文档库 最新最全的文档下载
当前位置:文档库 › 高三立体几何大题线面角专题

高三立体几何大题线面角专题

高三立体几何大题线面角专题
高三立体几何大题线面角专题

高三立体几何专题

1.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,

(Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面;

(Ⅲ)求直线与平面所成角的正弦值. 1.解析 (Ⅰ)连接,易知,.又由,

故,又因为平面,平面,所以平面.

(Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故.

又已知,,所以平面.

(Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角,

因为为等边三角形,且为的中点,所以

又, 故在中,. 所以,直线与平面所成角的正弦值为

. 2.如图

,已知三棱柱,平面平面,,

分别是AC ,A 1

B 1的中点. (1)证明:;

(2)求直线EF 与平面A 1BC 所成角的余弦值.

P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD =G H ,PB AC ,GH ∥PAD PA ⊥PCD AD PAC BD AC

BD H =BH DH =BG PG =GH PD ∥GH ?PAD PD ?PAD GH ∥PAD PC N DN DN PC ⊥PAC ⊥PCD PAC

PCD PC =DN ⊥PAC PA ?PAC DN PA ⊥PA CD ⊥CD DN D =PA ⊥PCD AN DN ⊥PAC DAN ∠AD PAC PCD △2CD =N PC DN =DN AN ⊥Rt AND △sin 3

DN DAN AD ∠=

=AD PAC 3

111ABC A B C -11A ACC ⊥ABC 90ABC ∠=?11

30,,,BAC A A AC AC E F ∠=?==EF BC ⊥

2.(I )连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥A C. 又平面A 1ACC 1⊥平面ABC ,A 1E 平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥B C.

(Ⅱ)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故AE 1⊥EG ,所以平行四边形EGFA 1为矩形. 由(I )得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.

连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E

EG

. 由于O 为A

1G 的中点,故, ?122

A G EO OG ==

=

所以.

因此,直线EF 与平面A 1BC 所成角的余弦值是

. 3.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30?,若SAB

△的面积为8,则该圆锥的体积为_____. 3.8π【解析】由题意画出图形,如图,

设AC 是底面圆O 的直径,连接SO ,则SO 是圆锥的高,设圆锥的母线长为l , 则由SA SB ⊥,SAB △的面积为8,得

2

182

l =,得4l =,在Rt ASO ?中, 由题意知30SAO ∠=,所以1

22

SO l =

=

,AO ==

故该圆锥的体积221

12833

V AO SO πππ=??=??=.

4.如图,在四面体ABCD 中,ABC ?是等边三角形,平面ABC ⊥平面ABD ,点M 为棱

AB 的中点,2AB =

,AD =90BAD ∠=.

(1)求证:AD ⊥BC ;

(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.

4.【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .

2223

cos 25

EO OG EG EOG EO OG +-∠==?3

5

O

C

B

A

S

M A B

C

D

(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以DMN ∠(或其补角)为异面直线BC 与MD 所成的角.

在Rt DAM ?中,1AM =

,故DM

因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt DAN ?中,1AN =

,故DN .

在等腰三角形DMN 中,1MN =

,可得12cos MN

DMN DM ∠==

. 所以,异面直线BC 与MD

(3)连接CM .因为ABC ?为等边三角形,M 为边AB 的中点,故CM ⊥AB ,

CM =.又因为平面ABC ⊥平面ABD ,而CM ?平面ABC ,

故CM ⊥平面ABD .所以,CDM ∠为直线CD 与平面ABD 所成的角. 在Rt CAD ?

中,4CD =

=.

在Rt CMD ?

中,sin CM CDM CD ∠=

=

. 所以,直线CD 与平面ABD

. 5.如图,已知多面体111ABCA B C ,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=,

14A A =,11C C =,12AB BC B B ===.

N

M A B

C

D

(1)证明:1AB ⊥平面111A B C ;

(2)求直线1AC 与平面1ABB 所成的角的正弦值.

5.【解析】(1)由2AB =,14AA =,12BB =,1AA AB ⊥,1BB AB ⊥得

111AB A B ==,

所以222

1111A B AB AA +=.

故111AB A B ⊥.

由2BC =,12BB =,11CC =,1BB BC ⊥,1CC BC ⊥

得11B C 由2AB BC ==,120ABC ∠=

得AC =

由1CC AC ⊥

,得1AC =222

1111AB B C AC +=,故111AB B C ⊥.

