文档库 最新最全的文档下载
当前位置:文档库 › 安全阀的工艺计算

安全阀的工艺计算

安全阀的工艺计算
安全阀的工艺计算

安全阀的工艺计算

1各种事故工况下泄放量的计算

1.1阀门误关闭

1.1.1出口阀门关闭,入口阀门未关闭时,泄放量为被关闭的管道最大正常流量。

1.1.2管道两端的切断阀关闭时,泄放量为被关闭液体的膨胀量。此类安全阀的入口一般不大于DN25。但对于大口径、长距离管道和物料为液化气的管道,液体膨胀量按式(1.1)计算。

1.1.3换热器冷侧进出口阀门关闭时,泄放量按正常工作输入的热量计算,计算公式见式(1.1)。

1.1.4充满液体的容器,进出口阀门全部关闭时,泄放量按正常工作输入的热量计算。按式(1.1)计算液体膨胀工况的泄放量:

V=B·H/(G l·C p) (1.1) 式中:

V——体积泄放流量,m3/h;

B——体积膨胀系数,l/℃;

H——正常工作条件下最大传热量,kJ/h;

G l——液相密度,kg/m3;

C P--定压比热,kJ/(kg℃)。

1.2循环水故障

1.2.1以循环水为冷媒的塔顶冷凝器,当循环水发生故障(断水)时,塔顶设置的安全阀泄放量为正常工作工况下进入冷凝器的最大蒸汽量。

1.2.2以循环水为冷媒的其它换热器,当循环水发生故障(断水)时,应仔细分析影响的范围,确定泄放量。

1.3电力故障

1.3.1停止供电时,用电机驱动的塔顶回流泵、塔侧线回流泵将停止转动,塔顶设置的安全阀的泄放量为该事故工况下进入塔顶冷凝器的蒸汽量。

1.3.2塔顶冷凝器为不装百叶的空冷器时,在停电情况下,塔顶设置的安全阀的泄放量为正常工作工况下,进入冷凝器的最大蒸汽量的15%。

1.3.3停止供电时,要仔细分析停电的影响范围,如泵、压缩机、风机、阀门的驱动机构等,以确定足够的泄放量。

1.4不凝气的积累

1.4.1若塔顶冷凝器中有较多无法排放的不凝气,则塔顶设置的安全阀的泄放量与1.2规定相同。

1.4.2其它积累不凝气的场合,要分析其影响范围,以确定泄放量。

1.5控制阀故障

1.5.1安装在设备出口的控制阀,发生故障时若处于全闭位置,则所设安全阀的泄放量为流经此控制阀的最大正常流量。

1.5.2安装在设备入口的控制阀,发生故障时若处于全开位置时:

(1) 对于气相管道,如果满足低压侧的设计压力小于高压侧的设计压力的2/3,则安全阀的泄放量应按式(1.5)计算:

W=3171.3(C Vl—C V2)P h(G g/T)1/2 (1.5) 式中

W——质量泄放流量,k8/h;

C Vl——控制阀的Cv值,

C V2——控制阀最小流量下的Cv值;

P h——高压侧工作压力,MPa,

Gg---气相密度,kg/m3;

T——泄放温度,K。

如果高压侧物料有可能向低压侧传热,则必须考虑传热的影响。

(2)对于液相管道,安全阀的泄放量为控制阀最大通过量与正常流量之差,并

且要估计高压侧物料有无闪蒸。

1.6过度热量输入

换热器热媒侧的控制阀失灵全开、切断阀误开,设备的加热夹套、加热盘管的切断阀误开等工况下,以过度热量的输入而引起的气体蒸发量或液体的膨胀量来计。

1.7易挥发物料进入高温系统

1.7.1轻烃误入热油以及水误入热油等工况下,由于产生大量蒸汽,致使容器内的压力迅速上升。

1.7.2由于此事故工况下的泄放量无法确定而且压力升高十分迅速,所以,安装安全阀是不合适的,应设置爆破片。

1.7.3这种工况的保护措施是确保避免发生此类事故。

1.8换热器管破裂

1.8.1如果换热器低压侧的设计压力小于高压侧的设计压力的2/3时,则应作为事故工况考虑。

1.8.2根据1.8.1的条件,安全阀的泄放量按式(1.8)计算出的结果和高压侧正常流量比较,取二者的较小值。

1.8.3换热器管破裂时的泄放量

W=5.6·d2·(G l×ΔP)1/2(1.8) 式中

W——质量泄放流量,kg/h;

d——管内径,mm;

G l——液相密度,kg/m3;

ΔP——高压侧(管程)与低压侧(壳程)的压差,MPa。

本公式适用于高压流体为液相。

1.9化学反应失控

1.9.1对于放热的化学反应,如果温度、压力和流量等自动控制失灵/使化学反应失控,形成“飞温”,这时产生大量的热量,使物料急剧大量蒸发,形成超压。这类事故工况,安装安全阀无论在反应时间,还是在泄放速率方面均不能满足要求,应设置爆破片。

1.9.2如果专利所有者能提供准确的化学反应动力学关联式,推算出事故工况下的泄放量,则可以在专利所有者和建设方的同意下设置安全阀。

1.10外部火灾

1.10.1本规定适用于盛有液体的容器暴露在外部火灾之中。

1.10.2容器的湿润面积(A)

容器内液面之下的面积统称为湿润面积。外部火焰传入的热量通过湿润面积使容器内的物料气化。不同型式设备的湿润面积计算如下:

(1)卧立式容器:距地面7.5m或距能形成大面积火焰的平台之上7.5m高度范围内的容器外表面积与最高正常液位以下的外表面积比较,取两者中较小值。

a.对于椭圆形封头的设备全部外表面积为:

Ae=πD0(L+0.3D0) (1.10—1)

Ae ——外表面积,m2; Do ——设备直径,m ;

L ——设备总长(包括封头),m 。

b. 气体压缩机出口的缓冲罐一般最多盛一半液体,湿润表面为容器总表面

积的50%。

c. 分馏塔的湿润表面为塔底正常最高液位和7.5m 高度内塔盘上液体部分

的表面积之和。

(2) 球型容器:球型容器的湿润面积,应取半球表面积或距地面7.5m 高度下表面积二者中的较大值。

(3) 湿润面积包括火灾影响范围内的管道外表面积。 1.10.3 容器外壁校正系数(F)

容器壁外的设施可以阻碍火焰热量传至容器,用容器外壁校正系数(F)反映其 对传热的影响。

(1) 根据劳动部颁发的《压力容器安全技术监察规程》(1991年1月1日施行) 中规定:

a .容器在地面上无保温:F =1.0 b. 容器在地面下用砂土覆盖:F =0.3

c. 容器顶部设有大于10l /(m 2·min)水喷淋装置:F=0.6 d .容器在地面上有完好保温,见式(1.10—4)。 (2) 根据美国石油学会标准API —520:

a .容器在地面上无保温:F =1.0

b .容器有水喷淋设施:F =1.0

c .容器在地面上有良好保温时,按式(1.10—2)计算: ()6

4.2904.410

F t d

λ

-=?- (1.10—2)

式中:

λ——保温材料的导热系数,kJ /(m ·h ·℃); do ——保温材料厚度,m ; t ——泄放温度,℃。

d . 容器在地面之下和有砂土覆盖的地上容器,(F)值按式(1.10—2)

计算,将其中的保温材料的导热系数和厚度换成土壤或砂土相应的数值。 另外,保冷材料一般不耐烧,因此,保冷容器的外壁校正系数(F)为1.0。 1.10.4 安全泄放量

(1)根据劳动部颁发的《压力容器安全技术监察规程》(1991年1月1日施行)中规定: a.无保温层

5

0.82

2.5510l

F W A

H

???=

(1.10—3)

式中:W -泄放量,kg /h :

H l -泄放条件下的汽化热,kJ /kg : A -润湿面积,m 2;

F -容器外壁校正系数,取1.10.3(1)中的取值

b.有保温层

0.82

2.61(650)l t W A d H λ?-??=

? (1.10—4)

式中:t -泄放温度,℃:

λ-保温材料的导热系数; d 0-保温材料的厚度,m 。

(2) 根据美国石油学会标准API -520中规定:对于有足够的消防保护措施和 有能及时排走地面上泄漏的物料措施时,容器的泄放量为:

5

0.82

1.55510l

F W A

H

???=

(1.10—5)

否则,采用式(1.10—6)计算:

5

0.82

2.5510l

F W A

H

???=

(1.10—5)

