文档库 最新最全的文档下载
当前位置:文档库 › 液体动静压电主轴关键技术综述.aspx

液体动静压电主轴关键技术综述.aspx

液体动静压电主轴关键技术综述.aspx
液体动静压电主轴关键技术综述.aspx

大数据的五大关键技术

大数据的五大关键技术 大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和展现的有力武器。 一、大数据接入 1、大数据接入 已有数据接入、实时数据接入、文件数据接入、消息记录数据接入、文字数据接入、图片数据接入、视屏数据接入 2、大数据接入技术 Kafka、ActiveMQ、ZeroMQ、Flume、Sqoop、Socket(Mina、Netty)、ftp/sftp 二、大数据存储 1、大数据存储 结构化数据存储、半结构化数据存储、非结构化数据存储 2、大数据存储技术 Hdfs、Hbase、Hive、S3、Kudu、MongoDB、Neo4J 、Redis、Alluxio(Tachyon)、Lucene、Solr、ElasticSearch 三、数据分析挖掘 1、大数据分析与挖掘 离线分析、准实时分析、实时分析、图片识别、语音识别、机器学习

2、大数据分析与挖掘技术 MapReduce、Hive、Pig、Spark、Flink、Impala、Kylin、Tez、Akka、Storm、S4、Mahout、MLlib 四、大数据共享交换 1、大数据共享交换 数据接入、数据清洗、转换、脱敏、脱密、数据资产管理、数据导出 2、大数据共享交换技术 Kafka、ActiveMQ、ZeroMQ、Dubbo、Socket(Mina、Netty)、ftp/sftp、RestFul、Web Service 五、大数据展现 1、大数据展现 图化展示(散点图、折线图、柱状图、地图、饼图、雷达图、K线图、箱线图、热力图、关系图、矩形树图、平行坐标、桑基图、漏斗图、仪表盘),文字展示; 2、大数据展现技术 Echarts、Tableau 国家规划大数据产业发展战略,各行各业需要大数据技术支撑指数级的数据增量服务,越来越多的企业逐渐转型于大数据,大数据方面市场需求呈爆发式增长。为了应对大数据人才的缺乏,加米谷大数据培训中心制定了全流程的大数据课程,主要包括Linux、java、CentOS、mysql、HDFS、Hadoop、Hbase、Hive、Kafka、Spark、Storm等。除了在理论方面深入讲解外,还有对应代码实战,全流程学完之后会有实战大数据项目,整体把控学习效果,教学目的旨在提高学员实战能力,真实提升自身大数据能力。

离子液体的应用前景

离子液体的应用前景 离子液体是指全部由离子组成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体。在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体、室温熔融盐、有机离子液体等,目前尚无统一的名称,但倾向于简称离子液体。在离子化合物中,阴阳离子之间的作用力为库仑力,其大小与阴阳离子的电荷数量及半径有关,离子半径越大,它们之间的作用力越小,这种离子化合物的熔点就越低。某些离子化合物的阴阳离子体积很大,结构松散,导致它们之间的作用力较低,以至于熔点接近室温。 离子液体的优点 一、离子液体无味、不燃,其蒸汽压极低,因此可用在高真空体系中,同时可减少因挥发而产生的环境污染问题; 二、离子液体对有机和无机物都有良好的溶解性能,可使反应在均相条件下进行,同时可减少设备体积; 三、可操作温度范围宽(-40~300℃),具有良好的热稳定性和化学稳定性,易与其它物质分离,可以循环利用; 四、表现出Lewis、Franklin酸的酸性,且酸强度可调。 上述优点对许多有机化学反应,如聚合反应、烷基化反应、酰基化反应,离子溶液都是良好的溶剂。 离子液体的应用前景 迄今为止,室温离子液体的研究取得了惊人的进展。北大西洋公约组织于2000年召开了有关离子液体的专家会议;欧盟委员会有一个有关离子液体的3年计划;日本、韩国也有相关研究的相继报道。在我国,中国科学院兰州化学物理研究所西部生态绿色化学研究发展中心、北京大学绿色催化实验室、华东师范大学离子液体研究中心等机构也开展专门的研究。兰州化学物理研究所已在该领域取得重大突破,率先制备了多种咪唑类离子液体润滑剂。 世界领先的离子液体开发者—德国SolventInnovation公司即将推出数以吨计的商品。SolventInnovation公司也正在开发一系列的离子液体,以取代对环境极有害的溶剂。其

压电材料发电

压电材料发电 压电材料的晶体结构使其具有正压电效应和逆压电效应,即将机械能转化成电能,和将电能转化为机械能。压电发电正是利用压电陶瓷的正压电效应。在压电发电领域中,电量储存的研究基本局限于以电容作为电量储存媒介的方法上,在国内,尚未发现以可充电电池为压电发电储能媒介的研究。 压电陶瓷发电装置的优点在于结构简单、无污染、能量密度大、易于加工等,尤其适用于各类传感器网络及监测系统。压电陶瓷换能器通过一定的工艺加工可以制成各种电子设备的供电能源,能够使电子设备适应环境进行自供电,提高设备的免维护性。由于这些特点,使得压电陶瓷发电技术的应用逐渐成为研究的热点[1]。 1.惯性自由振动式 曾平等人[2]在总结国外研究者的试验结果基础上,提出了利用小面积压电振子为电能源,给可充电电池充电的研究思想。在他的文章中所研究的压电发电装置中的压电振子由磷青铜基板和一个粘在其表面的矩形压电晶片构成,磷青铜板和压电晶片的厚度分别为0.3m m和0.3mm。 1.1压电发电装置的实验研究系统如下图所示。 压电陶瓷 图1压电发电实验装置 磷青铜板 将压电振子一端基板的露出部分作为固定支撑端,另一端自由,在自由端基板露出部分上端和激振器的激振头接触,形成悬臂梁激振系统。试验时,通过脉