因此1AB ⊥平面111A B C .

(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD .

C 1

B 1

A 1

C

B

A

由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.

由11B C

11A B =

11AC =

得111cos C A B ∠=

111sin C A B ∠=,

所以1C D =

,故111sin C D C AD AC ∠=

=

. 因此,直线1AC 与平面1ABB

6.如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,

3BC =,4CD =,2PD =.

(Ⅰ)求异面直线AP 与BC 所成角的余弦值; (Ⅱ)求证:PD ⊥平面PBC ;

(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.

D

A

B

C

A 1

B 1

C 1

6.【解析】(Ⅰ)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因

为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得AP ==

cos AD DAP AP ∠=

=

所以,异面直线AP 与BC .

(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ?平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以

PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C .

(Ⅲ)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.

因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影,所以DFP ∠为直线DF 和平面PBC 所成的角.

由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2.又AD ⊥DC ,故BC ⊥DC ,在

Rt △DCF 中,可得DF ==在Rt △DPF 中,可得sin PD DFP DF ∠==

所以,直线AB 与平面PBC . 7.如图,已知四棱锥P ABCD -,PAD ?是以AD 为斜边的等腰直角三角形,BC AD ∥,

CD AD ⊥,22PC AD DC CB ===,E 为PD 的中点.

(Ⅰ)证明:CE ∥平面PAB ;

(Ⅱ)求直线CE 与平面PBC 所成角的正弦值.

7.【解析】(Ⅰ)如图,设PA 中点为F ,连结EF ,FB .

因为E ,F 分别为PD ,PA 中点,所以EF ∥AD 且1

2

EF AD =, 又因为BC ∥AD ,1

2

BC AD =

,所以 EF ∥BC 且EF =BC ,

即四边形BCEF 为平行四边形,所以CE ∥BF , 因此CE ∥平面PAB .

(Ⅱ)分别取BC ,AD 的中点为M ,N .连结PN 交EF 于点Q ,连结MQ . 因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ ∥CE . 由PAD ?为等腰直角三角形得

PN ⊥AD .

由DC ⊥AD ,N 是AD 的中点得

BN ⊥AD .

E

D

C

B

A

P

D

A

所以 AD ⊥平面PBN , 由BC ∥AD 得 BC ⊥平面PBN , 那么,平面PBC ⊥平面PBN .

过点Q 作PB 的垂线,垂足为H ,连结MH .

MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.

设CD =1.

在PCD ?中,由PC =2,CD =1,PD =得CE =

在△PBN 中,由PN =BN =1,PB =得14

QH =, 在Rt MQH ?中,1

4

QH =

,MQ =,

所以

sin QMH ∠=

所以,直线CE 与平面PBC

所成角的正弦值是

8

. 8.如图,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,EF ∥AB ,AB =2,BC =EF =1,

AE

,DE =3,∠BAD =60o,G 为BC 的中点.

(Ⅰ)求证:FG ∥平面BED ; (Ⅱ)求证:平面BED ⊥平面AED ;

(Ⅲ)求直线EF 与平面BED 所成角的正弦值.

8.【解析】(Ⅰ)证明:取BD 的中点为O ,连接OG OE ,,在BCD ?中,因为G 是BC 的中点,所以DC OG //且12

1

==

DC OG ,又因为DC AB AB EF //,//,所以OG EF //且OG EF =,

即四边形OGFE 是平行四边形,所以OE FG //,又?FG 平面BED ,?OE 平面BED ,所以//FG 平面BED .

(Ⅱ)证明:在ABD ?中,0

60,2,1=∠==BAD AB AD ,由余弦定理可3=

BD ,进

而可得090=∠ADB ,即AD BD ⊥,又因为平面⊥AED 平面?BD ABCD ,平面ABCD ;平面 AED 平面AD ABCD =,所以⊥BD 平面AED .又因为?BD 平面BED ,所以平面⊥BED 平面AED .

(Ⅲ)解:因为AB EF //,所以直线EF 与平面BED 所成角即为直线AB 与平面BED 所成角.过点A 作DE AH ⊥于点H ,连接BH ,又因为平面 BED 平面ED AED =,由(Ⅱ)知⊥AH 平面BED ,所以直线AB 与平面BED 所成角即为ABH ∠.在ADE ?中,

6,3,1===AE DE AD ,由余弦定理可得3

2

cos =

∠ADE ,所以35sin =∠ADE ,因

此35sin =

∠?=ADE AD AH ,在AHB Rt ?中,65

sin ==∠AB AH ABH ,所以直线AB

与平面BED 所成角的正弦值为

6

5

9.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,BA BD ==,2AD =,

PA PD ==E ,F 分别是棱AD ,PC 的中点.