式中符号同式(1.10—3),F 取1.10.3(2)中的取值。

2

最小泄放面积的计算

2.1 计算的最小泄放面积为物料流经安全阀时通过的最小截面积。对于全启式安 全阀为喉径截面积,对于微启式安全阀为环隙面积。

2.2 根据劳动部颁发的《压力容器安全技术监察规程))(1991年1月1 13施行)中规

定:

(1) 对于气体、蒸汽在临界条件下的最小泄放面积为: 0

13.16W ZT

a X P M C =?? (2.2—1) 式中:

a ——最小泄放面积,mm 2; W ——质量泄放流量,kg /h , X ——气体特性系数; P ——泄放压力,MPa Z ——气体压缩因子, T ——泄放温度,K ; M ——分子量。

流量系数(C 0)由制造厂提供。若没有制造厂的数据时,对于全启式安全阀C 0= 0.6~0.7;对于带调节圈的微启式安全阀:C 0= 0.4~0.5;对于不带调节圈的微启式安全阀:C 0= 0.25~0.35。

气体特性系数(X)见附表1。 气体压缩因子(Z)查附图2。

(2) 根据计算的最小泄放面积(a),计算安全阀喉径(d 1)或阀座口径(D) a .对于全启式安全阀 2

1

4

a d π=

(2.2—2)

b. 对于平面密封型微启式安全阀

a Dh π= (2.2—3) c . 对于锥面密封型微启式安全阀

sin a Dh π?= (2.2—4) 式中:

d ——安全阀喉径,mm h ——安全阀开启高度,mm D ——安全阀的阀座口径,mm ?—密封面的半锥角,度。

2.3 根据美国石油学会标准API —520中的规定如下: 2.

3.1 临界条件的判断

如果背压满足式(2.3—1),则为临界流动,否则为亚临界流动。

1

21k

k b cf P k P P -??

≤=?

?+??

(2.3—1)

式中:

P b ——背压,MPa

P cf ——临界流动压力,MPa P ——泄放压力,MPa K ——绝热指数。

2.3.2 气体或蒸气在临界流动条件下的最小泄放面积

013.16b

W ZT

a X P M C K =

??? (2.3—2) 式中

a ——最小泄放面积,mm 2; W ——质量泄放流量,kg /h ;, Co--流量系数; X ——气体特性系数; P ——泄放压力,MPa K

b 一背压修正系数; T ——泄放温度,K ; Z ——气体压缩因子; M ——分子量。

流量系数(Co)由制造厂提供,若没有制造厂的数据,则取Co =0.975。系数(X) 式(2.3—3)计算或查附表1。

11

25201k k X k k +-??

= ?

+??

背压修正系数(Kb)仅用于波纹管背压平衡式安全阀(查附图1)临界流动条件下,对于弹簧式安全阀K b =1.0。 气体压缩因子(Z)查附图2所示。

部分物料的绝热指数(k)见附表2,若没有k 的数据,则X =315。 2.3.3 气体或蒸气在亚临界条件下的最小泄放面积

(1)式(2.3—4)适用于导阀式安全阀和弹簧设定时考虑了静背压的影响的弹簧式安全阀,在亚临界流动条件下的最小泄放面积的计算;

2

01.8()

10

b f W ZT

a MP P P C K -=??-—4)

亚临界流动系数(K f )查附图3。

流量系数(Co)值由制造厂提供,若没有制造厂数据时,Co =0.975,其它符号同前。

(2) 简便计算弹簧式安全阀在亚临界流动条件下的最小泄放面积时,可先按临界流动条件下的式(2.3—2)计算,再将计算结果除以按图附图4查得的背压修正系数(Kb),即为亚临界条件下的最小泄放面积。

(3) 背压平衡式安全阀在亚临界流动时的最小泄放面积按式(2.3—2)计算,但背压修正系数(Kb)应由制造厂提供。 2.3.4 水蒸汽

0.19

sh

N

W

a C P K

K =??? (2.3—5)

流量系数(Co)值由制造厂提供,若无制造厂数据时,Co =0.975。 过热蒸汽过热系数(K sh )查附表3,对于饱和蒸汽,K sh =1.0。 Napier 系数(K N )按下述要求选取: P ≤10.44MPa 时,K N =1.0 10.44Mpa <P ≤22.17MPa 时,K N =27.6371000

33.2341061

P P --

其余符号意义同前。 液体

0l

b

P W V

W

a P P G

C K K K =???-—6)

超压系数(Kp)查附图5所示。

背压修正系数(K w ),对弹簧式安全阀K w =1.0;对于波纹管背压平衡式安全阀, K w 查附图6。

粘度修正系数(K V )查附图7。

流量系数(Co)对于按美国机械工程师协会ASME第Ⅷ部分第1分篇或国标GBl50—89设计的容器上安装的安全阀,Co=0.65,

其它(如管道上)安装的安全阀,Co=0.62。

计算泄放压力(P)时所用的超压,对于按ASME第Ⅷ部分第1分篇或国标GBl50—89设计的容器,超压为10%,其它(如管道上)安装的安全阀,超压为25%。其余符号同前。

2.3.5两相流体

(1) 气—液平衡态的两相流体,流经阀体时部分液体要产生闪蒸,闪蒸现象会降低阀门的质量流通能力。泄放量的计算方法如下:

a.确定闪蒸量:分别计算液相自泄放压力经绝热过程至临界压力下和至背压下的闪蒸量,取小者。

b.用闪蒸的气量和泄放时混合物中的气量之和,根据背压情况及安全阀的型式等,按照式(2.3—2)或(2.3—4)计算气相所需的最小泄放面积。

c.根据式(2.3—6)计算液相所需的最小泄放面积。

d.将b和c项的计算结果相加,即为所需的最小泄放面积。

(2)背压对安全阀的上述计算过程有很大的作用,因此:

a. 应仔细计算泄放管道中两相流体的压力降,

b.管道压力降的产生,会使部分液体继续气化,

c.来自冷冻(如液化气的排放)的物料排放系统,在排放管道中有时会产生液滴和低温;

d.对于气相处于临界条件下泄放时,计算液相泄放量时背压取临界压力(P cf)(见式2.3—1)。

3储存气体容器的安全阀

3.1无湿润表面的容器在外部火灾情况下,容器将在短时间内由于金属材料的软化而发生破坏。设置安全阀将不能独立保护这类容器不受损坏,仅能在短时间内(金属软化之前)起作用。因此要采取其它的办法如外保温、水喷淋或自动/手动泄压系统(安装控制阀)。

3.2无湿润表面的容器在外部火灾情况下的泄放量

()1.25

1.1506

1

8.764

w W MP T T A

T

=- (3.2-1)

暴露面积(A 1)为距地面或能形成大面积火焰的平台上方7.5m 以下的容器外表面。

金属壁温(Tw):对于碳钢为593℃(866K) 泄放温度(T)根据理想气体状态方程计算。 9.0.3最小泄放面积 1

576.7F a P

A '= (3.3-1)

泄放阀因子(F ')按式(3.3-2)计算,F '的最小值为0.01。如果F '没有足够的数据进行计算,则F '取0.045。

()

1.25

0.6506

00.2w T T F X C T -= (3.3—2)

上式中流量系数(Co)由制造厂提供。若没有制造厂的数据时,Co 取0.975。气体特性系数(X)查附表1。 上述各式的其它符号同前。

4

安全阀出口反力的计算和反力数据表

4.1 安全阀出口反力的计算

物料泄放时,流体的流动会对排放管道产生一作用力,并通过排出管道传至安全阀;进而以力矩的形式通过安全阀入口管道传至设备接管。这个力和力矩是否对安全阀的进出口管道和设备的接管、法兰产生不良影响(如容器是否要补强等),需要进行详细的计算后确定。

作用力的大小与物料泄放至大气还是泄放至密闭系统有很大关系。 4.1.1 气相物料泄放至大气对于可压缩流体(气体或蒸汽)临界稳态流动,且物料流经安全阀后经一段水平管、一个90o 长半径弯头、一段垂直立管排入大气,如图4.1所示,作用力(f)按式(4.1—1)计算:

6021.021010(1)kT

f W A P k T

-=????+ (4.1—1)

式中:

f ——泄放反力,N ,

Ao ——泄放管出口截面积,mm 2, P 2——泄放管出口静压力,MPa(表); k ——绝热指数。 其余符号意义同前。

4.1.2 气相物料泄放至密闭系统泄放至密闭系统的稳态流动,在排出管中一般不会产生大的作用力和力矩,仅计算管径突然扩大位置的作用力。如果需要计算泄放至密闭系统的作用力,则应采用复杂的非稳态分析方法,可从专门资料中查阅。 4.2 液相物料的泄放反力液体泄放时在安全阀出口中心线处的水平反力(f)按式(4.2—2)计算:

20.694f P a =?? (4.2—2) 式中:

f ——泄放反力,N , P ——泄放压力,MPa ; a 2——安全阀喉径面积,mm 2。

4.3 出口管道由于泄放时的作用力、振动和自身的自重、热胀冷缩等原因,应设支架支撑。

附表1: 气体特性系数表

k X

k X

k X

k X

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.1l 1.12 1.13 1.14 1.15

317 318 319 320 321 322 323 325 326 327 328 329 330 33l 332

1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45

348 349 350 351 352 353 353 354 355 356 357 358 359 360 360

1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75

373 374 375 376 376 377 378 379 379 380 38l 382 382 383 384

1.9l 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99

2.00

395 395 396 397 397 398 398 399 400 400

注:管线支撑应尽可能靠近放空管中心线

1.16 1.17 1.18 1.19 1.20 1.2l 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

1.46

1.47

1.48

1.49

1.50

1.51

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.60

361

362

363

364

365

365

366

367

368

369

369

370

371

372

373

1.76

1.77

1.78

1.79

1.80

1.8l

1.82

1.83

1.84

1.85

1.86

1.87

1.88

1.89

1.90

384

385

386

386

387

388

389

389

390

39l

39l

392

393

393

394

附表2:部分物料的物性表

物料分子量

比重

临界压力

MPa

临界温度

K

绝热指数

P

V

k

C

C

气相液相

醋酸

丙酮

乙炔

空气

1,3一丁二烯丁烷

异丁烷

二氧化碳

二硫化碳

一氧化碳

环己烷

癸烷

乙烷

乙醇

氯乙烷

乙烯

氟利昂11

氟利昂12

氟利昂22

氟利昂114 氦

己烷

氯化氢

硫化氢

煤油

甲烷

甲醇

丁烷

氯甲烷

天然气

硝酸

一氧化氮

二氧化氮

壬烷

辛烷

戊烷

丙烷

丙烯

水蒸汽

苯乙烯

二氧化硫

硫酸

甲苯

60.05

26.04

28.97

17.03

39,94

78.1l

54.09

58.土2

58.12

44.01

76.13

28.00

70.90

84.16

142.28

30.07

46.07

64.52

28.05

137.37

120.92

86.48

170.93

4.00

86.17

36.50

2.016

34.07

16.04

32.04

72.15

50.49

19

30.00

28.00

44.00

128.25

114.22

32.00

72.15

44.09

42.08

18.02

104.14

64.06

92.土3

2.071

0.898

1

0.587

1.381

2.89

1.922

2.007

2.007

工.53

2.628

0.967

2.45

2.905

4.91

1.05

1.59

2.22

0.997

4.742

4.174

2.985

5.90

0.138

2.97

1.27

0.070

1.19

0.555

1.11

2.49

1.742

0.656

L 036

0.967

1.519

4.43

3.94

1.10

2.49

1.55

1.476

0.622

3.60

2.26

3.18

1.049

0.791

0.817

1.65

0.879

0.621

0.579

0.557

1.101

1.263

0.814

1.56

0.779

0.734

0.546

0.789

0.903

0.566

1.494

1.486

1.419

1.538

0.659

0.0709

0.815

0.415

0.792

0.625

0,952

1.502

1.269

1.026

1.226

0.718

0.707

1.426

0.631

0.585

0.609

1.00

0.906

1.434

1.834

0.866

5.78

4.72

6.24

3.76

11.28

4.9

4,92

4.33

3.8

3.65

7.39

7.9

3.5

7.7l

4.05

4.88

6.38

5.27

5.07

4.37

4.115

4.94

3.26

0.229

3.03

8.26

1.29

9.0

4.64

7.95

3.33

6,68

6.48

3.4

7,26

2.49

5.08

3.37

4.25

4.61

22.13

7.88

4.21

594.8

508.7

309

132

405.5

151

562

425

425.2

408.1

304

546

134

417

553

619

305.5

516

460

282.4

469

385

369

419

5.3

507.9

324

33.3

273.6

191.1

513

461

416

180

125.8

309.7

595.7

569.4

154.8

469.8

370

364.6

647

647

430

594

1.15

1.26

1.40

1.33

1.67

1.12

1.12

1.094

1.094

1.30

1.21

1.40

1.36

1.09

1.03

1.22

1.13

1.19

1.26

1.14

1.14

1.18

1.09

1.66

1.06

1.4l

1.41

1.32

1.31

1.20

1.08

1,20

1.27

1.40

1.40

1.30

1.04

1.05

1.40

1.07

1.13

1.15

1.324

1.07

1.29

1.09

sh

温度定压饱和

温度200220240260280300320340360380400420440460480

0.5 MPa

1.0 MPa 1.5 MPa 1.005

0.978

0.977

0,996

0.981

0.976

0.972

0.983

0,970

0.951

0.960

0.972

0,93l

0,938

0,947

0.913

0.919

0,925

0.896

0.901

0,906

0.879

0.884

0.888

0.864

0.868

0.872

0.849

0.853

0.856

0.835

0.838

0.84l

0.822

0.825

0.828

2.0 MPa0.9720.9670.9640.9550.9320,9120.8930,8760.8600.8450.8300.8170.8040.7920.780

2.5 MPa

3.0 MPa 0.969

0.967

0.961

0.962

0,961

0.957

0.937

0.949

0,918

0.924

0.898

0.903

0.880

0.885

0.863

0.867

0.848

0.851

0,833

0.836

0.819

0.822

0.806

0.808

0.793

0.795

0,782

0.783

4.0 MPa0.9650,9580.9540.9340,9150.8940.8750.8570.84l0.8260,8130.7990.787

5.0 MPa

6.0 MPa 0.966

0.968

0.955

0.962

0.953

0.953

0.927

0,941

0.904

0.911

0,884

0.89l

0.865

0,872

0.848

0.854

0.832

0.838

0.817

0.822

0.803

0.808

0.790

0.794

7.0 MPa

8.0 MPa 0.971

0.975

0,958

0.967

0.954

0.956

0.924

0.937

0.901

0.912

0.88l

0.888

0.86l

0.868

0.844

0.850

0.827

0.833

0.812

0.817

0.798

0.802

9.0 MPa

10.0 MPa 0.980

0.986

0.962

0.97l

0.957

0,96l

0.926

0.936

0.897

0.909

0.876

0.883

0.856

0.863

0.838

0.844

0.822

0.827

0.807

0.811

附表4 喉径代号与喉径截面积关系

喉径代号

喉径截面积

mm2in2

D E F G H J K L M N P Q R T

71

126

198

324

506

830

1185

1840

2322

2800

4116

7192

l0322

16774

0.110

0.196

0.307

0.503

0.785

1.287

1.838

2.853

3.60

4.34

6.38

l1.05

16.0

26.0

附图1 波纹管背压平衡式安全阀的背压修正系数表(用于气体或蒸汽)

Kb=(有背压时的泄放量)/ (无背压时的泄放量)

注:背压修正系数Kb应由制造常提供。若没有制造厂的数据时,可参考本图。本曲线适用于设定压力大于0.34MPa(表)的临界流动,在适用范围之外的,应选用制造厂提供的Kb值。

附图2 气体压缩因子(Z)图

附图3 亚临界流动系数图

注:图中k为绝热指数

附图4 弹簧式安全阀背压修正系数图

注:背压修正系数Kb应由制造常提供。若没有制造厂的数据时,可参考本图。图中k为绝热指数。

例:设定压力=0.7MPa(表) 静背压=0.49MPa(表)

弹簧设定=0.21 MPa 超压=0.07 MPa

背压%=(0.49+0.07+0.1)/(0.69+0.07+0.1)=0.76×100=76

安全阀型号识别代码和压力等级

安全阀型号识别代码和压力等级 安全阀是承压设备、容器和管线上的最佳超压保护装置,当介质压力升高超过允许值时,安全阀自动开启,继而全量排放,防止压力继续升高,当压力降低至规定值时,安全阀及时自动关闭。 安全阀设计、制造、验收技术标准符合GB/T12243-89要求。 封闭式安全阀的阀盖是封闭的,利于防止灰尘和杂物侵入,防止有毒和易燃介质溢出,开放式安全阀由于阀盖敞开,利于降低弹簧腔室的温度,主要用于蒸汽介质管道及容器,带散热器安全阀主要适用于介质温度超过350℃的工况。 带扳手弹簧式安全阀当介质压力达到开启压力的75%以上时,能利用作手动开启。 流道直径,排放量大,微启式安全阀开启高度为~流道直径。 安全阀型号编制方法 阀门的型号参照机械部标准JB308-75《阀门型号编制方法》编制,系由以下八个部分组成:1 A 2 3 4 - 5 6 其中:1表示特种阀门代号(如低温- D、保温- B、波纹管-W,无省略) A 表示阀门类型代号(A表示安全阀) 2表示连接形式代号(表一) 3表示结构形式代号(表2) 4表示阀座密封面或衬里材料代号(表3) 5表示公称压力数值