冲信号发生器输出控制信号,激振器振子产生振动,并将振动传递给悬臂支撑的压电振子,使压电振子产生上下弯曲振动,则压电振子上的压电晶片在弯曲变形的作用下,将产生电量。通过示波器可观测到压电振子在上下弯曲振动时产生电信号的变化情况。 1.2充电电池储存电路设计 以充电电池为储存媒介的储存电路,其作用是将来自压电振子的电量,储存到一个镍氢钮扣电池中。为减少其他因素的干扰,电路的组成元件较少。图2为设计研制的以充电电池为储存媒介的储存电路。其基本结构为压电振子(电能发生源)、全桥校正器、储存电容元件、充电电池及连接线路等。 图2镍氢电池充电电路 试验研究时,压电振子在外加振动激励的作用下,产生交流变化的电荷信号,产生的电荷经全桥校正器,收集进入一个大容量的电容中,电容一般大于1 000μF,电池和电容并联,电容将收集来的电量储存入充电电池中。 2.冲击自由式振动[3] 冲击自由振动式,是利用自由振动金属球(或有一定势能的冲击头)撞击压电振子,使之产生弯曲振动,如图3所示。该发电方式能产生瞬间的大电流,产生的电量可以点亮数十个mW级的发光二极管。

大数据关键技术

大数据关键技术 大数据技术,就就是从各种类型得数据中快速获得有价值信息得技术。大数据领域已经涌现出了大量新得技术,它们成为大数据采集、存储、处理与呈现得有力武器. 大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现与应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。 一、大数据采集技术 数据就是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得得各种类型得结构化、半结构化(或称之为弱结构化)及非结构化得海量数据,就是大数据知识服务模型得根本.重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。 大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化得海量数据得智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理与管理等。必须着重攻克针对大数据源得智能识别、感知、适配、传输、接入等技术.基础支撑层:提供大数据服务平台所需得虚拟服务器,结构化、半结构化及非结构化数据得数据库及物联网络资源等基础支撑环境。

重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析与决策操作得可视化接口技术,大数据得网络传输与压缩技术,大数据隐 私保护技术等. 二、大数据预处理技术 主要完成对已接收数据得辨析、抽取、清洗等操作。1)抽取:因获取得数据可能具有多种结构与类型,数据抽取过程可以帮助我们将这些复杂得数据转化为单一得或者便于处理得构型,以达到快速分析处理得目得。2)清洗:对于大数据,并不全就是有价值得,有些数据并不就是我们所关心得内容,而另一些数据则就是完全错误得干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据. 三、大数据存储及管理技术 大数据存储与管理要用存储器把采集到得数据存储起来,建立相 应得数据库,并进行管理与调用。重点解决复杂结构化、半结构化与非结构化大数据管理与处理技术。主要解决大数据得可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠得分布式文件系统(DFS)、能效优化得存储、计算融入存储、大数据得去冗余及高效低成本得大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据得数据融合技术,数据组织技术,研 究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术. 开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指得就是NoSQ

SDN关键技术_综述

SDN关键技术及趋势 摘要:随着信息通信技术中大量新型业务(如移动互联网、社交网络、云计算和大数据)的出现,未来网正面临着新的挑战,而随时访问性,高带宽,动态管理是至关重要的。然而,基于专有设备手动配置的传统方法是繁琐且易出错的,而且他们不能充分利用网络基础设施的能力。最近,软件定义网络(SDN)已经被称为未来互联网最有前途的解决方案之一。SDN具有两个显著的特点,包括控制平面从数据平面中解耦并且为网络应用程序开发提供了可编程性。因此,SDN被认为能提供更有效的配置,更好的性能和更高的灵活性以适应创新的网络设计。本文总结了SDN活跃研究领域的最新进展。我们首先通过介绍SDN的起源提出一个普遍接受的SDN定义。然后我们简要的介绍了SDN逻辑架构及其技术特征。接着详细介绍了SDN关键技术及其相关领域的研究成果。最后我们描述了我们将来面临的挑战和SDN的发展趋势。 关键词:软件定义网络;OpenFlow;关键技术; Key technologies and Development of SDN Abstract:Emerging mega-trends (e.g., mobile, social, cloud, and big data) in information and communication technologies (ICT) are commanding new challenges to future Internet, for which ubiquitous accessibility, high bandwidth, and dynamic management are crucial. However, traditional approaches based on manual configuration of proprietary devices are cumbersome and error-prone, and they cannot fully utilize the capability of physical network infrastructure. Recently, software-defined networking (SDN) has been touted as one of the most promising solutions for future Internet. SDN is characterized by its two distinguished features, including decoupling the control plane from the data plane and providing programmability for network application development. As a result, SDN is positioned to provide more efficient configuration, better performance, and higher flexibility to accommodate innovative network designs. This paper surveys latest developments in this active research area of SDN. We first present a generally accepted definition for SDN with introducing the origin of SDN. We then briefly present its logical architecture and technical characteristics. We then dwell on its key technologies, and the related research results. Finally, we describe the challenges we face and discuss futureresearch directions of this technology. Key words: Software-defined networking, OpenFlow. Key technologies 引言 随着社交网络、移动互联网、物联网、云计算[1]等业务领域的快速发展,大数据[3][4]正日益成为当前的焦点,其面向的海量数据处理也对网络提出了更高的要求。大数据应用依赖于预先定义好的计 算模式,在集中化的管理架构下运行,存在着大量的数据批量传输及相关的聚合/划分操作。数据的聚合和划分通常发生在一台服务器和一个拥有众多 服务器的服务器组之间,这也是大数据应用中最典型的网络流量模式。例如,在用于大数据处理的MapReduce算法的执行过程[2]中,来自众多mapper 服务器的中间结果需要集中汇总到一台reducer服务器上进行归约(Reduce)操作,而MapReduce 的洗牌(Shuffle)过程更是由mapper和reducer之前的多次数据聚合组合而成。大数据处理过程中的每一次聚合都将导致大量服务器之间的海量数据交换,从而需要极高的网络带宽支持,而如果按照超额认购(oversubscribe)带宽的方式为每台服务器预留网络资源,将导致网络成为瓶颈,同时造成资源浪费。因此,对于大数据业务而言,他更需要对网络进行快速、频繁的实时配置,按需调用网络资源。 但是,传统的网络却难以满足云计算、大数据,以及相关业务提出的灵活的资源需求,这主要是因为它已经过于复杂从而只能处于静态的运作模式。当前,网络中存在着大量各种各样的互不相干的协议,它们被用于在不同间隔距离、不同链路速度、不同拓扑结构的网络主机之间建立网络连接。因为历史原因,这些协议的研发和应用通常是彼此分离的,每个协议通常只是为了解决某个专门的问题而缺少对共性的抽象,这就导致了当前网络的复杂性。