(Ⅰ)证明: EF ∥平面PAB ; (Ⅱ)若二面角P AD B --为60, (ⅰ)证明:平面PBC ⊥平面ABCD ; (ⅱ)求直线EF 与平面PBC 所成角的正弦值.

9.【解析】(Ⅰ)证明:如图取PB 中点M ,连接MF ,AM .因为F 为PC 中点,

故MF //BC 且MF =

1

2

BC .由已知有BC //AD ,BC =AD .又由于E 为AD 中点, 因而MF //AE 且MF =AE ,故四边形AMFE 为平行四边形, 所以EF //AM ,又AM ?平面PAB ,而EF ?平面PAB , 所以EF //平面PAB .

(Ⅱ)(i )证明:连接PE ,BE .因为PA =PD ,BA =BD ,而E 为AD 中点, 故PE ⊥AD ,BE ⊥AD ,所以∠PEB 为二面角P -AD -B 的平面角.在三角形PAD 中,

由2,AD PA PD ===PE =2.

在三角形ABD 中,由BA BD ==

BE =1.

在三角形PEB 中,PE =2,BE =1,60PEB ∠=,

由余弦定理,可解得PB 90PBE ∠=,即BE ⊥PB ,

又BC //AD ,BE ⊥AD ,从而BE ⊥BC ,因此BE ⊥平面PBC .又BE ?平面ABCD , 所以平面PBC ⊥平面ABCD .

(ii )连接BF ,由(i )知BE ⊥平面PBC .所以∠EFB 为直线EF 与平面PBC 所成的角,

由PB PA ,AB 得∠ABP 为直角,而MB =1

2

PB ,可得AM ,

故EF ,又BE =1,故在直角三角形EBF 中,sin BE EFB EF ∠==

所以直线EF 与平面PBC . 10.如图,在四棱锥P -ABCD 中,PA ⊥面ABCD ,AB =BC =2,AD =CD =7,PA =3,∠ABC =120°,

G 为线段PC 上的点.

(Ⅰ)证明:BD⊥面A P C ;

(Ⅱ)若G是PC的中点,求DG与APC所成的角的正切值;

(Ⅲ)若G满足PC⊥面BGD,求PG

GC

的值.

10.【解析】(Ⅰ)设点O为AC,BD的交点,

由AB=BC,AD=CD,得BD是线段AC的中垂线.

所以O为AC的中点,BD⊥AC.

又因为PA⊥平面ABCD,BD?平面ABCD,

所以PA⊥BD.所以BD⊥平面APC.

(Ⅱ)连结OG.由(1)可知OD⊥平面APC,则DG在平面APC内的射影为OG,所以∠OGD是DG与平面APC所成的角.

由题意得OG=1

2 PA

在△ABC中,AC

所以OC=1

2

AC

.

在直角△OCD中,OD

2.

P

D B

在直角△OGD 中,tan ∠OGD

3

OD OG =. 所以DG 与平面APC

. (Ⅲ)连结OG .因为PC ⊥平面BGD ,OG ?平面BGD ,所以PC ⊥OG . 在直角△PAC 中,得PC

所以GC

AC OC PC ?=从而PG

, 所以

3

2

PG GC =. 11.如图,在平行四边形ABCD 中,AB =2BC ,∠ABC =120°.E 为线段AB 的中点,

将△ADE 沿直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C '的中点.

(Ⅰ)求证:BF ∥平面A DE ';

(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的余弦值. 11.【解析】 (Ⅰ)取A D '的中点G ,连结GF ,CE ,由条件易知

FG ∥CD ,FG =

12CD .BE ∥CD ,BE =1

2

CD .所以FG ∥BE ,FG =BE . 故四边形BEGF 为平行四边形,所以BF ∥EG .

因为EG ?平面'A DE ,BF ?平面'A DE ,所以 BF//平面'A DE . (Ⅱ)解:在平行四边形,ABCD 中,设BC=a ,则AB=CD=2a ,AD=AE=EB=a , 连CE ,因为0120ABC ∠=.