6表示阀体材料代号(表4) 表一 连接形式 内螺纹 外螺纹 法兰 焊接 表二 带散热片安全阀结构形式 全启式代号 0代号1246 弹簧式封闭微启式 全启式 全启式 双联弹簧微启式 微启式 全启式 微启式 带控制机构全启式 脉冲式9不封闭带扳手 阀座密封面或衬里材料代号用汉语拼音字母表示,如表三所列。

阀座密封面或衬里材料 铜合金 橡胶 尼龙塑料 氟塑料 锡基轴承合金(巴氏合金) 代号表示。 阀体材料代号用汉语拼音字母表示。如表四所列。表四 阀体材料 HT250 WCB ZG230-450 Cr5Mo代号ZC I阀体材料 1Cr18Ni9Ti 1Cr18Ni12Mo2Ti 15CrMoV代号 PRV代号TXNF B阀座密封面或衬里材料 合金钢

安全阀标准名称汇总

安全阀标准汇总 标准编号 标准中文名称 标准英文名称 SY/T0525.1-93 石油储罐液压安全阀 SY/T10006-2000 海上井口地面安全阀和水下安全阀规范 SY/T10024-1998 井下安全阀系统的设计、安装、修理和操作的推荐作法 GB/T14087-1993 船用空气瓶安全阀 Safety valves for marine air vessel JB/T6441-1992(2005复审) 压缩机用安全阀 JB/T2203-1999 弹簧式安全阀 结构长度 JB/T9624-1999 电站安全阀技术条件 JB/T53170-1999 弹簧直接载荷式安全阀 产品质量分等 NF E86-512-1-2002 冷凝容器.防超压安全设施.第1部分:冷凝设备的安全阀 (Cryogenic vessels - Safety devices for protection against excessive pressure - Part 1 : safety valves for cryogenic service.) NF A84-330-1982 气焊设备.乙炔发生器用“防回气—断 火”的液压安全阀和组合装置.规范和试验 (GAS WELDING EQUIPMENT. HYDRAULIC SAFETY SEALS AND COMBINED “NON-RETURN VALVE/FLAME ARRESTOR“ DEVICES FOR A CET YLENE GE NERATORS. REQUIREMENTS AND TESTS.) NF E32-110-10-2002 水管锅炉和辅助设备.第10部分:防过压安全阀的要求 (Water-tube boilers and auxiliary installations - Part 10 : requirements for safeguards against excessive pressure.) NF D36-404-2000 建筑阀门.温度和压力组合安全阀.试验和要求 (Building valves - Combined temperature and pressure relief valves - Tests and requirements.) NF M87-213-2001 石油和天然气工业.下降孔设备.地下安全阀设备 (Petroleum and natural gas industries - Downhole equipment - Subsurface safety valve equipment.) NF T81-103-1980 液态体化学产品的运输和装卸.底部注入或排放的罐车.内部关闭阀和安全阀.使用压力等于或小于4巴 (TRANSPORTATION AND HANDLING OF LIQUID CHEMICAL PRODU CT S. TANKER VEHICLES FIL LED AND EMPTIED FROM BELOW. INTERNAL SAFETY AND STOP VALVE. OPERATING PRESSURE EQUAL TO OR LESS THAN 4 BAR.) NF E29-420-1985 工业阀门.安全阀.技术说明书样式和协调证明书 (INDUSTRIAL VALVES. SAFETY AND RELIEF VALVES. MODEL OF TECHNICAL SPECIFICATIONS AND CONFORMITY CERTIFICATE.) NF P52-001-1975 取暖设备用安全阀.一般技术规范 (SAFETY VALVES FOR HEATING INSTALLATIONS.) NF E29-413-1989 工业阀门.安全阀流量计算.其他方法 (INDUSTRIAL VALVE. SAFETY VALVES AND BURSTING DISC(S) DEVICES. CALCULATION OF TH EO RETICAL FLOWRATE.) NF E29-414-1992 工业阀门.安全阀门.安全阀门类型 S,G1,L1和L2流率计算示例 (INDUSTRIAL VALVES. SAFETY VALVES. EX AMP LES FOR FLOWRATE CALCULATION OF SAFETY VALVES TYPES S,G1,L1 AND L2.) NF E29-415-1990 工业阀门.安全阀.G 平方型安全阀排出空气当量流量计算实例.GPL 标准蓄水池的应用 (INDUSTRIAL VALVES. SAFETY VALVES. CALCULATION OF AIR EQUIVALENT FLOW CA PA CITY FOR SAFETY VALVES OF TYPE G2. APP LICATION FOR STANDARD VESSELS FOR GPL.) NF E29-421-1987 工业阀门.安全阀.安全膜.为获得工作特性的安装规范 (Industrial valves. Safety valves. Bursting discs.) 2006.04.11

安全阀计算公式来源

6.1.3 泄放量的计算 6.1.3.1 根据本导则4的内容,选取合乎该设备工作条件下的安全阀型式。 6.1.3.2 根据本导则5的内容确定安全阀的设计参数,确定最大操作压力、整定压力、聚积压力和排放压力;根据排放工况确定安全阀的背压。 6.1.3.3 按本导则6的内容计算安全阀的工艺泄放量;按火灾、误操作、设备故障三类事故状态来分析可能发生的一种或几种事故状态,分别计算它们的最大泄放量。泄放量最大的工况就是该安全阀(或组)的设计工况及泄放量。不应该把各种可能的工况,采用叠加的方式来计算最大泄放量。 6.2 出口切断 6.2.1 压缩机贮气罐 压缩机贮气罐,由于出口阀关闭,造成超压的安全阀的泄放量,按压缩机的最大生产能力W G(产气量),kg/hr计算。 6.2.2 液体贮罐 液体贮罐的泄放量,由于出口阀关闭造成超压的安全阀的泄放量,按泄放压力时进入贮罐物料最大值计。 在不明确情况下,按液体容器正常进料量的1.25倍计: W L=1.25G 此式来自日本三菱公司设计文件 W L——液体贮罐的安全阀的泄放量,kg/hr G——液体贮罐的正常进料量,kg/hr 6.2.3 气体贮罐 气体贮罐泄放量的计算公式: W G=2.83×10-3×ρG×u×d2 (6-1) 此式来自GB150-1998的136页公式B1 W G——气体贮罐的安全阀的泄放量,kg/hr ρG——在安全阀泄放压力P d的工况下的气体密度,kg/m3

d——气体贮罐的进料管的内径,mm u——气体在管内的流速,m/s 气体流速可按下述范围选取: 一般气体:u=10 m/s~15 m/s 饱和蒸汽:u=20 m/s~30 m/s 过热蒸汽:u=30 m/s~60 m/s 6.3 外部火灾 6.3.1 外部火灾的考虑因素 6.3.1.1 火焰高度 只考虑火焰高度在7.5米(25英尺)以内的设备,火焰的高度是以地面或可积存液体物料的装置平台为计算基准,如果平台是格栅不能积存液体,则不能作为计算基准。 6.3.1.2 设备的受热面积 只考虑存有液体的部分,统一称湿表面积,在计算设备湿表面积时,是计算整台设备的湿表面积。对换热器是指计算整体的表面积,不是只计算换热管的面积。 湿表面积的计算公式有以下五个: 半球形封头立式容器 A=π×D×h +1.57×D2(6-2) 半球形封头卧式容器 A=π×D×L (6-3) 椭圆封头卧式容器 A=π×D×(L+0.3×D)(6-4) 椭圆封头立式容器 A=π×D×h+0.41×π×D2(6-5) 球形容器 A=1.57×D2