【机械要点】主轴动平衡的方法

张小只智能机械工业网 张小只机械知识库主轴动平衡的方法 机床高速化的应用和发展,要求主轴转速提高。但机床主轴组零件在制造过程中,不可避免会因材质不均匀、形状不对称、加工装配误差而导致重心偏离旋转中心,使机床产生振动和振动力,引起机床噪声、轴承发热等。随着转速升高,不平衡引起的振动越加激烈。由于机床主轴组件转动时产生的变形很小,为了简化计算,故视其作为刚性转子的平衡方法来处理。将转子视作绝对刚体,且假定工作时,不平衡离心力作用下的转轴不会发生显著变形。为此在这些条件下刚性转子的许多复杂不平衡状态,可简化为力系不平衡来处理,即可在任意选定的两个平面上增加或减去两个等效于Ud1,和Ud2的动平衡力使其平衡。刚性转子动平衡一般为低速动平衡,一般选用第一临界转速的1/3以下。相关术语- 不平衡:由于离心力的作用而在轴承上产生振动或运动原因的转子质量分布状态。- 残留不平衡U:平衡处理后留下来的不平衡。- 相对不平衡e:不平衡除以转子质量得到的值,它等于离心力对于轴中心的位移。- 平衡程度G:是相对不平衡与指定角速度的乘积。- 平衡处理:为使作用在轴承上的与旋转速度同步的振动和力处在指定限定以内,而对转子质量分布进行调整的作业。- 满键:是对具有键槽的旋转轴和配合部件,进行最终装配时用的键或者等同的键。- 半键:是对具有键槽的旋转轴或者配合零件,各自单独进行动平衡处理时使用的键。这种不平衡与最终组装时用的键(埋在旋转轴或配合部件的键槽中的不平衡)相当。刚性转子不平衡且的表达和精度要求1. 转子平街程度G也称偏心速度,它不仅表示了转子不平衡程度,而且还表示了转子质量偏心距与工作转速间的关系。G=e乘以w mm/se相对不平衡,mm;w实际使用的最高角速度rad/s。如果用旋转速度n(r/min)来代替, 则:w=2pn/601.进行由不平衡引起的振动、力、噪声等现场试验或实验室试验,确定平衡程度。2.通过计算求得作用到轴承上的不平衡力,达到轴承的允许限度时的允许不平衡,从而确定不平衡程度。在JISBO905-1992标准中列出参考附表1,表中示出了对于

离子液体概述及其应用要点

离子液体概述及其应用 前言:离子液体是仅由阴阳两种离子组成的有机液体,也称之为低温下的熔盐。离子液体具有低蒸汽压,良好的离子导电导热性,液体状态温度范围广和可设计性等优点。离子液体所具备的这些其他液体无法比拟的性质,给大部分传统化工反应提供了新的思路,特别是在绿色化学设计中的应用。本文首先阐述了离子液体的基础知识,而后着重讨论了离子液体在催化及有机合成领域,摩擦领域,生物医药领域中的应用。 主题: 一 离子液体概述 1.1离子液体的发展及性质 20世纪时“离子液体”(IL )仅仅是表示熔融盐或溶盐的一个术语,比如高温盐。现在,术语IL 大部分广泛的用在表示在液态或接近室温条件下存在的熔盐。早在1914年,Walden [1]合成出乙基硝酸铵,熔点为12℃,但当时这一发现并未引起关注。20世纪40年代,Hurley 等人报道了第一个氯铝酸盐离子液体系AlCl3-[EPy]Br 。此后对这一氯铝酸盐离子液体系进行了不断的扩充,包括各种基团修饰,如N-烷基吡啶,1,3-二烷基咪唑等,另外研究了此类离子液体系在电化学,有机合成以及催化领域的应用并有很好的效果[2]。但是由于此类离子液体共同的缺点就是遇水反应生成腐蚀性的HCl ,对水和空气敏感,从而限制了他们的应用。所以直到1992年,Wilkes [3]领导的小组合成了一系列由咪唑阳离子与-4BF ,-6PF 阴离子构成的对水和空气