在△BCE 中,可得CE a , 在△ADE 中,可得DE =a ,

在△CDE 中,因为CD 2

=CE 2

+DE 2

,所以CE ⊥DE , 在正三角形'A DE 中,M 为DE 中点,所以A M '⊥DE . 由平面'A DE ⊥平面BCD , 可知A M '⊥平面BCD , A M '⊥CE . 取A E '的中点N ,连线NM 、NF , 所以NF ⊥DE ,NF ⊥A M '. 因为DE 交A M '于M , 所以NF ⊥平面'A DE ,

则∠FMN 为直线FM 与平面'A DE 新成角.

在Rt △FMN 中,NF a , M N =1

2

a , FM =a , 则cos FMN ∠=

12

. 所以直线FM 与平面'A DE 所成角的余弦值为12

高中数学-立体几何-线面角知识点

WORD文档 立体几何知识点整理 一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 l l A l α α α 二.平行关系: 1. 线线平行: 方法一:用线面平行实现。 l l // l l // m m m 方法二:用面面平行实现。 // l l l // m β m γ m α 方法三:用线面垂直实现。 若l ,m ,则l // m 。 方法四:用向量方法: 若向量l 和向量m 共线且l、m 不重合,则l // m 。 2. 线面平行: 方法一:用线线平行实现。 l // m m l // l

l β// l // α l 方法三:用平面法向量实现。n l 若n为平面的一个法向量,n l 且l,则l // 。 α 2.面面平行: 方法一:用线线平行实现。 l // // , m ', m l l 且相交 且相交 // α l βm l' m' 方法二:用线面平行实现。l // // m // β l m l ,m 且相交 α三.垂直关系: 3.线面垂直:

l AC l l AC AC, A l A α C B 方法二:用面面垂直实现。 β l m l m l m,l α

3.面面垂直: 方法一:用线面垂直实现。 l βl C θ l α A B 方法二:计算所成二面角为直角。 4.线线垂直: 方法一:用线面垂直实现。 l l m l m α m 方法二:三垂线定理及其逆定理。 P PO l OA l PA l A O l α 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则l m 。 三.夹角问题。 (一)异面直线所成的角: (1)范围:(0 ,90 ] (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: a c cos 2 a 2 b 2ab 2 c θ b (计算结果可能是其补角)

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

高考立体几何大题20题汇总情况

高考立体几何大题20 题汇总情况 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

(2012江西省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5, BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体C DEFG 的体积。 2012,山东(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 2012浙江20.(本题满分15分)如图,在侧棱锥垂直 底面的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中 点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (第20题图) F E C 1 B 1 D 1A 1 A D B C

(2010四川)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; 2010辽宁文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

新课标高考立体几何线面角的计算归类分析知识分享

新课标高考立体几何——线面角的计算归类分析 深圳市第二实验学校 李平 作者简介 李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。深圳市“技术创新能手”称号、深圳市高考先进个人。在教材教法、高考研究、教材编写等方面成效显著。主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。 摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力. 关键词 线面角 空间角 平移法 等体积法 空间向量方法 线面角——直线和平面所成的角 1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角. 若直线l ⊥平面α, 则l 与α所成角为90?; 若直线l //平面α或直线l ?平面α, 则l 与α所成角为0?. 2.线面角的范围: [0]2 π ,. 3.线面角的求法: (1)定义法(垂线法). (2)虚拟法(等体积法). (3)平移法. (4)向量法. 线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中. 求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法. 总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分

高三立体几何大题(可编辑修改word版)

立体几何大题专题训练 1.已知PA⊥矩形ABCD 所在平面,M、N 分别是AB.PC 的中点. (1)求证:MN⊥CD; (2)若∠PDA=45°,求证MN⊥面PCD 2.如图,在底面为平行四边形的四棱锥P -ABCD ,AB ⊥AC ,PA ⊥平面ABCD ,且PA =AB ,点E 是PD 的中点.。 (Ⅰ)求证:AC ⊥PB ; (Ⅱ)求证:PB //平面AEC ;

3.如图,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC, F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD . 4.如图,棱柱ABCD-A1B1C1D1的底面ABCD 为菱形,平面 AA1C1C⊥平面ABCD. (1)证明:BD⊥AA1; (2)证明:平面AB1C//平面DA1C1 (3)在直线CC1上是否存在点P,使BP//平面DA1C1?若 存在,求出点P 的位置;若不存在,说明理由.