安全阀计算公式

安全阀计算公式 安全阀系压力容器在运行中实现超压泄放的安全附件之一,也是在线压力容器定期检验中必检项目。它包括防超压和防真空两大系列,即一为排泄容器内部超压介质防止容器失效,另一方面则为吸入外部介质以防止容器刚度失效。凡符合《容规》适用范围的压力容器按设计图样的要求装设安全阀。 一.安全阀的选用方法 a)根据计算确定安全阀.公称直径.必须使安全阀的排放能力≥压力容器的安全泄放量b)根据压力容器的设计压力和设计温度确定安全阀的压力等级; c)对于开启压力大于3MPa蒸汽用的安全阀或介质温度超过320℃的气体用的安全阀,应选用带散热器(翅片)的形式; d)对于易燃、毒性为极度或高度危害介质必须采用封闭式安全阀,如需采用带有提升机构的,则应采用封闭式带板手安全阀; e)当安全阀有可能承受背压是变动的且变动量超过10%开启压力时,应选用带波纹管的安全阀; f)对空气、60℃以上热水或蒸汽等非危害介质,则应采用带板手安全阀 g)液化槽(罐)车,应采用内置式安全阀. h)根据介质特性选合适的安全阀材料:如含氨介质不能选用铜或含铜的安全阀;乙炔不能选用含铜70%或紫铜制的安全阀. i)对于泄放量大的工况,应选用全启式;对于工作压力稳定, 泄放量小的工况,宜选用微启式;对于高压、泄放量大的工况, 宜选用非直接起动式,如脉冲式安全阀.对于容器长度超过6m的应设置两个或两个以上安全阀.

j)工作压力Pw低的固定式容器,可采用静重式(高压锅)或杠杆重锤式安全阀.移动式设备应采用弹簧式安全阀. k)对于介质较稠且易堵塞的, 宜选用安全阀与爆破片的串联组合式的泄放装置. l)根据安全阀公称压力大小来选择的弹簧工作压力等级. 安全阀公称压力与弹簧工作压力关系,见表1 m) 安全阀公称压力PN与弹簧工作压力关系表 表1 安全阀应动作灵敏可靠,当到达开启压力时,阀瓣应及时开启和完全上升,以顺利排放;同时应具有良好的密封性能,不仅正常工作时保持不漏,而且要求阀瓣在开启复位后及时关闭且保持密封;在排气压力下阀瓣应达到全开位置,无震荡现象,并保证排出规定的气量。 二.安全阀计算实例

泡沫灭火系统-计算实例

一、设计依据: 1.业主提供的石油库设计图纸 2.《石油库设计规范》GB50074-2002 3.《建筑设计防火规范》GBJ16-87 4.《低倍数泡沫灭火系统设计规范》GB50151-92 及2000年局部修订条文 二、设计内容: 保护对象:500M3立式固定拱顶钢制保温储罐2座[D=9M,H=10M)。 灭火方式:采用固定式液上喷射泡沫灭火系统,并移动泡沫枪辅助灭火 灭火剂:6%氟蛋白泡沫液,其混合比为6% 冷却方式:采用移动式水冷却 (一)、泡沫用量 1.储罐的保护面积(A1) 根据规范第3.1.2条一款规定: A1=3.14D2=3.14x92/4=63.585m2 2.根据规范第 3.2.1条一款规定:泡沫混合液供给强度 q=6.0L/min.m2 连续供给时间t1 :不小于30min(注:闪点为60°C的轻柴油为丙类液体)3.计算泡沫混合液流量(Q) Q=q.A1=6×63.585=381.51L/min 4.根据规范第3.2.4条规定:泡沫产生器数量及流量(Q产)PC8泡沫产生器2个,Q产为480L/min 注:泡沫产生器工作压力按0.5MPa计 5.泡沫枪数量及连续供给时间、流量Q枪 根据规范第3.1.4条,用于扑救防火堤内流散液体火灾的泡沫枪数量为1

支,其泡沫枪的泡沫混合液流量不应小于240L/min,选Q枪=240L/min 即PQ4型泡沫枪:1支连续供给时间t2:不小于20min 6.泡沫混合液用量M混V (系统管道内泡沫混合液剩余量):考虑设DN100管道170.0m及DN65管道150.0m。管道容积为1823L M混=n产×Q产×t1+n枪×Q枪×t2+V(系统管道内泡沫混合液剩余量)=2×480×30+1×240×20+3800=28800+4800+1823 =35423L 7.泡沫液用量V=K.V混/1000=6%×35423/1000=2125L/1000=2.125M3则泡沫贮罐的容积为2.125m3 配制泡沫混合液所需的水量为:35423L×94%=33298L=33.298M3 泡沫比例混合器的流量为:8×2+4=20L/S 配制泡沫混合液的水流量:20L/S×94%=18.8L/S 8.根据规范第3.7.3条储罐区泡沫灭火系统管道内的泡沫混合液流速,不宜大于3m/s 主管初选管径DN100 流速S=4Qmax/3.14D2=(2×480+1×240) ×4/3.14×0.12×60×1000=2.265M/S 规范第3.7.3条泡沫灭火系统管道内的混合液流速不宜大于3M/S 故管径DN100选择合适 9.泡沫产生器下面混合液立管初选管径DN65 S=1×480×4/3.14×0.0652×60×1000=2.412m/s<3m/s 管径DN80合适 10.计算管道沿程压力损失h沿 根据第3.7.4条计算单位长度泡沫混合液管道压力损失 I=0.0000107V2/D 1.3 1)从泡沫产生器到防火堤外缘DN65管段,罐高10m,罐外壁至防火堤外缘 距离按32m计,总长45m 每m管道压力损失I=0.0000107V2/D 1.3

安全阀知识概述及选型

安全阀知识概述及选型 一、安全阀知识概述 安全阀是锅炉、压力容器和其他受压力设备上重要的安全附件。其动作可靠性和性能好坏直接关系到设备和人身的安全,并与节能和环境保护紧密相关。 二、安全阀的定义所谓安全阀广义上讲包括泄放阀,从管理规则上看,直接安装在蒸汽锅炉或一类压力容器上,其必要条件是必须得到技术监督部门认可的阀门,狭义上称之为安全阀,其他一般称之为泄放阀。安全阀与泄放阀在结构和性能上很相似,二者都是在超过开启压力时自动排放内部的介质,以保证生产装置的安全。由干存在这种本质上类似性,人们在使用时,往往将二者混同,另外,有些生产装置在规则上也规定选用哪种均可。因此,二者的不同之处往往被忽视。从而也就出现了许多间题。如果要将二者作出比较明确的定义,则可按照《ASME锅炉及压力容器规范》第一篇中所阐述的定义来理解: 1、安全阀(Safety Valve)一种由阀前介质静压力驱动的自动泄压装置。其特征为具有突开的全开启动作。用于气体或蒸汽的场合。 2、泄放阀(Relief Valve),又称溢流阀一种由阀前介质静压力驱动的自动泄压装置。它随压力超过开启力的增长而按

比例开启。主要用于流体的场合。 3、安全泄放阀(Safet Relief Valve),又称安全溢流阀一种由介质压力驱动的自动泄压装置。根据使用场合不同既适用作安全阀也适用作泄放阀。以日本为例,给安全阀和泄放阀作出明确定义的比较少,一般用作锅炉这类大型贮能压力容器的安全装置称之为安全阀,安装在管道上或其他设设施上的称之为泄放阀。不过,若按日本通产省的《火力发电技术标准》的规定看,设备上安全保障的重要部分,指定使用安全阀,如锅炉、过热器、再热器等。而在减压阀的下侧需要与锅炉和涡轮机相接的场合,都需要安装泄放阀或安全阀。如此看,安全阀要求比泄放阀更具可靠性。另外,从日本劳动省的高压气体管理规则、运输省及各级船舶协会的规则中,对安全排放量的认定和规定来看,我们把保证了排放量的称之为安全阀,而不保证排放量的阀门称作泄放阀。在国内不论全启式或微启式统称为安全阀。 三、安全阀的选型 1、安全阀的分类 目前大量生产的安全阀有弹簧式和杆式两大类。另外还有冲量式安全阀、先导式安全阀、安全切换阀、安全解压阀、静重式安全阀等。弹簧式安全阀主要依靠弹簧的作用力而工作,弹簧式安全阀中又有封闭和不封闭的,一般易燃、易爆或有毒的介质应选用封闭式,蒸汽或惰性气体等可以选用不

安全阀的工艺计算

安全阀的工艺计算 1各种事故工况下泄放量的计算 1.1阀门误关闭 1.1.1出口阀门关闭,入口阀门未关闭时,泄放量为被关闭的管道最大正常流量。 1.1.2管道两端的切断阀关闭时,泄放量为被关闭液体的膨胀量。此类安全阀的入口一般不大于DN25。但对于大口径、长距离管道和物料为液化气的管道,液体膨胀量按式(1.1)计算。 1.1.3换热器冷侧进出口阀门关闭时,泄放量按正常工作输入的热量计算,计算公式见式(1.1)。 1.1.4充满液体的容器,进出口阀门全部关闭时,泄放量按正常工作输入的热量计算。按式(1.1)计算液体膨胀工况的泄放量: V=B·H/(G l ·C p ) (1.1) 式中: V——体积泄放流量,m3/h; B——体积膨胀系数,l/℃; H——正常工作条件下最大传热量,kJ/h; G l ——液相密度,kg/m3; C P --定压比热,kJ/(kg℃)。 1.2循环水故障 1.2.1以循环水为冷媒的塔顶冷凝器,当循环水发生故障(断水)时,塔顶设置的安全阀泄放量为正常工作工况下进入冷凝器的最大蒸汽量。 1.2.2以循环水为冷媒的其它换热器,当循环水发生故障(断水)时,应仔细分析影响的范围,确定泄放量。 1.3电力故障 1.3.1停止供电时,用电机驱动的塔顶回流泵、塔侧线回流泵将停止转动,塔顶设置的安全阀的泄放量为该事故工况下进入塔顶冷凝器的蒸汽量。 1.3.2塔顶冷凝器为不装百叶的空冷器时,在停电情况下,塔顶设置的安全阀的泄放量为正常工作工况下,进入冷凝器的最大蒸汽量的15%。 1.3.3停止供电时,要仔细分析停电的影响范围,如泵、压缩机、风机、阀门的驱动机构等,以确定足够的泄放量。