都很稳定的离子液体。此后在全世界范围内形成了研究离子液体的热潮。这是由于ILs 存在很多优异而特殊的性质。(1)液体状态温度范围广,300℃;(2)蒸汽压低,不易挥发;(3)对有机物,无机物都有很好的溶解性,是许多化学反应能够在均相中完成;(4)密度大,与许多溶剂不溶,当用另一溶剂萃取产物时,通过重力作用,可实现溶剂与产物的分离;(5)较大的可调控性;(6)作为电解质具有较大的电化学窗口,良好的导电性,热稳定性。这些特殊的物理化学性质可以产生许多新应用,同时也会提高现有的科技水平。到目前为止,已经合成并报道了大量的ILs ,图1显示了典型的阳离子结构,阴离子结构和侧基链[4]。我们可以通过选择合适的离子组成从而实现ILs 物理化学性质的设计。比如说咪唑阳离子(1-丁基-3-甲基咪唑阳离子)和-4BF 或-4AlCl 组合,生成的离子液体是亲水性的,而同样的阳离子和 -6PF 或-2NTf 产生的是强憎水性的离子液体。 目前研究较多的是咪唑阳离子和吡啶阳离子与含氟阴离子构成的离子液体。

移动互联网的关键技术综述

移动互联网的关键技术综述

移动互联网关键技术的研究 摘要:在最近几年里,移动通信和互联网成为当今世界发展最快、市场潜力最大、前景最诱人的两大业务。根据有关方面的统计,截止2013年底,中国手机网民超过5亿,占比达81%。伴随着移动终端价格的下降及wifi的广泛铺设,移动网民呈现爆发趋势。基于对移动互联网研究现状的分析和演进趋势的预测,文章对移动互联网关键技术进行了简要的介绍。 关键词:移动互联网(MI),关键技术 1 引言 移动互联网(Mobile Internet, 简称MI)是一种通过智能移动终端,采用移动无线通信方式获取业务和服务的新兴业务,包含终端、软件和应用三个层面。终端层包括智能手机、平板电脑、电子书、MID等;软件包括操作系统、中间件、数据库和安全软件等。应用层包括休闲娱乐类、

工具媒体类、商务财经类等不同应用与服务。随着技术和产业的发展,未来,LTE(长期演进,4G通信技术标准之一)和NFC(近场通信,移动支付的支撑技术)等网络传输层关键技术也将被纳入移动互联网的范畴之内。 从宏观角度来看,移动互联网是由移动终端和移动子网、接入网络、核心网络3部分组成,如图1[1], 图1 移动互联网的体系结构 移动互联网的参考模型如图2[2], 图2 移动互联网的参考模型 1.1 研究背景 在如今这个快速发展的数字时代中,最令我

们惊喜的变化或许就是移动设备的大量普及。对于任何品牌或者公司营销领域的人士来说,这都是一个值得引起注意的变化。因为这一变化意味着我们需要告知自己的客户“消费者、用户接入企业网站、服务的方式已经发生了改变,而企业需要对此作出应对。”对于这一变化所发生的速度以及普及程度,我们或许可以用如下一系列数字进行说明: (1)在美国地区,如今的智能手机用户数量已经是计算机用户数量的四倍。 (2)苹果在2011年总共卖出了4800万部移动设备,而同期苹果卖出的笔记本以及Mac机的数量则仅为490万台。 (3)48%的美国移动订阅数字内容用户都使用智能手机。 (4)2012年的智能手机用户使用率同比2011年上升了50%。 (5)91%美国人无时无刻都保持自己的移动设备在可触及的范围内(即无论去哪,都会随身带着移动设备)。 (6)2013年,移动手机将超越PC成为接入互联网的最主要途径。

主轴动平衡的方法与应用2

主轴动平衡的方法与应用2 1 前言 机床高速化的应用和发展,要求主轴转速提高。但机床主轴组零件在制造过程中,不可避免会因材质不均匀、形状不对称、加工装配误差而导致重心偏离旋转中心,使机床产生振动和振动力,引起机床噪声、轴承发热等。随着转速升高,不平衡引起的振动越加激烈。 由于机床主轴组件转动时产生的变形很小,为了简化计算,故视其作为刚性转子的平衡方法来处理。将转子视作绝对刚体,且假定工作时,不平衡离心力作用下的转轴不会发生显著变形。为此在这些条件下刚性转子的许多复杂不平衡状态,可简化为力系不平衡来处理,即可在任意选定的两个平面上增加或减去两个等效于U d1,和U d2的动平衡力使其平衡。 刚性转子动平衡一般为低速动平衡,一般选用第一临界转速的1/3以下。 2 相关术语 ?不平衡:由于离心力的作用而在轴承上产生振动或运动原因的转子质量分布状态。 ?残留不平衡U:平衡处理后留下来的不平衡。 ?相对不平衡e:不平衡除以转子质量得到的值,它等于离心力对于轴中心的位移。 ?平衡程度G:是相对不平衡与指定角速度的乘积。 ?平衡处理:为使作用在轴承上的与旋转速度同步的振动和力处在指定限定以内,而对转子质量分布进行调整的作业。 ?满键:是对具有键槽的旋转轴和配合部件,进行最终装配时用的键或者等同的键。 ?半键:是对具有键槽的旋转轴或者配合零件,各自单独进行动平衡处理时使用的键。这种不平衡与最终组装时用的键(埋在旋转轴或配合部件的键槽中的不平衡)相当。 3 刚性转子不平衡且的表达和精度要求 1.转子平街程度G

