百科一下查点数据,排名好的就挂出排

名。排名不好的就说这个实验室有怎样怎样的设备,如何如何厉害~) 三、出国学习预期目标可行性(这一部分分两步走,第一是介绍对方的情况,发了什么文章,有多年研究经验等,在世界上属于什么水平。第二是介绍自己,有什么学习经历,发过什么文章,有哪些方面的研究足够支撑你完成学业) 首先,从师资力量的角度来看,*****的研究课题组,可以称得上是该研究领域中世界一流的团队。他们工作出众,在****领域已经取得了显著的研究成果,尤其是*****这一研究方向更是引人注目。据考察,该课题组实验室器材和设备齐全、实验资金雄厚,这些都是研究得以顺利进行的坚实基础。该课题组近年来研究了一些新型自组织侧链液晶半导体聚合物,其主要特点是:(这一部分介绍对方课题组做的方向和成就)

2010年度《财富》美国500强公司名单

2010年度《财富》美国500强公司名单 排名公司名称(中英文) 营收(百万 美元) 利润(百万 美元) 1沃尔玛(Wal-MartStores)408,21414,335 2皇家壳牌(RoyalDutchShell)285,12912,518 3埃克森美孚(ExxonMobil)284,65019,280 4英国石油公司(BP)246,13816,578 5丰田汽车(ToyotaMotor)204,1062,256 6日本邮政控股(JapanPostHoldings)202,1964,849 7中国石油化工股份有限公司(Sinopec)187,5185,756 8中国国家电网(StateGrid)184,496-343 9安盛集团(AXA)175,2575,012 10中国石油天然气集团公司(ChinaNationalPetroleum)165,49610,272 11雪佛龙(Chevron)163,52710,483 12荷兰国际集团(INGGroup)163,204-1,300 13通用电气(GeneralElectric)156,77911,025 14道达尔(Total)155,88711,741 15美国银行(BankofAmericaCorp。)150,4506,276 16大众汽车(V olkswagen)146,2051,334 17康菲石油(ConocoPhillips)139,5154,858 18法国巴黎银行(BNPParibas)130,7088,106 19忠利保险(AssicurazioniGenerali)126,0121,820 20安联集团(Allianz)125,9995,973 21美国电话电报公司(AT&T)123,01812,535 22家乐福(Carrefour)121,452454 23福特汽车(FordMotor)118,3082,717 24埃尼集团(ENI)117,2356,070 25摩根大通(J.P.MorganChase&Co。)115,63211,728 26惠普(Hewlett-Packard)114,5527,660 27意昂集团(E.ON)113,84911,670 28伯克希尔哈撒韦(BerkshireHathaway)112,4938,055 29法国燃气苏伊士集团(GDFSuez)111,0696,223 30戴姆勒(Daimler)109,700-3,670 31日本电报电话公司(NipponTelegraph&Telephone)109,6565,302 32三星电子(SamsungElectronics)108,9277,562 33花旗集团(Citigroup)108,785-1,606 34麦克森公司(McKesson)108,7021,263 35韦里孙通讯公司(VerizonCommunications)107,8083,651 36法国农业信贷银行(CreditAgricole)106,5381,564 37桑坦德银行(BancoSantander)106,34512,430 38通用汽车(GeneralMotors)104,5890 39汇丰控股(HSBCHoldings)103,7365,834 40西门子(Siemens)103,6053,097

美国科学技术政策的历史沿革

美国科学技术政策的历史沿革 刘志高1 李奇明2 刘家国3 (11中国地质大学研究生院, 武汉430074;21中国地质大学人文与经济学院, 武汉430074;31中南财经政法大学研究生部, 武汉430064) 摘 要:美国目前是全世界的经济、军事超级大国,其经济和军事的发展,最根本、最重要的原因是科学和技术,是美国历届政府对科学和技术的重视和善用,是有一套适时调整的正确并有效的科技政策。美国的国家技术政策有着比较久远的历史根源。从美国独立到目前两百多年,美国国家科技政策经历了几次历史性的变革。分析美国国家科技政策的沿革、现行科技政策,对我国的科技决策的科学化和先进化具有十分重要的借鉴意义。 关键词:美国 科技政策 历史沿革 The Evolution of US Policy of Science and T echnology LIU Zhigao1 LI Q iming2 LIU Jiaguo3 (1.G raduate School of China U niversity of G eosciences,Wuhan430074; 2.F aculty of H umanity and E conomy of China U niversity of G eosciences,Wuhan430074; 3.G raduate School of Zhongnan U niversity of E conomics and La w,Wuhan430064) Abstract:American is now economic and military superpower in the world.The most basic and important rea2 son o f its economic and military achievement is the rapid development o f scientific and technology,American government attaches much importance to science and technology having a set o f the correct and effective policy o f science and technology that can adjusted automaticly an opportune moment.From American independence to now,the American national policy o f science and technology has gone through some o f historic transforms.It is very important and significative for the scientific and advanced decisionmaking to analyse the evolution o f the American policy o f science and technology and the current policy o f science and technology. K ey w ords:USA,the policy o f science and technology,evolution 美国自从建国以来,随着国内外经济、社会和科技环境的变化,其科技政策不断调整,以适应不断变化的国际、国内新形势的要求。从整体上看,美国科技政策的发展基本可以分为四个阶段。 1 建国后至二战时期的美国科技政策起源 从美国实现国家独立到第二次世界大战爆发的150多年里,美国完成了从农业经济向工业经济转变,完成了一次同期的工业革命,极大地加强了美国的国家实力,使美国逐步成为世界强国。推动其进程的因素是多方面的,科技的进步是最关键因素之一,美国政府在这一过程中所起的作用和影响更不可低估。美国政府二战前的科技政策主要特点是: (1)建立法律制度保护、鼓励发明和创新权益。一是