安全阀计算与选型

安全阀计算与选型 1. 确定确定安全阀类型安全阀类型 根据卸放介质物性、卸放量确定安全阀类型。 2. 确定安全阀公称压力 根据介质操作条件确定PN,选定弹簧工作压力级。 3. 安全阀安全阀计算计算 3.1 由工艺计算软件(hysis,pro II,aspen)计算获得介质基本物性数据(比重ρ,分子量M, 粘度μ,泄放量Gv,气体特性系数C,流量系数Kf,压缩系数Z,最高泄放压力Pm,泄放温度Ti,操作压力P 0,整定压力Ps)。 3.2 计算公式: 安全阀的计算参照GB/T 12241-2005(它与ISO 4126 安全阀一般要求计算方法相同) 中 的公式并依据实测额定排量系数来计算安全阀的额定排量,进而确定安全阀的口径,是比较可靠的计算方法。具体计算公式见GB/T 12241-2005 6.3节/6.5节。 3.2.1 介质为气体或蒸汽 1)临界流动下的理论排量计算 在下列条件下达到临界流动: 临界流动下的理论排量计算公式: 2)亚临界流动下的理论排量计算: 在下列条件下达到亚临界流动: 亚临界流动下的理论排量计算公式: 3)Excel 表格计算安全阀卸放面积A 0(作者Huang WenJia)

3.3 将必须的介质物性数据编入Excel 表格,并在安全阀卸放面积栏编好计算公式(见安全阀 计算excel 表格)。 安全阀安全阀的选用与的选用与的选用与计算实例计算实例计算实例 安全阀系压力容器在运行中实现超压泄放的安全附件之一,也是在线压力容器定期检验中必检 项目。它包括防超压和防真空两大系列,即一为排泄容器内部超压介质防止容器失效,另一方面则为吸入外部介质以防止容器刚度失效。凡符合《容规》适用范围的压力容器按设计图样的要求装设安全阀。 一.安全阀的选用安全阀的选用 1. 1. 安全阀安全阀安全阀各种参数的确定各种参数的确定各种参数的确定 a)确定安全阀公称压力。 根据阀门材料、工作温度和最大工作压力选定公称压力。 b) 确定安全阀的工作压力等级。 根据压力容器的设计压力和设计温度选定工作压力等级。安全阀的工作压力与弹簧的工作压力级有着不同的含义,不能混为一谈。工作压力是指安全阀正常运行时阀前所承受的静压力,它与被保护系统或设备的工作压力相同。而弹簧的工作压力级则是指某一根弹簧所允许使用的工作压力范围,在该压力范围内,安全阀的开启压力(即整定压力)可以通过改变弹簧的预紧压缩量进行调节。同一公称压力的安全阀,根据弹簧设计要求,可以分为多种不同的工作压力级。具体划分见下表,划分的前提是能足以保证各个工作压力级的压力上限与下限均能符合有关标准所规定的动作性能指标。 选用安全阀时,应根据所需开启压力值确定阀门的工作压力级。 表1 安全阀公称压力PN 与弹簧工作压力关系表 PN 弹簧工作压力等级 1.6 0.06~0.1 >0.12 >0.16~0.25 >0.25~0.4 >0.4~0.5 >0.5~0.6 >0.6~0.8 >0.8~1.0 >1.0~1.3 >1.3~1.6 2.5 >1.3~1.6 >1.6~2.0 >2.0~2.5 只能用于大于 1.3MP 6.4 ->1.3~1.6 >1.6~2.0 >2.0~2.5 >2.5~3.2 >3.2~4.0 >4.0~6.4 只能用于大于1.3MPa 10 >4~5 >5~6.4 >6.4~8 >8~10 只能用于大于4.0MPa

浅谈安全阀安全的使用常识(2021新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 浅谈安全阀安全的使用常识 (2021新版)

浅谈安全阀安全的使用常识(2021新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 安全阀是特种设备(锅炉、压力容器、压力管道等)上的一种限压、泄压起到安全保护作用的重要附件。安全阀一般直接安装在特种设备上的,安全阀的设计、制造、安装、使用、检验等都要符合特种设备相关规定的要求,其动作的可靠性和性能好坏直接关系到设备和人身的安全,并与节能和环境保护紧密相关。 一、安全阀的分类方法,常见的安全阀一般有以下几种: 1、按整体结构和加载结构的形式可以分为重锤杠杆式安全阀、弹簧式和控制式3种; 2、按阀瓣式开启高度与阀流通直径之比可以分为微启式和全启式安全阀2种; 3、按气体排放的方式可以分为全封闭式、半封闭式和敞开式3种。 二、安全阀的选用,选用安全阀应从以下几个方面考虑: 1、结构形式,主要取决于设备的工艺条件以及工作介质、特性。一般锅炉、压力容器多选用弹簧式安全阀。如果设备介质有毒、易燃

安全阀计算规定

安全阀计算规定 中国石化集团公司上海医药工业设计院 2001年10月12日

1. 应用范围 1.1 本规定仅适用于化工生产装置中压力大于0.2MPa的压力容器上防超压用安全阀的设置和计算,不包括压力大于100MPa的超高压系统。 适用于化工生产装置中上述范围内的压力容器和管道所用安全阀;不适用于其它行业的压力容器上用的安全阀,如各类槽车、各类气瓶、锅炉系统、非金属材料容器,以及核工业、电力工业等。1.2计算方法引自《工艺设计手册》(Q/SPIDI 3PR04-3-1998),使用本规定时,一般情况应根据本规定进行安全阀计算,复杂工况仍按《工艺设计手册》有关章节进行计算。 1.3 本规定提供了超压原因分析,使用本规定必须详细阅读该章节。

2. 计算规定的一般说明 2.1安全阀适用于清洁、无颗粒、低粘度流体,凡必须安装泄压装 置而又不适合安全阀的场所,应安装爆破片或安全阀与爆破 片串联使用。 2.2在工艺包设计阶段(PDP),应根据工艺装置的操作规范,按 照本规定(见5.0章节),对本规定所列的每个工况进行分析, 根据PDP的物流表,确定每个工况的排放量,填入安全阀数 据表一。 2.3在基础设计阶段(BDP)和详细设计阶段(DDP),按照泄放 量的计算书规定(见6.0章节),在安全阀数据表一的基础上, 形成安全阀数据表二(数据汇总表)和安全阀数据表三。安 全阀数据表三作为条件提交有关专业。

3.0术语定义 3.1 积聚(accumulation):在安全阀泄放过程中,超过容器的最大允许工作压力的压力,用压力单位或百分数表示。最大允许积聚由应用的操作规范和火灾事故制定。 3.2 背压(back pressure):是由于泄放系统有压力而存在于安全阀出口处的压力,背压有固定的和变化的两种形式。背压是附加背压和积聚背压之和。 3.3 附加背压(superimposed back pressure):当安全阀启动时,存在于安全阀出口的静压,它是由于其它阀排放而造成的压力,它有两种形式,固定的和变化的。 3.4 积聚背压(built-up back pressure):泄压阀打开后由于流动使泄放主管中增加的压力。 3.5最大允许积聚压力(maximum allowable accumulated pressure):是最大允许工作压力与最大允许积聚之和。 3.6最大允许工作压力(maximum allowable working pressure):系指在设计温度下,容器顶部所允许承受的最大压力。这压力基于设备计算中的正常厚度、金属腐蚀裕度、负载和压力。最大允许工作压力是设定安全阀压力保护设备的基础。 3.7超压(overpressure):超过安全阀设定压力的压力,用压力单位或百分数表示。它与容器设定的最大允许工作压力时的积聚一样,假设安全阀人口没有管路损失。 3.8安全阀的设定压力(set pressure):安全阀人口出的静压达到