也称偏心速度,它不仅表示了转子不平衡程度,而且还表示了转子质量偏心距与工作转速间 的关系。 G=e×ω mm/s e——相对不平衡,mm; ω——实际使用的最高角速度rad/s。如果用旋转速度n(r/min)来代替,则:ω=2πn/60 e×2πn en 60 9.55 2.平衡程度的等级 我国采纳了IS01940-1986刚性转子平衡质量要求标准,标准将平衡程度分为11个等级(见下 表)。 3.关于平衡程度等级的选择 应根据使用状况决定。 1.进行由不平衡引起的振动、力、噪声等现场试验或实验室试验,确定平衡程度。 2.通过计算求得作用到轴承上的不平衡力,达到轴承的允许限度时的允许不平衡,从 而确定不平衡程度。 在JISBO905-1992标准中列出参考附表1,表中示出了对于形式、大小以及旋转速度不同的 有代表性刚性转子,按经验得到动平衡程度等级的推荐值。 机床主轴平衡程度等级为G1、G2.5级机床主轴轴系的传动零件平衡程度等级为G6.3、G16。 高速旋转机械以及轴承刚性低的机械通常选用平衡程度值小的,相反选用大值。 另外,旋转部份的质量与机械整体质量之比较小时.通常选用的平衡程度值要大。 4.允许残留不平衡的求法

离子液体及其在化学中的应用

离子液体及其在化学中的应用 随着科技发展和环保意识的增强,清洁、低耗、高效的化学化工反应是发展的必然趋势.由于绝大多数化学反应需要在溶剂中进行,而有机溶剂的用量大、挥发性强是造成化学化工污染的主要原因之一.寻找对环境友好、有利于反应控制的介质和溶剂是目前化学化工需要解决的迫切问题之一.室温离子液体适应这种需要,正在快速为是继超临界CO2之后的新一代绿色溶剂。 一离子液体及其特点 离子液体[1]是指在室温或接近室温呈液态的离子型化合物,也称为低温熔融盐.常见的阳离子有季铵、季、咪唑盐和吡作为离子化合物,离子液体熔点较低的主要原因是:结构的不对称性使离子难以规则紧密地堆积,难以形成晶体或固体. 与传统的溶剂相比,离子液体具有以下3个显著的特性: 1 在室温下,离子液体蒸汽压几乎为零,并且不燃烧、不爆炸、毒性低,溶解性能强,可以较好地溶解多数有机物、无机物和金属配合物.多数离子液体在300e仍能保持液态,因而离子液体液态温度范围大,既可室温使用,也可以高温使用.离子液体作为溶剂,不仅不会造成溶剂损耗和环境污染,而且使用温度范围大,适用范围广.

2) 离子液体具有良好的导电性和较宽的电化学稳定电位窗.离子液体的电化学稳定电位窗比传统溶剂大得多,多数为4V左右,而水在酸性条件下为1.3V,在碱性条件下只有0.4V.因此使离子液体在电化学研究中有着广泛的用途. 3) 离子液体具有可调节的酸碱性,作为反应介质使用极为方便.例如,将Lewis酸AlCl3加入到离子液体氯化1-丁基-3-甲基咪唑中,当AlCl3的摩尔分数x<0.5时,体系呈碱性;当x=0.5时,呈体系呈中性;当x>0.5时,体系表现强酸性[4].同时,还发现离子液体存在/潜酸性0和/超酸性0.例如,把弱碱吡咯或N,N)二甲基苯胺加到中性的离子液体1-丁基 -甲基咪唑四氯铝酸盐中,体系表现出很强的潜酸性[5],如果把无机酸溶于上述离子液体中可观察到超强酸性[6]. 二离子液体在化学中的应用 由于离子液体所具有的独特性能,目前它被广泛应用于化学研究的各个领域中 .1 用作反应溶剂 2.1.1 氢化反应离子液体作为氢化反应的溶剂已有大量的报道[7~9],对于氢化反应,用离子液体替代普通溶剂的优点是:反应速率提高数倍,离子液体和催化剂的混合液可以重复利用.研究表明,离子液体在氢化反应中发挥了溶剂和催化剂的双重