2020年最新教师个人研修计划

2020年教师个人研修计划 能参加这次国培网络研修学习,我深感荣幸。能面对面听专家讲课,并参与互动交流,真的是一次难得的学习机会,但我认为的是肩负着一种神圣的责任和使命。对于这次培训,我将全力以赴,认真学习和探求,全面提升了自己的基本素质,和业务综合能力,对于今后的发展起到了积极的促进作用。为了更好地学习,我制定出了一套自己的具体研修计划: 一、指导思想 通过专家教授的引领,转变思想,不断更新教育观念,促使自己专业化发展。 二、研修目标 1、通过培训,转变教育观念,提高认识。 2、深化对小学语文课程性质、课程目标的理解。 3、掌握小学语文课程与教学改革的核心理念,致力于提高小学语文素养和课堂教学的有效性。 4、促进专业化发展,提高教育教学研究能力。 三、研修措施 1、认真听专家的讲座,观看课堂实录,学习课程知识,在学习过程中认真做好笔记,不断提高自己的教学水平和专业素养。 2、转变思想,更新观念学习专家们的先进理念。 结合自己的教学实践,把学到的知识逐步内化为自己的东西 3、反思教学工作,不断进取 在教学中,我不断思量自己在工作中的不足努力提高自己的业务水平,继续向优秀骨干教师学习,向有经念的教师请教。不断反思自己的教学行为和教学方式,努力探求适合学生的教学方法,提高自身的数学素养。 4、积极参与各种研讨活动:

专家教授引领、主题探讨、实地教育考察、自主合作探 究、网络交流等。积极发表自己的观点,博采众长,在交流中提高自己的专业知识。努力学习与新课程相关的理论知识,并做好读书笔记。 通这次国培学习,对我感触很深。真真认识到“活到老,学到老,还有多少没学到”,简而言之,就是人的一生要时时学习,处处学习。作为跨时代的教师,这些都要求教师要不断学习提高,做创新型教师、研究型教师、引导型教师。我想一个当今的教师,应同时具备双重身份:既是教师,又是学生。教师为“育人”而学习,作为教师,我们的学习不是一般的学习,而是基于一个教育者的学习,我们最终的追求是育好人,为“育人”而学习是教师的天职。我们应当积极参加上级组织的各种培训,继续教育,当不断学习新的教法,新的教育教学理念,让自己成为“源头活水”更好地滋润学生渴求知识的心田。 在未来的学习过程中,我更应该积极主动地去学习,去增长知识,充分利用这些知识运用到课堂教学中,通过这次“国培”研修学习,我相信自己在自身素质、教育教学理论和 教育教学方法上会有许许多多的收获,会为我以后的教育教学工作打下坚实的基础。

2017年世界500强(完整榜单)

2017年世界500强(完整榜单) 获悉:最新的《财富》世界500强排行榜于北京时间2017年7月20日晚发布。其中前十名为沃尔玛、国家电网公司、中国石油化工集团公司、中国石油天然气集团公司、丰田汽车公司、大众公司、荷兰皇家壳牌石油公司、伯克希尔-哈撒韦公司、苹果公司、埃克森美孚。 2017年世界500强(完整榜单) 排名公司名companyname营收(百万美元)利润(百万美元)国家1沃尔玛WAL-MART STORES48587313643美国2国家电网公司STATE GRID315198.69571.3中国3中国石油化工集团公司SINOPEC GROUP2675181257.9中国4中国石油天然气集团公司CHINA NATIONAL PETROLEUM262572.61867.5中国5丰田汽车公司TOYOTA MOTOR25469416899.3日本6大众公司VOLKSWAGEN240263.85937.3德国7荷兰皇家壳牌石油公司ROYAL DUTCH SHELL2400334575荷兰8伯克希尔-哈撒韦公司BERKSHIRE HATHAWAY22360424074美国9苹果公司APPLE21563945687美国10埃克森美孚EXXON MOBIL2050047840美国11麦克森公司MCKESSON1985335070美国12英国石油公司BP186606115英国13联合健康集团UNITEDHEALTH GROUP1848407017美国14CVS Health公司