D C 5.(本小题满分 12 分)如图所示,正方形 ADEF 与梯形 ABCD 所在的平面互相垂直, AD ⊥ CD , AB // CD , CD = 2 AB = 2 AD . (Ⅰ)求证: BC ⊥ BE ; E (Ⅱ)在 EC 上找一点 M ,使得 BM // 平面 ADEF ,请确 定 M 点的位置,并给出证明. F A B 6、(本小题满分 12 分)如图:直三棱柱 ABC -A 1B 1C 1 中, AC =BC =AA 1=2, ∠ACB =90?.E 为 BB 1 的中点,D 点在 AB 上且 DE = 3. (Ⅰ)求证:CD ⊥平面 A 1ABB 1; (Ⅱ)求三棱锥 A 1-C DE 的体积.

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

高三立体几何大题线面角专题

高三立体几何专题 1.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,, (Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值. 1.解析 (Ⅰ)连接,易知,.又由, 故,又因为平面,平面,所以平面. (Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故. 又已知,,所以平面. (Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角, 因为为等边三角形,且为的中点,所以 又, 故在中,. 所以,直线与平面所成角的正弦值为 . 2.如图 ,已知三棱柱,平面平面,, 分别是AC ,A 1 B 1的中点. (1)证明:; (2)求直线EF 与平面A 1BC 所成角的余弦值. P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD =G H ,PB AC ,GH ∥PAD PA ⊥PCD AD PAC BD AC BD H =BH DH =BG PG =GH PD ∥GH ?PAD PD ?PAD GH ∥PAD PC N DN DN PC ⊥PAC ⊥PCD PAC PCD PC =DN ⊥PAC PA ?PAC DN PA ⊥PA CD ⊥CD DN D =PA ⊥PCD AN DN ⊥PAC DAN ∠AD PAC PCD △2CD =N PC DN =DN AN ⊥Rt AND △sin 3 DN DAN AD ∠= =AD PAC 3 111ABC A B C -11A ACC ⊥ABC 90ABC ∠=?11 30,,,BAC A A AC AC E F ∠=?==EF BC ⊥

高三精选立体几何大题(含详细解答)

立体几何大题训练 1.如下图,一个等腰直角三角形的硬纸片ABC 中,∠ACB =90°,AC =4cm ,CD 是斜边上的高沿CD 把△ABC 折成直二面角. (1)如果你手中只有一把能度量长度的直尺,应该如何确定A ,B 的位置,使二面角A -CD -B 是直二面角?证明你的结论. (2)试在平面ABC 上确定一个P ,使DP 与平面ABC 内任意一条直线都垂直,证明你的结论. (3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值. 解:(1)用直尺度量折后的AB 长,若AB =4cm ,则二面角A -CD -B 为直二面角. ∵ △ABC 是等腰直角三角形, (),cm 22DB AD ==∴ 又∵ AD ⊥DC ,BD ⊥DC . ∴ ∠ADC 是二面角A -CD -B 的平面角. 有时当,cm 4AB ,22DB AD === .90ADB .AB DB AD 222?=∠∴=+ (2)取△ABC 的中心P ,连DP ,则DP 满足条件 ∵ △ABC 为正三角形,且 AD =BD =CD . ∴ 三棱锥D -ABC 是正三棱锥,由P 为△ABC 的中心,知DP ⊥平面ABC , ∴ DP 与平面内任意一条直线都垂直. (3)当小球半径最大时,此小球与三棱锥的4个面都相切,设小球球心为0,半径为r ,连结OA ,OB ,OC ,OD ,三棱锥被分为4个小三棱锥,且每个小三棱锥中有一个面上的高都为r ,故有ABC O ABD O ADC O BCD O BCD A V V V V V -----+++=代入得3 6 23r -=,即半径最大的小球半径为3 6 23-. A B C 第1题图 A B C D 第1题图