同步直播课堂关键技术文献综述

同步直播课堂关键技术文献综述 同步直播课堂是将优质课堂利用卫星或地面网络直播到需要的班级课堂,具体而言,是采用摄像设备,将优质学校的课堂教学活动及教师课件画面等音视频信号传送至流媒体编码器,压缩成数据流,通过流媒体服务器经网络传送到接收端课堂,从而实现若干课堂的同步教学讨论(赵建,2009)。利用直播课进行现代远程教育就是区别于以面授为主的传统教育模式的一种新型教育模式,它是运用计算机网络技术和多媒体技术来实现交互式学习(王芳,2004)。因此,同步直播课堂与传统课堂相比,依赖于现代远程教育技术的发展,对技术的需求更为严格,因为这些技术问题直接影响到教学活动的进行。 在国外,直播教学系统作为现代远程教育的一种应用手段,已经发展到比较成熟的阶段。并且,直播教学系统正在向着海量数据存储、随时随地接入、复合媒体、高智能化、高自动化和虚拟现实等方向发展,此外,对于实时教学中产生的网络课程的版权保护以及共享需求也越来越迫切。在美国,以网络为基础的直播教学系统,得到了很大的发展。到 2004 年,有大约三分之一的州建立了直播教学系统,如西弗吉尼实时教学应用平台(WVVS)的创办是想“不受学校规模和地点的限制,通过网络技术给学生提供高质量的教育课程”;阿拉斯加的实时教学平台(https://www.wendangku.net/doc/5013567270.html,),“只通过一条主要的信息高速公路为有西弗吉尼亚那样大小的学区服务”;德克萨斯的奥斯丁中学计划(AHSP)为不能去常规中学上学的学生服务;休斯顿独立学区(HISD)则概括性地指出他们的任务是允许任何学生在任何时间和任何地方交互学习,为学生提供一种选择,以满足那些不易适应传统教学的各种各样的学生的需要。 在国内,同步直播课堂的实践应用已经有很多,如成都七中从2002年开始向全国几百所学校广播同步教学,但大多研究着重课堂教学模式、交互模式的探讨,对技术方面专门的研究较少。比如冷铁峥、平忻(2003)提出同步直播课堂技术应用方面的支持应由运营卫星通信的实业公司所负责,包括设备安装、人员培训、技术服务等,异步的辅导、课件点播、定时播发等内容则可通过校园网、有线电视、区域宽带网与互联网等方式进行,但并没有对技术规范做详细阐述。王成端、顾玉林(2006)与上述观点一致,认为同步直播课堂的技术可由专门的技术教师负责,其主要负责通信设备与整个系统的操作培训,为主讲教师和辅导

离子液体(综述)

离子液体的现状、应用及其前景 姓名:丁文章专业:轻工技术与工程学号:6140206024摘要:离子液体因为具有如蒸汽压低,电化学窗口宽,物质溶解性好,稳定诸多优点而被极多的化学工作者关注.本文就离子液里的研究进展.离子液体的类型及应用,离子液体的毒性等几个方面做出详细的阐述,并对离子液体的前景做出了初步的预测. 关键词:离子液体;离子液体的类型;应用;毒性; Abstract:Ionic liquid has the following advantages, wide electrochemical window, steam down material good solubility ,This paper is about of the research progress in the ionic liquid, the types and application of ionic liquids and the toxicity of ionic liquid, and made a preliminary forecast to the prospect of the ionic liquid. Keyword:Ionic liquid;the types of Ionic liquid; application of ionic liquids; toxicity of ionic liquid; 1引言 离子液体[1]是指全部由有机阳离子和无机或有机阴离子构成的液体,如高温下的KCI,KOH呈液体状态,此时它们就是离子液体,在室温或室温附近温度下呈液态的由离子构成的物质,称为室温离子液体. 离子液体的历史可以追溯到1914年,当时Walden报道了(EtNH2)+HNO3-的合成(熔点12℃) .这种物质由浓硝酸和乙胺反应制得,但是,由于其在空气中很不稳定而极易发生爆炸,它的发现在当时并没有引起人们的兴趣,这是最早的离子液体.1951年F.H.Hurley和T.P. Wiler首次合成了在环境温度下是液体状态的离子液体.他们选择的阳离子是N-乙基吡啶,合成出的离子液体是溴化正乙基吡啶和氯化铝的混合物(氯化铝和溴化乙基吡啶摩尔比为1:2) .但这种离子液体的液体温度范围还是相对比较狭窄的,而且,氯化铝离子液体遇水会放出氯化氢,对皮肤有刺激作用.直到1976年,美国Colorado州立大学的Robert利用AICl3/[N-EtPy]Cl作电解液,进行有机电化学研究时,发现这种室温离子液体是很好的电解液,能和有机物混溶,不含质子,电化学窗口较宽.1992年Wilkes以1-甲基-3-乙基咪唑为阳离子合成出氯化1-甲基-3-乙基咪唑,在摩尔分数为50%的AICl3存在下,其熔点达到了8℃.在这以后,离子液体的应用研究才真正得到广泛的开展. 与传统的有机溶剂相比,离子液体具有如下特点[2]:(1) 液体状态温度范围宽,从低于或接近室温到300℃, 且具有良好的物理和化学稳定性;(2)无色、无臭, 不挥发, 几乎没有蒸气压.(3) 蒸汽压低,不易挥发,消除了VOC(Volatile Organic Compounds)环境污染问题;(4) 对大量的无机和有机物质都表现出良好的溶解能力, 且具有溶剂和催化剂的双重功能,可作为许多化学反应溶剂或催化活性载体;(5) 具有较大的极性可调控性, 粘度低, 密度大, 可以形成二相或多相体系, 适合作分离溶剂或构成反应