CVS HEALTH1775265317美国15三星电子SAMSUNG ELECTRONICS173957.319316.5韩国16嘉能可GLENCORE1738831379瑞士17戴姆勒股份公司DAIMLER1694839428.4德国18通用汽车公司GENERAL MOTORS1663809427美国19美国电话电报公司AT T16378612976美国20EXOR集团EXOR GROUP154893.6651.3荷兰21福特汽车公司FORD MOTOR1518004596美国22中国工商银行INDUSTRIAL COMMERCIAL BANK OF CHINA147675.141883.9中国23美源伯根公司AMERISOURCEBERGEN146849.71427.9美国24中国建筑股份有限公司CHINA STATE CONSTRUCTION ENGINEERING144505.22492.9中国25安盛AXA143722.36446法国26亚马逊https://www.wendangku.net/doc/5513422075.html,1359872371美国27鸿海精密工业股份有限公司HON HAI PRECISION INDUSTRY135128.84608.8中国28中国建设银行CHINA CONSTRUCTION BANK135093.334840.9中国29本田汽车HONDA MOTOR129198.45690.3日本30道达尔公司TOTAL1279256196法国31通用电气公司GENERAL ELECTRIC1266618831美国32威瑞森电信VERIZON COMMUNICATIONS12598013127美国33日本邮政控股公司JAPAN POST HOLDINGS122990.3-267.4日本34安联保险集团ALLIANZ122195.97611.5德国35康德乐CARDINAL HEALTH1215461427美国36好市多COSTCO

美国在线时代华纳的财务舞弊案

美国在线时代华纳的财务舞弊案 2000-1-10美国在线与时代华纳宣布合并 世纪并购虚拟的网络世界与传统的有形媒体合作 融有线电视、书报杂志、影视娱乐、影像出版与互联网络于一体 标志着新经济与旧经济由相互排斥走向优化整合 当天,时代华纳股票涨25.31美元,涨幅39%,收盘价90.06美元。 合并以换股方式进行,美国在线和时代华纳以各自的股票换取美国在线时代华 纳公司股票。 2001-1-11 合并宣告正式完成 时代华纳的历程: 时代历程—— 1918:卢斯和哈登在军营诞生了创立《时代》杂志的灵感 1922:成立时代公司 1923:《时代》杂志正式发行 1930:《财富》杂志正式发行 1936:《生活》杂志正式发行 1974:《人民》杂志正式发行 华纳历程—— 1918:华纳兄弟在好莱坞日落大道开办了西海岸电影工作室 1927:出品了第一步同步录音电影,后来,创办了:家庭影院、影院剧场、唱片公司 1989——时代公司与华纳公司合并组建了时代华纳公司 2000末,时代华纳公司资产512亿美元,营业收入273亿美元,利润20亿美元,市值1100亿美元。 美国在线的历程: 1985:凯斯等三个音乐家创办了量子电脑服务公司 1992:发行200股,在纳斯达克上市

1994:更名为美国在线 1996:移到纽约证交所上市 1998:收购了竞争对手电脑服务公司 2000末:用户2700万个,营业收入77亿,利润12亿,市值1330亿 2001末,美国在线时代华纳:员工89000人,营业收入382亿,资产2000亿。 按141号财务会计准则《企业合并》要求,必须用购买法反映该项收购。按合并时的股价计算,收购成本1470亿,减去时代华纳账面净资产179亿和负债增值后,形成商誉1100亿,加上合并前2家公司原有的商誉,合计商誉1300亿。 2001末,摊销商誉67亿,公司亏损49.2亿。 2002年,按142号财务会计准则《商誉及其他无形资产》计提商誉减值准备989亿,公司亏损986.96亿。商誉余额369.86亿,占总资产32%,无形资产占总资产70.32%,未计提989亿减值前,无形资产占总资产84.02%。 2002-7-18/19《华盛顿邮报》发表三篇文章,揭露合并前的财务舞弊。 7/18:首席运营官COO彼特曼辞职, 7/24:SEC对在线网络精力的会计问题展开调查。 7/31:司法部对会计问题材展开调查 8/9:股东向美国在线时代华纳提出民事诉讼 11/18 :加州教师退休基金将其告上法庭 2003-1-12:美国在线创始人凯斯辞去在线时代华纳董事长之职。 美国在线的财务舞弊—— 一、 1994—1996: 美国在线采取了激进的市场营销策略和实施不限上网次数的固定月费制,使订户大量增加,但同时出现网络容量不足和大量客房流失,增加的收入不足以弥补,为吸引客房而增加的市场营销支出,将市场营销成本作为递延资产,摊销期由12个月延长到18个月,再到24个月。如果不是这样,94、95、96三个会计年度(4/1-3/31)连亏。1996年,美国在线宣布一次性注销3.85亿市场营销成本。 目的:盈利吸引注资满足投资饥渴症的需要。