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

高考立体几何大题

高考立体几何大题 1如图,在底面 就是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 就是PD 的中点、 (I)证明PA ⊥平面ABCD,PB ∥平面EAC; (II)求以AC 为棱,EAC 与DAC 为面的二面角θ的正切值、 (04湖南18) 2如图,在棱长为1的正方体ABCD —A 1B 1C 1D 1中,AC 与BD 交于点E,CB 与CB 1交于点F 、(I)求证:A 1C ⊥平BDC 1;(II)求二面角B —EF —C 的大小(结果用反三角函数值表示)、 3在三棱锥S —ABC 中,△ABC 就是边长为4的正三角形,平面SAC ⊥平面ABC,SA=SC=22,M 为AB 的中点、 (Ⅰ)证明:AC ⊥SB; (Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面SCM 的距离、 (04福建1) 4如图,P —ABC 就是底面边长为1的正三棱锥,D 、E 、F 分别为棱长PA 、PB 、PC 上的点, 截面DEF ∥底面ABC, 且棱台DEF —ABC 与棱锥P —ABC 的棱长与相等、(棱长与就是指多面体中所有棱的长度之与)(1)证明:P —ABC 为正四面体;(2)若PD= 2 1 PA, 求二面角D —BC —A 的大小;(结果用反三角函数值表示) 5(本小题满分12分)如图,四棱锥P-ABCD 的底面就是正方形, ,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面(1) 证明MF 就是异面直线AB 与PC 的公垂线; (2)若3PA AB =,求二面角E —AB —D 平面角、 6 6如图,在四棱锥ABCD P -中,底面ABCD 就是正方形,侧棱⊥PD 底面ABCD,DC PD =,E 就是PC 的中点。 (1)证明//PA 平面EDB;(2)求EB 与底面ABCD 所成的角的正切值。 D E P B A C

立体几何线面角专题

立体几何线面角专题(五十八) 1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱B 1C 1,C 1D 1 的中点.试求: (1)AD 1与EF 所成角的大小; (2)AF 与平面BEB 1所成角的余弦值; (3)二面角C 1-DB -B 1的正切值. 答案 (1)60° (2)223 (3)22 思路 解析 建立如图所示的空间直角坐标系,则B 1(0,0,0),A(1,0, 1),B(0,0,1),D 1(1,1,0),E(0,12,0),F(12 ,1,0),D(1,1,1). (1)因为AD 1→=(0,1,-1),EF →=(12,12,0), 所以cos AD 1→,EF →=(0,1,-1)·(12,12,0)2×22=12, 即AD 1与EF 所成的角为60°. (2)FA →=(12,-1,1),由图可得,BA →=(1,0,0)为平面BEB 1的一个法向量,设AF 与平面BEB 1所成的角为θ, 则sin θ=|cos BA →,FA →|=|(1,0,0)·(12,-1,1)1×(12)2+(-1)2+12|=13,所以cos θ=223. (3)设平面DBB 1的法向量为n 1=(x ,y ,z),

DB →=(-1,-1,0),B 1B →=(0,0,1), 由?????n 1⊥DB →,n 1⊥B 1B →,得?????n 1·DB →=-x -y =0, n 1·B 1B →=z =0, 令y =1,则n 1=(-1,1,0). 同理,可得平面C 1DB 的一个法向量为n 2=(-1,1,1). 则cos n 1,n 2=(-1,1,0)·(-1,1,1)2×3=63. 所以tan n 1,n 2=22. 2.如图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC. (1)求证:BC ⊥平面PAC ; (2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的余弦值; (3)是否存在点E 使得二面角A -DE -P 为直二面角?并说明理由. 答案 (1)略 (2)144 (3)存在点E 解析 方法一:(1)∵PA ⊥底面ABC , ∴PA ⊥BC.又∠BCA =90°, ∴AC ⊥BC ,∴BC ⊥平面PAC. (2)∵D 为PB 的中点,DE ∥BC , ∴DE =12 BC. 又由(1)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E. ∴∠DAE 是AD 与平面PAC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB. 又PA =AB ,∴△ABP 为等腰直角三角形. ∴AD =12 AB. 在Rt △ABC 中,∠ABC =60°.∴BC =12 AB.

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

历年高考立体几何大题试题(卷)

2015年高考立体几何大题试卷 1. 【2015高考新课标2,理19】 如图,长方体ABCD -A1B1C1D1中,AB=16, BC=10, AA = 8,点E , F 分别在AB , C1D1上,A1E =4 .过点E , F的平面:-与此长方体的面相交,交线围成一个正方形. (1题图) (I )在图中画出这个正方形(不必说出画法和理由) (n )求直线AF与平面〉所成角的正弦值. 2. 【2015江苏高考,16】如图,在直三棱柱ABC—中,已知AC丄BC ,

BC =CC 1,设 AB 1 的中点为 D , BQ BC^ E .求证:(1) DE // 平面 AA 1C 1C ; (2) BC 1 _ AB 1 . (2题图) (3题图) C C 第的题图