安全阀选用

1. 安全阀的选用 由于安全阀的多样性以及压力系统的多样性、复杂性,因此在安全阀选用时,应考虑系统内的温度、压力、介质相态等因素的影响,逐步确定安全阀的公称压力、压力-温度等级、弹簧的工作压力等级、公称通径、基本形式。最后确定选用安全阀的型号。 (1)公称压力的选择 公称压力和整定压力是不同的概念,确定和选用安全阀时一定要注意。公称压力PN 是用数字表示的与压力有关的标示代号,也是供参考用的圆整数。在安全阀中,公称压力是指安全阀进口处所能承受的最高压力。和材料及温度相关。而安全阀的出口处法兰的公称压力一般比进口处公称压力低一至三个级别,选用时应该注意这个区别。 在确定安全阀的公称压力时,公称压力一定要大于整定压力。最好是安全阀达到全开启时的压力不能超过安全阀的公称压力。我国的安全阀公称压力系列其压力系列为0.25,0.6,1.0,1.6,2.5,4.0,6.3,10,16,32,40MPa (注:PN1.0以下的安全阀通常采用铸铁阀体,不推荐在压力容器种使用)。 (2)压力一温度等级 选用安全阀时必须要考虑温度的影响,当温度升高时,在同一公称压力下,其最大允许工作压力也随之相应降低.应根据所保护的介质情况、阀门材料、工作温度和最大工作压力,确定阀门的公称压力。 阀门在各种温度下最高允许工作压力可按式公式5-1计算。或在GB/T 9124-2000。《钢制管法兰技术条件》 中查选。 式(9.2-3) 式中 [σ]t ――设计温度t ℃ 时材料的许用应力值,MPa ; [σ]200――200 ℃ 时的材料许用应力值,MPa ; Ptmax ――最高允许工作压力,MPa ; PN ――公称压力,MPa (3)弹簧工作压力级的确定 确定了安全阀的公称压力后,弹簧式安全阀还要选定弹簧的工作压力等级。弹簧的工作压力等级是指选定的弹簧允许的工作范围,超出了其工作范围就可能导致安全阀不能正常工作。弹簧式安全阀的整定压力范围就是弹簧的工作压力等级。 安全阀的整定压力是通过改变弹簧压缩量来进行调节,安全阀的各种动作性能也是由弹簧来控制的,每一根弹簧都只能在一定的整定压力范围内工作,超出了该范围就要另换弹簧, PN Pt t 200 ] [] [max σσ=

安全阀基本常识

管理制度参考范本 安全阀基本常识 a I时'间H 卜/ / 1 / 6

安装注意事项 安全阀是特种设备上重要的安全附件,其安装也有相应的要求, 面列举一些常见的事项: 1、额定蒸发量大于0.5t/h 的锅炉,至少装设两个安全阀:额定蒸发量小于或等于0.5t/h 的锅炉,至少装一个安全阀。可分式省煤器出口处、蒸汽过热器出口处都必须装设安全阀。 2、安全阀应垂直安装在锅商、集箱的最高位置。在安全阀和锅筒或集箱之间,不得装有取用蒸汽的出口管和阀门。 3、杠杆式安全阀要有防止重锤自行移动的装置和限制杠杆越轨的导架,弹簧式安全阀要有提升手把和防止随便拧动调整螺钉的装置。 4、对于额定蒸汽压力小于或等于3.82M Pa的锅炉,安全阀喉径不应小于25mm对于额定蒸汽压力大于3.82MPa的锅炉,安全阀喉径不应小于20mm。 5、安全阀与锅炉的连接管,其截面积应不小于安全阀的进口截面积。如果 几个安全阀共同装设在一根与锅筒直接相连的短管上,短管的通路截面积应不步 于所有安全阀排汽面积的1.25 倍。 6、安全阀一般应装设排汽管,排汽管应直通安全地点,并有足够的截面积,保证排汽畅通。安全阀排气管底部应装腔作势有接到安全地点的疏水管,在排气管和疏水管上都不允许装设阀门。 安全阀的分类方法 我们常见的安全阀一般有以下几种:

1、按整体结构和加载结构的形式可以分为重锤杠杆式安全阀、弹簧式和控制式3 种; 2、按阀瓣式开启高度与阀流通直径之比可以分为微启式和全启式安全阀2 种; 3、按气体排放的方式可以分为全封闭式、半封闭式和敞开式 3 种。 通常所说的安全阀,一般是指较常见的弹簧式安全阀。 安全阀出厂资料应有的内容 安全阀出厂必须随带产品质量证明书,并在产品上装设牢固的金属铭牌。铭牌上应载明下列内容: 制造单位名称、制造许可证编号; 2) 产品编号; 型号、型式、规格; 4) 公称压力,MPa; 阀座通径,mm; 排放系数;检验合格标记。 7) 出厂年月; 部分安全阀铭牌上还应注明适用的介质、温度。安全阀的选用 选用安全阀应从以下几个方面考虑: 1、结构形式,主要取决于设备的工艺条件以及工作介质、特性。 般锅炉、压力容器多选用弹簧式安全阀。如果设备介质有毒、易燃易爆,应选封闭式的安全阀。 2、锅炉、高压容器、安全泄放量较大而壁厚腐蚀余量不大的中、低压容器宜选用全启式安全阀。 3、压力范围,每种安全阀都有一定的工作压力范围。选用时应按设备的最大允许工作压力选用合适的安全阀。 4、排放量,必须大于设备的安全泄放量,这样才能保证超压时,安全阀开启及时排出部分介质,避免压力继续升高。对于锅炉,安全阀的总排量必须大于

2020年(安全生产)安全阀的工艺计算

(安全生产)安全阀的 工艺计算

安全阀的工艺计算 1各种事故工况下泄放量的计算 1.1阀门误关闭 1.1.1出口阀门关闭,入口阀门未关闭时,泄放量为被关闭的管道最大正常流量。 1.1.2管道俩端的切断阀关闭时,泄放量为被关闭液体的膨胀量。此类安全阀的入口壹般不大于DN25。但对于大口径、长距离管道和物料为液化气的管道,液体膨胀量按式(1.1)计算。 1.1.3换热器冷侧进出口阀门关闭时,泄放量按正常工作输入的热量计算,计算公式见式(1.1)。 1.1.4充满液体的容器,进出口阀门全部关闭时,泄放量按正常工作输入的热量计算。按式(1.1)计算液体膨胀工况的泄放量: V=B·H/(G l·C p)(1.1) 式中: V——体积泄放流量,m3/h; B——体积膨胀系数,l/℃; H——正常工作条件下最大传热量,kJ/h; G l——液相密度,kg/m3; C P--定压比热,kJ/(kg℃)。 1.2循环水故障 1.2.1以循环水为冷媒的塔顶冷凝器,当循环水发生故障(断水)时,塔顶设置的安全阀泄放量为正常工作工况下进入冷凝器的最大蒸汽量。 1.2.2以循环水为冷媒的其它换热器,当循环水发生故障(断水)时,应仔细分析影响的范围,确定泄放量。 1.3电力故障 1.3.1停止供电时,用电机驱动的塔顶回流泵、塔侧线回流泵将停止转动,塔顶设置的安全阀的泄放量为该事故工况下进入塔顶冷凝器的蒸汽量。 1.3.2塔顶冷凝器为不装百叶的空冷器时,在停电情况下,塔顶设置的安全阀的泄放量为正常工作工况下,进入冷凝器的最大蒸汽量的15%。 1.3.3停止供电时,要仔细分析停电的影响范围,如泵、压缩机、风机、阀门的驱 动机构等,以确定足够的泄放量。

标准阀门型号编制方法及示例

标准阀门型号编制方法及示例 1.标准阀门型号编制方法如下: 2.类型代号用汉语拼音字母表示,按表1的规定。 表1 类型代号类型代号 闸阀Z 旋塞阀X 截止阀J 止回阀和底阀H 节流阀L 安全阀 A 球阀Q 减压阀Y 蝶阀 D 疏水阀S 隔膜阀G 柱塞阀U 注:低温(低于零下40摄氏度)、保温(带加热层)和带波纹管的阀门在类型代号前分别加“D”“B”和“W”汉语拼音字母。 3.传动方式代号用阿拉伯数字表示,按表2的规定。 表2 传动方式代号传动方式代号 电磁动0 伞齿轮 5 电磁-液动 1 气动 6 电-液动 2 液动7 蜗轮 3 气-液动8 正齿轮 4 电动9 注:(1)手轮、手枘和板手传动以及安全阀,减压阀,疏水阀省略本代号。 (2)对于气动或液动:常开式用6K、7K表示;常闭式用6B、7B表示;气动带手动