小学英语教师个人研修计划表(最新版)

小学英语教师个人研修计划表 (最新版) Frequent work plans can improve personal work ability, management level, find problems, analyze problems and solve problems more quickly. ( 工作计划) 部门:_______________________ 姓名:_______________________ 日期:_______________________ 本文档文字可以自由修改

小学英语教师个人研修计划表(最新版)导语:工作计划是我们完成工作任务的重要保障,制订工作计划不光是为了很好地完成工作,其实经常制订工作计划可以更快地提高个人工作能力、管理水平、发现问题、分析问题与解决问题的能力。 【第1篇】 促进教师专业发展是当今教育的一个热门话题,这不仅是教育行政部门和学校的事,更是每个教师个人所面临的一个重要问题。我作为一名小学英语老师,目前有利因素是提高自身专业素质,不利因素是没有优良的语境。为此,我对个人专业作出如下发展规划: 一、发展目标 教室教学形成自己的独特风格。年内,完成一个课题研究,论文争取在县级以上获奖或公开发表一篇,力争成为一名优秀的英语教师。 第一阶段:*内功,树立终身学习的观念;努力学习英语专业知识,提高自己的听说能力,认真阅读有关书籍,提高英语教学

理论水平和教学技能。 第二阶段:形成自己的教学风格,所写论文、案例至少有一篇在县级或以上获奖,力争成为英语教学能手。 第三阶段:通过探索、研究,成为一名研究型和发展型的教师。 二、研修目标 1、进一步研读《英语课程标准》,深入理解、掌握新课程的基本理念。 2、学习新教材,走进新教材,把握教材的特点。 3、结合学情,探索英语教学的有效途径,提高教学质量,培养学生学习英语的兴趣。 4、探索适合学生运用的教学方式,使学生更加愿学、乐学。 5、更好地运用多媒体教学,以突出重点,突破难点。 三、发展措施 1.主动参加各种教科研活动和专业知识的培训,提高自己的英语水平和自身能力。

特朗普执政时期的美国科技政策

特朗普执政时期的美国科技政策 世界当前正处于第三次科技革命浪潮。美国政府拥有一套完善的科技政策体系,且对美国科技进步起到重要的作用。特朗普是位“另类”的美国总统,有鲜明特色,本文的目的是为了分析就任总统以来, 特朗普政府科技政策的内容、特色和对我国可能产生的影响。以美国政府科技政策体系的历史沿革作为研究起点,包括知识产权保护政策、企业研发政策、人才政策和反托拉斯法等内容,接着深入分析特朗普 太空、网络空间和人工智能三个重点研发领域。为了维持美国科技优势特朗普采取了单边主义的国际知识产权保护;改革《贝赫-多尔法案》以促进政府科技成果更好地为民间所用;签署《减税与就业法案》促 进企业研发;通过国内自主培养和国际吸收的方式建设美国人才队 伍;20世纪90年代以来,美国政府越来越多地考虑反托拉斯的科技政策作用。特朗普主要通过机构设置或重组,加大资源投入等方式力图 实现在太空领域全方面领导、在网络空间和关键基础设施安方面消除对手的非对称优势、在人工智能方面要维持美国的全球领导地位等战略目标。跟随科技政策内容,本文分析了特朗普对美国科技创新的态度、政策特点和成因。态度上,与外界的观点不同,特朗普实际上重视美国科技创新,政府研发总投入相对上任之初保持增长;特点上,首先 特朗普更加重视国家安全,工作议程的差异致使特朗普逆转奥巴马的 科研战略,国防相关部门研发经费的大幅增长,这亦直接体现到重点 研发领域上,其次特朗普重视研发效率,为提高政府研发效率采取了 许多具体措施;成因上,科研经费向国防相关部门倾斜的根源是:谋求