压电发电装置的设计

压电发电装置的设计作者姓名:XXXX 专业名称:通信工程 指导教师:XXXXX

摘要 人们自1880年发现天然石英具有压电效应以来,相继又发现并人工制造了一系列的压电材料。如某些木材、钛酸钡、铌酸锂、人造石英、高分子聚合物等。尤其近半个世纪里,压电材料的发展极为迅速,应用日益广泛。从日常生活用的压电式电子打火和厨房里的天然气炉灶压电式点火器到无线电用的压电式扬声器、耳机、乃至飞机、宇宙飞船、导弹中的振动测量传感器,都用到压电材料。但这些压电材料的机械性能比较脆,若机械加工质量不高,在装配或应用中很易破碎。而近二、三十年来在人们发现并制造出来的新型压电材料中,最引人注目的就要算高分子压电材料,如聚二氟乙烯、聚氟乙烯、锆钛酸铅、聚氯乙烯、聚碳酸酯、聚偏二氟乙烯、尼龙等,这些材料不像石英及压电陶瓷材料那么脆,在装配和应用中不易破碎。尤其是聚偏二氟乙烯这一类的压电材料,非常柔软,又可做得很薄,而且它具有大的动态范围,高绝缘性、高机械强度和耐冲击、抗辐射、低噪声阻抗、压电系数大等特性。因此,近年来受到人们的特别关注,应用越来越广泛。压电效应分为正压电效应和逆压电效应,本文所要研究的就是利用正压电效应制成的利用聚偏氟乙烯(PVDF)作为压电薄膜的压电发电装置,这种压电发电装置相对于其他微型发电装置,具有结构简单、不发热、无电磁干扰和易于实现微小化等优点,越来越受到各国研究人员的关注。本文通过对压电发电装置电学等效模型的建立与分析,利用Multisim软件对压电发电的特性(包括压电电流输出特性和电荷输出特性)、能量传输效率、提高电能的产生方法进行分析。并对功率调理电路、能量存储媒介、稳压充电电路进行了相关理论和仿真研究。具体工作如下: 首先,建立并分析压电发电的电学等效模型。 其次,借助电路仿真软件进行电路分析。研究压电振子电能不同存储媒介的可行性,利用超级电容容量大,充放电效率高的特点作为电荷的初级存储。当积累到一定量的电荷即通 I

高速主轴动平衡及其在线控制技术

高速主轴动平衡及其在线控制技术 章云1,梅雪松1,2 (1.西安交通大学机械工程学院,西安710049;2.西安交通大学机械制造系统工程国家重点实验室,西安710049) [摘要]针对机床主轴在线自动平衡控制问题,阐述了高速主轴不平衡识别方法和在线自动平衡技术国内外现状,分析了喷液式在线自动平衡装置原理,设计了喷液式平衡系统,并通过高速主轴实验对该系统的有效性进行了验证。研究结果表明,主轴经过平衡后,不平衡量振动值由1.60mm/s降至0.34mm/s,主轴失衡振动得到了有效抑制。[关键词]高速主轴;在线动平衡;振动控制 [中图分类号]TH113.25[文献标识码]A[文章编号]1009-1742(2013)01-0087-06 1前言 现代化的高速数控加工中心具有主轴转速高、运行精度高、加工效率高的特点。转速和精度的提高是以高精度动平衡为前提的,但对于主轴而言,由于制造、安装误差以及材料的不均匀等因素,不平衡的存在是必然的。由于运转在高速下,主轴对不平衡控制的要求比通常转子更加严格,微小的不平衡都可能导致主轴回转精度的严重丧失乃至轴承支承系统的失稳。只有将主轴残余不平衡量控制在一定范围内,才能抑制主轴在高速运行过程中的失衡振动,保证零件的加工精度。 为减小主轴的不平衡,在设计之初应尽量避免不对称结构,在加工装配过程中尽量减小误差。即便如此,主轴不平衡也不可能被完全消除,因此,主轴出厂时会进行初始动平衡以减小主轴失衡量。然而,主轴刀具微小的不对中、磨损或粘刀仍会破坏原有的动平衡。另外,主轴刀具系统受切削力激励、热变形以及高速旋转离心力等复杂工况的干扰,也会破坏主轴的动平衡,从而使得高速机床主轴系统的稳定性被破坏。显然,若每次都采用传统离线停机动平衡的方式来消除微小失衡量,就意味着自动化环节的中断,破坏了高效加工的原则。因此,开展高速主轴动平衡与其在线控制技术的研究,能充分发挥高速主轴的效能,保障机床的长期稳定和高效运行,进而提高我国机床工业和机械制造业的整体水平。 2高速主轴动平衡及其在线控制技术现状及分析 2.1不平衡识别技术 经典的柔性转子动平衡方法可大致分为两种类型,即模态平衡法[1]和影响系数法[2]。这两种方法各有其局限性。对模态平衡法而言,其不平衡识别受支承特性的影响较大,用于轴系平衡时临界转速附近不易获得的单一振型。对影响系数法而言,在高速下平衡时启动次数多,高阶振型敏感性降低。因此,Parkison等[3]提出了综合平衡的概念,即在影响系数法的基础上利用模态平衡法中的振型分离的特点选择平衡参数。这种方法一定程度上结合了二者优点,但仍需多次试重。 为提高平衡效率和精度,国内外学者近年来在低速动平衡和无试重动平衡等方面展开研究。传统平衡方法平衡柔性转子时必须在高速下进行,否则只能进行刚性转子的动平衡。低速动平衡技术[4~6]正是在这种背景下发展起来的,其通过分析转子在临界转速前后振动特性的变化规律,通过信号处理等方式在低速下获取转子高阶振型信息,并根据一 [收稿日期]2012-10-10 [基金项目]“973”国家重点基础研究发展计划资助项目(2009CB724405);国家自然科学基金资助项目(51075321) [作者简介]梅雪松(1963—),男,湖北黄梅县人,教授,博士生导师,主要研究方向为数控技术;E-mail:xsmei@https://www.wendangku.net/doc/5013567270.html,