3. 【2015高考安徽,理19】如图所示,在多面体 AEDQCBA ,四边形AABB , ADD 1A 1 ,ABCD 均为正方形,E 为Bp 的中点,过 A,D,E 的平面交CD ,于F. (I)证明:EF //BQ ; (□)求二面角E - A ,D - B i 余弦值. 4. 【2015江苏高考,22】如图,在四棱锥P-ABCD 中,已知PA _平面ABCD ,且 四边形 ABCD 为直角梯 形,.ABC =/BAD = —,PA 二 AD =2,AB 二 BC =1 2 (1)求平面PAB 与平面PCD 所成二面角的余弦值; (2)点Q 是线段BP 上的动点,当直线 CQ 与DP 所成角最小时,求线段 BQ 的长 (4题图) 5 .【2015高考福建,理17】如图,在几何体 ABCDE 中,四边形ABCD 是矩形,AB A 平面BEC , BE A EC , AB=BE=EC=2 , G , F 分别是线段 BE , DC 的中点. (I 求证:GF //平面ADE ; (^)求平面AEF 与平面BEC 所成锐二面角的余弦值. 6. 【2015高考浙江,理17】如图,在三棱柱 AB^A 1B 1C 1-中,.BAC =90;, AB = AC=2 , AA = 4 , A 在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点. (5题图) D

文科立体几何线面角二面角专题_带答案

文科立体几何线面角二面角专题 学校: ___________ 姓名:____________ 班级:____________ 考号: ___________ 一、解答题 1 .如图,在三棱锥,「中,肚一二/,举一厂:- H-钗-化为的中点. (1)证明:卜「"-L平面; (2)若点鮎在棱吃上,且二面角材-PA弋为剜,求PC与平面P3所成角的正弦值. 2 ?如图,在三棱锥|P"BC中,嗣訂0 2辽,"",卩<:"04,0为蚯的中点. (1)证明:P°丄平面 (2 )若点皿在棱比上,且MC = 2^B,求点匕到平面P°何的距离. 3 . (2018 年浙江卷)如图,已知多面体ABCAiBiCi , AiA , BiB , CiC均垂直于平 面ABC,/ ABC=120 ° , AiA=4 , CiC=1 , AB=BC=B iB=2 . (I)证明:ABi丄平面A1B1C1 ; (H)求直线ACi与平面ABB i所成的角的正弦值. 4 .如图,在三棱柱ABC_A i B i C i中,点p, G分别是& 叽的中点,已知吗丄平面 AAJ B#] A.B, A#」 ABC , = =3 , = =2. (I)求异面直线与AB所成角的余弦值;

(II)求证:丄平面吆匚』i; (III )求直线吒丄与平面BCG%所成角的正弦值

5 ?如图,四棱锥P-AB8,底面ABCO是正方形,PA = PD"E = 1 , PAPO型,E ,卜分 别是阳,8的中点? (1)求证; (2)求二面角匚的余弦值. 6 ?如图,三棱柱ABC-A i B i C i中,侧棱吗丄底面ABC ,且各棱长均相等D , E , F分别为 棱’?,, 的中点? (1)证明:?平面’ ; (2)证明:平面珀8」平面气曾; (3)求直线I町I与直线所成角的正弦值? 7 .如图,在四边形ABCD 中,AB//CD ,/ AB D=30 ° , AB = 2CD = 2AD = 2 , DE 丄平面ABCD , EF// BD,且BD = 2EF . (I)求证:平面ADE丄平面BDEF ; (H)若二面角C BF D的大小为60。,求CF与平面ABCD所成角的正弦值. P-A0CD 中PA 丄平面A9CD PA = AB = BC = AD = CD = 1 8 .如图,在四棱锥

高考立体几何大题20题汇总

(2012省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积。 2012,(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 201220.(本题满分15分)如图,在侧棱锥垂直底面 的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (2010)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; (第20题图) F E C 1 B 1 D 1A 1 A D B C

2010文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。 2012(18)(本小题满分12分) 如图,直三棱柱/ / / ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的 中点。 (Ⅰ)证明:MN ∥平面/ / A ACC ; (Ⅱ)求三棱锥/ A MNC -的体积。 (椎体体积公式V= 1 3 Sh,其中S 为地面面积,h 为高) 2012,(16)(本小题共14分) 如图1,在Rt ABC ?中,90C ∠=?,D ,E 分别为 AC ,AB 的中点,点F 为线段CD 上的一点,将ADE ? 沿DE 折起到1A DE ?的位置,使1A F CD ⊥,如图2. D F D E B C A 1 F E C B A

高三数学立体几何专题

立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k , =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ?+≤当且仅当2a b ==时取等号.