安全方式上的“以实力求和平”理念,国际合作的“美国优先”主义以及被用于政府治理当中的“特朗普经济学”。本文在两章分别分析特朗普重点科研领域可能面临的挑战和特朗普政府科技政策对我国可能产生的影响。

语文教师个人研修计划【三篇】

语文教师个人研修计划2018【三篇】 【导语】工作计划是行政活动中使用范围很广的重要公文,也是应用写作的一个重头戏。机关、团体、企事业单位的各级机构,对一定时期的工作预先作出安排和打算时,都要制定工作计划,用到“工作计划”这种公文。下面是小编为您整理的语文教师个人研修计划2018【三篇】,仅供大家查阅。 【篇一】 学海无涯,知识是无止境的,因此每个教师都需要终身学习。教育工作是动态的鲜活的进步的,作为一名教师,要紧跟社会时代的步伐,这也需要不断汲取新的理念。特制订本学期个人进修计划。 一、指导思想 以科学发展观为宗旨,以提高自身素质为目标,以更好地服务教学为中心。 二、基本情况 本人已取得汉语言文学本科学士文凭,系统学习了有关

语文教学的专业知识和教育教学相关知识。为了更好地服务教学工作,还需继续努力。在日常工作中,本人善于学习,能珍惜各种学习机会。 三、进修目标 1、提高自己的教育教学专业水平。 2、丰富自己的教育教学理论素养。 3、综合提高自身素质。 4、丰富自己的文学素养。 5、提高自己的教室授课能力和创新能力。 6、提高自己的语文教学教研能力。 四、方法措施 第一、勤奋刻苦努力学习,丰富自己的教育教学理论素养和文学素养。 1、坚持认真学习专业知识的书籍,及教育教学理论书籍,并且广泛阅读文学书籍充实自己,以不断给学生新信息、新知识,使教室教学效果更好。 2、借助先进的媒体学习,了解学科的发展动向和最新

的研究成果,并建立自己的博客语文园地。 3、做一名学习型的教师,充分利用课余时间,坚持每天一个小时的充电时刻。 4、利用一切资源,校内多向同事学习,并主动走出去,向教育界名师寻经问宝。 第二、善于思考,把教学工作与思考结合起来。 1、做一名善于反思,勤于积累的教师。 2、坚持认真撰写课后反思,并主动反馈于教学工作。 3、反思教学过程中的得失,反思教育学生的点滴,在反思中感悟,写出高质量的教学随笔、教育故事等。 4、善于思考善于创新,主动探索教学规律,遵循教学规律的基础上形成自己的教学特色。 第三、主动创造精彩的语文教室,主动展示自我。 1、在日常工作中,主动创造精彩语文教室,多打造精品,在此过程中,学习提高。 2、多听同事们的课,在具体实践中学习提高。 3、主动上公开课,展示自己的教学成果,同时虚心接

借鉴美国对中心企业科技创新政策解读

美国支持中小企业科技创新的政策体系及其借鉴 日期: 2010-3-30 17:40:03浏览: 14来源: 学海网收集整理作者: 佚名 摘要:企业创新是各国经济增长的主要推动力,美国支持中小企业科技创新的政策已经形成了比较完备的体系,在立法支持、财政与税收支持以及创新服务支持等方面积累了丰富的成功经验。我国中小企业创新发展对建立“创新型国家”战略目标的实现具有重要意义,通过梳理美国支持中小企业科技创新的政策体系,分析提炼其主要特征,力图为我国中小企业科技创新提供有益的政策借鉴。 关键词:美国;中小企业;科技创新;支持政策 进入21世纪以来,我国企业的生产能力和产业规模得到了空前的发展,但在技术和创新能力上却远远落后于发达国家。企业创新现已经成为各国经济增长的主要推动力,我国企业必须提高自主创新能力,立足增强自主创新能力推动发展。只有强化企业技术创新主体地位,建立以企业为主体、市场为导向、产学研相结合的技术创新体系,形成自主创新的基本体制架构,才能推动国民经济的健康发展。美国的中小企业是自主创新的企业主体,尤其在推动技术进步和创新上凸显了一定优势。美国政府通过制定相关的法律、财政税收政策,以及协调社会各部门之间的配合等手段,大力推动和促进中小企业的科技创新进步,使之成为实现国家创新计划的主要力量。本文试图梳理美国支持中小企业科技创新的政策体系,分析提炼其主要特征,力图为我国中小企业的科技创新提供有益的政策借鉴。 一、美国支持中小企业科技创新的主要政策 (一立法支持政策 美国政府对中小企业创新活动的立法支持,为中小企业开展技术创新、提高自我创新能力提供了全面的法律保障。1982年,美国国会通过《小企业创新发展法》,以鼓励中小企业提高技术水平、加大创新力度、推进技术创新成果的转化。以《小企业创新发展法》为核心,美国政府又陆续出台了一系列法律法规,如《史蒂文森一怀特勒创新法》、《国家竞争技术转移法》、《联邦技术转移法》、《专利法》、