用6S表示,防爆电动用“9B”表示。蜗杆-T形螺母用3T表示。4.连接形式代号用阿拉伯数字代号表示,按表3的规定。 表3 5.结构形式代号用阿拉伯数字表示,按表4~13的规定。 表4 表5

表6 表7 表8 表9

表10 表11 表12

表13 6.阀座密封面或衬里材料代号用汉语拼音字母表示,按表14的规定。 表14 7.公称压力数值,按JB74-59《管路附件公称压力,试验压力和工作压力》的规定。用于电站工业的阀门,当介质最高温度超过530摄氏度时,按JB74-59第5条的规定标注工作压力。 8.阀体材料代号用汉语拼音字母表示,按表15的规定。 表15

注:PN≤1.6MPa的灰铸铁阀体和PN≥2.5MPa的碳素钢阀体省略本代号。 9.示例: 例1:电动传动、法兰连接、明杆楔式双闸板、阀座密封面材料由阀体直接加工、公称压力PN0.1MPa、阀体材料为灰铸铁的闸阀:Z942W-1 直动楔式双闸板闸阀 例2:手动、外螺纹连接、浮动直通式、阀座密封面材料为氟塑料、公称压力PN4.0MPa、阀体材料为1Cr18Ni9Ti的球阀:Q21F-40P 外螺纹球阀 例3:气动常开式、法兰连接、屋脊式、衬里材料为衬胶、公称压力PN0.6MPa、阀体材料为灰铸铁的隔膜阀:G6k41J-6 气动常开式衬胶隔膜阀 例4:液动、法兰连接、垂直板式、阀座密封面材料为铸铜、阀瓣密封面材料为橡胶、公称压力PN0.25MPa、阀体材料为灰铸铁的蝶阀:D741X-2.5 液动蝶阀 例5:电动机传动、焊接连接、直通式、阀座密封面材料为堆焊硬质合金、在540℃下的工作压力为17MPa、阀体材料铬钼钒钢的截止阀:J961Y-P54170 电动焊接截止阀

安全阀计算

安全阀: 安全阀是启闭件受外力作用下处于常闭状态,当设备或管道内的介质压力升高超过规定值时,通过向系统外排放介质来防止管道或设备内介质压力超过规定数值的特殊阀门。安全阀属于自动阀类,主要用于锅炉、压力容器和管道上,控制压力不超过规定值,对人身安全和设备运行起重要保护作用。注安全阀必须经过压力试验才能使用。 安全阀计算: 计算的最小泄放面积为物料流经安全阀时通过的最小截面积。对于全启式安全阀为喉径截面积,对于微启式安全阀为环隙面积。 根据劳动部颁发的《压力容器安全技术监察规程))(1991年1月1 13施行)中规定: (1)对于气体、蒸汽在临界条件下的最小泄放面积为(2.2—1) 式中: a——最小泄放面积,mm2; W——质量泄放流量,kg/h, X——气体特性系数; P——泄放压力,MPa Z——气体压缩因子, T——泄放温度,K; M——分子量。 流量系数(C0)由制造厂提供。若没有制造厂的数据时,对于全启式安全阀C0=0.6~0.7;对于带调节圈的微启式安全阀:C0=0.4~0.5;

对于不带调节圈的微启式安全阀:C0=0.25~0.35。 (2)根据计算的最小泄放面积(a),计算安全阀喉径(d1)或阀座口径(D) a.对于全启式安全阀(2.2—2) b.对于平面密封型微启式安全阀(2.2—3) c.对于锥面密封型微启式安全阀(2.2—4) 式中: d——安全阀喉径,mm h——安全阀开启高度,mm D——安全阀的阀座口径,mm —密封面的半锥角,度。 根据美国石油学会标准API—520中的规定如下: 临界条件的判断 如果背压满足式(2.3—1),则为临界流动,否则为亚临界流动。 (2.3—1) 式中: Pb——背压,MPa Pcf——临界流动压力,MPa P——泄放压力,MPa K——绝热指数。 气体或蒸气在临界流动条件下的最小泄放面积(2.3—2) 式中

安全阀型号编制方法

安全阀型号编制方法 安全阀是承压设备、容器和管线上的最佳超压保护装置,当介质压力升高超过允许值时,安全阀自动开启,继而全量排放,防止压力继续升高,当压力降低至规定值时,安全阀及时自动关闭。 安全阀设计、制造、验收技术标准符合GB/T12243-89要求。 封闭式安全阀的阀盖是封闭的,利于防止灰尘和杂物侵入,防止有毒和易燃介质溢出,开放式安全阀由于阀盖敞开,利于降低弹簧腔室的温度,主要用于蒸汽介质管道及容器,带散热器安全阀主要适用于介质温度超过350℃的工况。 带扳手弹簧式安全阀当介质压力达到开启压力的75%以上时,能利用作手动开启。 全启式安全阀开启高度≥1/4流道直径,排放量大,微启式安全阀开启高度为1/20~1/40流道直径。 安全阀型号编制方法 阀门的型号参照机械部标准JB308-75《阀门型号编制方法》编制,系由以下八个部分组成: 1A234 - 56 其中:1 表示特种阀门代号(如低温-D、保温-B、波纹管-W,无省略) A 表示阀门类型代号(A表示安全阀) 2 表示连接形式代号(表一) 3 表示表示结构形式代号(表2) 4 表示阀座密封面或衬里材料代号(表3) 5 表示公称压力数值 6 表示阀体材料代号(表4)

阀座密封面或衬里材料代号用汉语拼音字母表示,如表三所列。 注:由阀体直接加工的阀座密封面材料用“W”表示;当阀座和阀瓣密封面材料不同时,用低硬度材料代号表示。 阀体材料代号用汉语拼音字母表示。如表四所列。 注:PN≤1.6MPa的灰铸铁或PN≥2.5MPa碳素钢阀体,省略本代号。 型号示例: A42Y-16C 表示:弹簧封闭全启式安全阀,法兰连接,密封面材料硬质合金,公称压力1.6MPa阀体材料为碳素钢。

弹簧全启式安全阀基本知识

弹簧全启式安全阀基本 知识 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

弹簧全启式安全阀基本知识产品简介 弹簧全启式安全阀,它适用于大型火电机组的汽包、过热器以及其它蒸汽设备或管道作为超压保护装置,其主要性能指标符合ASMESecI和VIIIASTM和API527的规定。 1、结构简介 1.1弹性阀辩 本类产品采用目前国际上高温安全阀普遍采用的弹性阀辩结构。这种结构能大大减少变形,并且具有自密封作用,从而达到了较好的密封性。 1.2双调节圈 本类安全阀采用双调节圈结构,即在导向套和阀座上各配置一个调节圈(称为上、下调节圈)可以对安全阀的动作性能进行调整。 1.3开放式结构

本类安全阀具有敞开的阀盖和敞开的阀帽(保护罩)结构。这种结构可确保安全阀无论在正常工作情况下,或安全阀开启情况下,其整定(开启)压力可保持在稳定状态。 2.运输和存放 本类安全阀应堵塞进出口后装箱运输,并在箱内加以固定。运送时应避免剧烈振动,存放时应置于干燥通风的室内。 3安装 3.1进口管的装设 3.1.1 本安全阀必须垂直安装,并要求直接安装在容器或管道的接头上,进口管道的内径应不小于安全阀的进口通径,并尽可能地短,其压降必须小于3%开启压力。 3.1.2 进口管的支撑 是否需要对进口管道或阀门加以支撑,应由用户考虑到安全阀排气反作用力的影响加以确定。

3.2 排放管的装设 3.2.1 排放管的内径应不小于安全阀的排出口通径,其阻力应尽可能地小。安全阀排放时,排放管道中的压降必须小于20%开启压力。 3.2.2 排放管道必须加以适当的弹性支撑,以防止管道应力(包括热应力)附加到安全阀上。 3.2.3 原则上一个安全阀单独使用一根排放管为佳,如两个以上安全阀共用一根集合管时,集合管的排放面积要足够大(应不小于各个安全阀出口截面积的总和的1.25倍),排放管的导入集合管处流向的转折要尽可能地小。 3.2.4 在排放管靠近安全阀出口法兰的弯管底部,必需设置疏水管道或排泄螺塞,以便排去排放管中积聚的冷凝水。 4.系统水压试验时安全阀的调整 在这种情况下应松开阀顶部锁紧螺母,然后将螺栓(testgag)向下旋至与阀杆顶部接触并拧紧(参见图1)。此时即可进行系统水压试验。水压试验完成后,将螺栓(testgag)恢复至原来位置(参见图2),并用螺母锁紧。

相关文档