高考理科立体几何大题

一, [2017·山东济南调研]如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5. (1)求证:AA 1⊥平面ABC ; (2)求二面角A 1-BC 1-B 1的余弦值; (3)在线段BC 1上是否存在点D ,使得AD ⊥A 1B ?若存在,试求出BD BC 1 的值. (1)[证明] 在正方形AA 1C 1C 中,A 1A ⊥AC . 又平面ABC ⊥平面AA 1C 1C , 且平面ABC ∩平面AA 1C 1C =AC ,AA 1?平面AA 1C 1C . ∴AA 1⊥平面ABC . (2)[解] 由(1)知,AA 1⊥AC ,AA 1⊥AB , 由题意知,在△ABC 中,AC =4,AB =3,BC =5, ∴BC 2 =AC 2 +AB 2 ,∴AB ⊥AC . ∴以A 为坐标原点,建立如图所示空间直角坐标系A -xyz . A 1(0,0,4), B (0,3,0), C 1(4,0,4),B 1(0,3,4), 于是A 1C 1→=(4,0,0),A 1B →=(0,3,-4), B 1 C 1→ =(4,-3,0),BB 1→ =(0,0,4). 设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),

平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). ∴????? A 1C 1 →·n 1 =0,A 1 B →·n 1 =0 ????? ? 4x 1=0,3y 1-4z 1=0, ∴取向量n 1=(0,4,3). 由????? B 1 C 1 → ·n 2 =0,BB 1→·n 2 =0 ?? ?? ?? 4x 2-3y 2=0, 4z 2=0, ∴取向量n 2=(3,4,0). ∴cos θ= n 1·n 2|n 1||n 2|=165×5=16 25 . 由题图可判断二面角A 1-BC 1-B 1为锐角, 故二面角A 1-BC 1-B 1的余弦值为16 25 . (3)[解] 假设存在点D (x ,y ,z )是线段BC 1上一点,使AD ⊥A 1B ,且BD → =λBC 1→ , ∴(x ,y -3,z )=λ(4,-3,4), 解得x =4λ,y =3-3λ,z =4λ, ∴AD → =(4λ,3-3λ,4λ). 又AD ⊥A 1B ,∴0+3(3-3λ)-16λ=0, 解得λ=9 25, ∵9 25 ∈[0,1], ∴在线段BC 1上存在点D ,使得AD ⊥A 1B , 此时 BD BC 1=925 . 二, 如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π 2 ,PA =AD =2,AB =BC =1.

线线角、线面角,二面角(高考立体几何法宝)

1 A 1 B 1 C 1 D A B C D E F G 线线角、线面角、二面角的求法 1.空间向量的直角坐标运算律: ⑴两个非零向量与垂直的充要条件是 1122330a b a b a b a b ⊥?++= ⑵两个非零向量与平行的充要条件是 a 2 b =±|a ||b | 2.向量的数量积公式 若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a 2b =|a ||b | cos θ (2)模长公式:则2 12||a a a a a =?=++,2 ||b b b b =?=+(3)夹角公式:2 cos ||||a b a b a b a ??==?+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2 | |(AB AB x ==,A B d = ①两条异面直线a 、b 间夹角0,2πα?? ∈ ??? 在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>= 例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) A .5 15arccos B . 4 π C .5 10 arccos D .2π (向量法,传统法)

P B C A 例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 解:(1)向量法 (2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中 ,即 t a n 2PD DBA DB ∠ = =. 点评:本题是将三棱柱补成正方体'''DBCA D B C P - ②直线a 与平面α所成的角0,2πθ?? ∈ ??? (重点讲述平行与垂直的证明) 可转化成用向量→ a 与平面α的法向量→ n 的夹角ω表示,由向量平移得:若 ππ(图);若ππ 平面α的法向量→ n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤: (1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z = (3)根据法向量的定义建立关于x,y,z 的方程组(0a << (4)解方程组,取其中的一组解,即得法向量。 图1- 图1- 图1- 1 D 1 B 1 C P D B C A

相关文档
相关文档 最新文档