美国哈希HACH 在线TOC

供应美国哈希HACH 在线TOC(总有机碳) 品牌HACH 型号1950Plus 类型水质在线分析仪 典型应用 1950Plus TOC 分析仪是专为自来水中TOC监测和去除率计算而设计的。符合标准方法5310C和EPA方法415.1。 仪器特点 ●自动稀释功能,自动校正,自动清洗 ●连续流动分析 ●双通道采样分析 ●手动抓样分析 ●可以采用氮气或空气做载气(通过气体净化器) ●自动诊断,无水样、无试剂、无气体报警 ●符合USEPA415.1,standard methods 5310C, ISO8027标准分析方法 分析原理 仪器采用紫外光/过硫酸盐氧化法。 样品首先被酸化,使水中的总无机碳(TIC)氧化成二氧化碳;再用载气将二氧化碳吹出;然后在水样中加入过硫酸盐,用紫外光(UV)进行氧化,此时水中总有机碳(TOC)被完全氧化成二氧化碳;再用载气将二氧化碳带入红外检测器(NDIR)检测二氧化碳浓度,换算出TOC浓度。

技术参数 测量范围: 0~5mg/L至0~20,000mg/L 多个测量量程; 响应时间:T90≤8分钟;T20≤3分钟 准确度:不稀释情况下,读数的±2%;稀释情况下,读数的±4%; 检出下限:25℃时,测量范围0 ~5mg/L时,≤0.015mg/L ; 进样条件: 0.15~6bar(2~87psig);流速,25~200mL/min;温度,2~70℃室内条件:温度 5~40 °C;湿度:在31 °C时,最大相对湿度80%;在40℃时,相对湿度50%; 数据通讯: RS232/RS485串行端口(选配);模拟输出:两路4~20mA 电源要求: 115/230V交流,50/60Hz 仪器规格: 54kg ,981 ×675×20 mm

2018最新语文教师校本研修计划

2018最新语文教师校本研修计划 导语;新的学期,为了更好地完成教学任务,取得更好的教学效果,小编整理了语文教师校本研修计划范文,欢迎参考: 语文教师校本研修计划(一) 研修主题 在语文教学中如何指导学生合作学习 研修目标 规范语文课堂教学,使自己由学习型向研究型转变,不断进行教学研究,努力探索和研究学生适合特点、促进学生创新能力不断提高的教学方法。认真学习新的教学方法,迅速提高自身教学水平用新的教学理念提高课堂教学实效。 学习内容 1、学习新课改,新课标。提高自己的课堂效率。 2、参加学校的校本研究学习活动,学习其他老师的成功经验。 3、教育教学专著,并认真做好笔记,努力提高个人专业素养。认真阅读《听名师讲课》《给教师的建议》等有关资料,钻研新教材,新课标,研究教法,体会新课程的理念,提高自己的业务能力。以使自己在教育教学工作中能有所提高。 实施计划 1、积极主动地上好研讨课,认真开展高效课堂教学展

示活动,使教学研讨进课堂。尤其要多关注后进生,本学期采用“一帮一”以优带差、小组竞争的方式提高教育教学质量和良好习惯的养成,以促进潜能生各方面能力的提高。积极学习先进的教育教学理论,转变教育教学观念,准确定位自己,用先进的理论充实自己、提高自己。经常听课,学习身边老师的宝贵经验,提高自己教育水平。 2、认真完成学习任务,做好听课记录,不断总结教学经验,促进自身能力不断提高。 3、认真做好备、讲、批、辅、考等各项工作,并及时做好反思,调整自己的教学思路,做到因材施教,稳步提高教学质量。 4、通过教师个人自学,网络学习的方法及时了解最前沿的教改信息,扩展自己知识视野,不断更新教育教学理念,丰富教育教学理论,提升理论水平和教学教研水平。 5、认真撰写教育教学心得体会,争取有质有量。充分利用网络手段,观摩名家教学,撰写读书笔记、教学反思,在课堂教学中有效指导学生进行合作学习提高学生发现问题、分析问题、解决问题的能力,培养学生良好的学习习惯。 预期成果 通过本次校本研修,使自己的教育教学水平能得到进一步的提高,能有效指导学生进行合作学习。 语文教师校本研修计划(二) 为了不断增强个人教

二战后美国科技政策的演变以及对我国的启示

二战后美国科技政策的演变以及对我国的启示 博士、副研究员 王 艳Ξ (中国科学技术信息研究所, 北京100038) 摘 要:本文分析了美国二战后科技政策的演变过程,认为可以分为五个阶段。文章介绍了每个阶段美国的科技政策及其背景、研究开发的技术重点、研究开发经费情况、与科技发展有关的重大计划、与科技政策有关的相关法律。重点介绍了美国现政府的科技政策及其对美国经济的影响。最后,文章还就美国科技政策及其演变过程对我国的启示进行了讨论。 关键词:美国 科技政策 启示 美国目前是全世界的经济大国、军事大国。其经济和军事的发展,都同其科学技术的发展有着密切的联系。而美国的科学技术政策对美国的科学技术发展产生着重大的影响。分析美国科学技术政策的特点,可以对我国的科学技术政策的调整产生一定的借鉴作用。 1 美国科学技术政策的演变 随着世界经济、社会环境的变化,美国的科技政策也在不断调整,以适应不断变化的国际、国内形势的需求。二战后,美国科技政策的发展基本可以分为五个阶段,但为了强调美国现政府的科技政策,本文还重点介绍了克林顿政府的科技政策。 111 二战后(1945-50年代) 在这个时期,政府一方面支持基础研究,于1950年成立国家科学基金会(NSF),一方面大力加强国防技术发展,同时增加联邦政府的科技使命。联邦政府采用合同方式外包科研任务,直接和执行任务的各种科技力量打交道,加强了政府对大学、企业界和其他科研机构的影响。同时,美国从其他国家大量引进人才,对美国科技发展起到重要作用。 在这一时期,国家安全是政府关注的焦点。从1945-1957年,国防研究开发支出占整个联邦研究开发经费的80-90%。大量的国防研究使得美国拥有了世界上最先进的武器,而且,部分国防研究成果若干年后得到了商业应用,如在民用航空、先进材料、计算和通信等领域中的应用。医学从50年代开始也成为美国重点研究领域之一。 112 冷战(50年代末-60年代) 1957年,前苏联发射世界上第一颗人造地球卫星,从此,竞争空间优势就开始成为美国科学技术的重要使命。国防研究开发开始让位于以空间计划为优先的民用研究开发。1960年以后,在继续进行基础研究和国防技术开发的同时,联邦政府意识到民用技术在国民经济建设中的重要性,开始对民用技术进行大幅度投入。 1958年,美国国会通过国家航空航天法,成立了国家航空航天局(N AS A)。在整个60年代,为了实施肯尼迪总统的阿波罗登月计划,联邦政府在资金、人力和资源方面全面投入,于1969年实现了人类登月计划。1957-1967年间,联邦研究开发经费急剧增加,增长了4倍。 在这一时期,美国联邦政府还在加强科研管理方面作出了努力。将原隶属于国防动员局的科学咨询委员会改组为总统科学顾问委员会,还成立了联邦科学技术委员会,以协调科研管理。不少有关的部门也设立了部长级科学官员,来统筹领导本部门的科研工作。同时,联邦政府还加强了科学教育和国际科技交流。 总的来说,在这一时期,美国的科学技术有了迅速的发展。但这种发展的背后也隐藏了大量问题。首先,绝大部分资源和经费都用于空间科学和国防研究,忽视了大量潜在的社会问题;科学分工过细使得一些科学家只能从事专业面很窄的工作;科技发展还存在规模性、地区性不平衡。这些问题在下一阶段的衰退期更加突出。 113 研究开发后退期(70年代) 前一阶段忽视的社会问题,在这一时期更加突出,如能源短缺问题、环境污染问题、公共卫生问题、犯罪问题等日益严重。而且,越战造成的财政赤字,60年代末70年代初的经济危机,迫使联邦政府大量削减国防、空间研究经费,引起大量科技人员失业。同时,高校的科研经费也得不到保障,理工学科不再吃香, Ξ王艳(W ANG Y an,1967.6~),女,四川泸州人。1989年毕业于清华大学化学工程系,1995年毕业于中国科学院化工冶金研究所,获工学博士学位。现为中国科学技术信息研究所副研究员。主要从事科技政策与发展战略、国内外科技发展动态及可持续发展等软科学研究。参加了国家科技部S-863发展战略、中国可持续发展计算机模拟模型、中国中西部电信发展需求预测、信息技术前沿与发展动态、我国科技若干重点领域发展动态等研究。发表论文二十余篇。

做大不等于做强——美国在线-时代华纳合并失败分析

做大不等于做强——美国在线-时代华纳合并失败分析 摘要:2000年1月,美国在线与时代华纳宣布合并组建世界最大的跨媒体集团,人们惊羡地称之为传媒界的“超级航母”。有人说,美国在线为时代华纳装上了腾飞的羽翼,时代华纳则成为美国在线飞跃的发动机。可两年间,这艘“超级航母”就难以浩荡世界,甚而还显示出随时沉没的兆头。美国在线-时代华纳从令人称羡的“美满婚姻”演变为“失败的婚姻”。本文通过对两年以来美国在线-时代华纳集团的分析,试图找出其中缘由。 一、美国在线-时代华纳合并过程 2000年1月10日,互联网新贵美国在线 (America Online) 宣布以1810 亿美元收购老牌传媒帝国时代华纳 (Time Warner),成立美国在线—时代华纳公司。这是美国乃至世界历史上最大的一宗并购案,所有形式的媒体都被整合到全球最大的媒体公司之中。美国在线成立于1985年5月,是当时全美最大的一家因特网服务提供商。时代华纳为当时世界最大的传媒集团。 当时,无论是媒体业还是网络业都普遍看好这种新旧媒体结合的模式。人们普遍认为,网络公司需要具有吸引力的内容,而传统媒体则需要互联网这个 21 世纪最具潜力的新媒体平台,美国在线和时代华纳的合并代表了传媒业未来的发展方向:渠道服务商和内容供应商的结合方式,意味着传统与现代产业相融合的可能。然而,看似光明的前景却被曲折的合并之路所取代。 然而美国时间2003年9月18日,美国在线-时代华纳公司董事会投票一致决定,从“美国在线-时代华纳”这个名字中去掉“美国在线(AOL)”字样,将公司名称改为“时代华纳”,恢复了2000年宣布与美国在线合并前的老名字。尽管目前公司尚无出售或分派美国在线资产的考虑,但单从品牌的角度看,美国在线被“除名”意味着这一品牌的没落和两个品牌联合的失败。 二、美国在线-时代华纳存在的主要问题 (一)巨额亏损。 美国在线时代华纳公司在截至2002年3月3日的财政年度里出现了542.2亿美元的大幅亏损,创下了美国历史上季度亏损的最高纪录。虽然美国经济不景

教师个人研修计划2021(最新版)

( 工作计划) 单位:____________________ 姓名:____________________ 日期:____________________ 编号:JH-XK-0279 教师个人研修计划2021(最新Individual teacher training plan 2020

教师个人研修计划2021(最新版) 国培教师个人研修计划 一、指导思想 通过研修,提高教育教学能力和业务水平,坚持以促进学习全面发展为原则,把新课改的精神落实到日常的教育教学工作中。 二、研修目标 1、转变固有的教育观念,与新时期的教育观念保持一致。 2、提高自己对课程标准及教研教改的理解能力和操作能力。 3、能结合有关教育理论,针对教育教学不断反思和总结,提高自身的专业发展能力。 4、通过研修,掌握教学基本功,更好地为新的课堂改革模式教学服务。 5、通过研修,掌握课堂教学技巧,提高课堂教学艺术。 三、学习内容 1、学习《中小学教师职业道德规范》,加强自身的师德修养。 2、不断提高自己的教育教学能力,积极学习新课程标准及新教学理念,努力提高自己的执教能力,形成自己独特的教学风格。 3、开展学习以信息技术为主要内容的现代教学技能的研修,联系运用电子

白板,运用多媒体独立制作电子教案。 4、以课题研究为依托,以自主研究为切入点,积极探索,参与课题研究。 5、认真参加“教研组研讨”活动,寻找适合自己的发展之路。 四、实施计划 1、坚持政治学习、业务学习,多看教育教学专著,努力提高个人的专业素养。 2、积极参加网络教研,了解最前沿的教改信息。扩展自己的知识视野,不断更新教育教学理论。 3、工作中严要求,不松懈。认真开展听课评课活动,学习身边教师的宝贵经验,提高自己的教育水平。课后及时写教学反思,认真撰写教育教学心得体会,在教学中利用多媒体教学,激发学生的学习兴趣,提高解决问题的能力。 初中教师个人研修计划 一、研修目标: 1、通过集体培训、个人研修,使自己进一步树立正确的世界观、人生观和价值观,热爱本职工作,铸就优良的师德师风。 2、更新教育观念,不断掌握现代教育思想,提升实施新课程的能力,不断提高教育质量;更新专业知识,提高学历层次,进一步优化知识和能力结构;进一步掌握教育科研理论和方法,掌握新的教育技术和手段,提高自身教育教学水平。 二、研修内容: (一)主要内容: 1、进一步研读《历史课程标准》,深入理解、掌握新课程的基本理念、三维目标,更要掌握6大学习板块、44个学习主题的具体内容标准。还要明晰实施

相关文档
相关文档 最新文档