离子液体在药物研究中的应用

离子液体在药物研究中的应用 发表时间:2019-11-26T14:40:50.783Z 来源:《中国西部科技》2019年第21期作者:谭俊荣 [导读] 随着社会与经济的发展,生活水平的提高,离子液体因其高度可调性而具备优良的物理化学性质和独特的生物活性,已不再局限于作为溶剂的传统应用。随着对其毒性与生物相容性的深入了解,由于阴阳离子组合的多样性与可设计性,离子液体已经能够弥补市售药物在溶解度、生物利用度和药物输送等方面的不足,在药物开发中潜力巨大。本文通过对离子液体在药物合成、输送作用,以及作为药物活性成分和剂型改良方面的研究与应用进行阐述,并对 谭俊荣 广州康瑞泰药业有限公司 摘要:随着社会与经济的发展,生活水平的提高,离子液体因其高度可调性而具备优良的物理化学性质和独特的生物活性,已不再局限于作为溶剂的传统应用。随着对其毒性与生物相容性的深入了解,由于阴阳离子组合的多样性与可设计性,离子液体已经能够弥补市售药物在溶解度、生物利用度和药物输送等方面的不足,在药物开发中潜力巨大。本文通过对离子液体在药物合成、输送作用,以及作为药物活性成分和剂型改良方面的研究与应用进行阐述,并对离子液体药物的未来发展作出展望。 关键词:离子液体;药物研究;应用 引言 离子液体是完全由阴阳离子组成的室温下为液体的盐,因其强大的空间位阻使得室温下阴、阳离子可以自由振动、转动甚至平动,使整个有序的晶体结构遭到破坏,导致其在室温下呈现出液态的性质。但是,整体上静电场仍占优势,阴阳离子之间存在较强的相互作用,使得离子液体与易挥发易燃的分子型液体如苯、乙醚等有机液体相比几乎无蒸汽压。由于离子液体特殊的结构,使其具有蒸气压低、黏度范围宽、导电性好、溶解能力强及热稳定性高等优点,已被广泛应用于电化学、有机合成、催化工程等领域。Hough等将离子液体分为三代,第一代离子液体主要应用其物理性质,制备功能性溶剂;第二代离子液体应用其化学性质,获得具有独特物理化学性质的功能性材料;第三代离子液体应用其生物活性,制备具有特殊生物活性的目标产物。离子液体具有一定的可设计性,可以通过改变阴阳离子对调节其物理或化学性质。许多常见离子液体的结构或组分和活性药物成分相似,因此已有部分学者对离子液体在药物合成、多功能活性药物及药物传递等方面进行了深入的研究。 1离子液体在药物研究的概述 离子液体(ionicliquids,ILs)由大体积有机阳离子与无机或有机阴离子组成,熔点低于100℃,是在室温或室温附近温度下呈液态的盐,故又称为室温离子液体(roomtemperatureionicliquids,RTILs),其阴阳离子体积很大且高度不对称,强大的空间位阻使室温下的阴阳离子自由振动、转动甚至平动,导致整个有序晶体结构被破坏而表现出液态的性质。ILs最主要的特点就是"可调性",即通过选择不同阴阳离子而具有不同的生物活性或独特的理化性质。ILs发展如下:第一代ILs主要根据其独特的物理性质,如可忽略的蒸气压、高(热、化学)稳定性和低挥发性等用作"绿色"溶剂;第二代ILs主要根据其可调节的理化性质,对于给定的阴离子或阳离子,合理选择相应的反荷离子制备"功能化"ILs,如高能材料、润滑剂和金属离子络合剂等;第三代和最近的ILs主要根据其可调的理化性质并使用低毒性和生物相容性的离子组合,形成具有生物活性的ILs,甚至可以作为APIs,合成特效离子液体,即API-ILs。 2离子液体在药物研究中的应用 2.1利用ILs从天然产物中提取 APIs天然产物一直是新药研发的重要源泉,但在天然产物中提取药物有效成分时需要大量使用VOCs,导致溶剂残留而污染药品,甚至对环境也会造成一定的破坏。研究表明,ILs作为药物提取的溶剂能够较好地克服上述问题。Cull等首次在疏水性离子液体-水双相体系(liquid? liquidextractionswithhydrophobicils,IL-LLE)中提取大环内酯类抗生素红霉素A(arythromycin-A),发现萃取效率与乙酸丁酯-水双相体系相当,因此能够代替常规有机溶剂,从而避免溶剂的毒性和可燃性所带来的经济和环境损害。之后,Freire等采用同样的液-液萃取方法,实现对咖啡因(caffeine)和尼古丁(nicotine)两种生物碱的完全提取,萃取原理主要在于:生物碱中氮氧原子之间的相互作用;ILs中阳离子的酸性氢原子;生物碱芳环与离子液体阳离子之间的π-π相互作用;生物碱的烷基与咪唑基离子的烷基侧链之间的色散相互作用。微波辅助离子液体(microwave-assistedionicliquid,MAIL)与超声辅助离子液体(ultrasound-assistedionicliquid,UAIL)也常用于天然产物中药物的提龋其中,Du等开发的MAIL 方法是将IL作为萃取剂,在最佳萃取条件下,从延胡索中提取脱氢卡维丁(dehydrocavidine),与常规提取方法相比,该方法具有产率高、耗时短、溶剂使用量少且不使用VOCs等优点,因此常用于快速有效提取和分析药用植物中的活性成分。Bi等利用UAIL技术,以1-烷基-3-甲基咪唑氯化物(1-alkyl-3-methylimidazoliumchloride,[Cnmim]Cl,n=2,4,6,8)为萃取剂,从抗心血管病药物丹参中成功提取出丹参酮(tanshinone)活性成分,结果表明,阳离子上烷基侧链越长,ILs与APIs相互作用越强,提取效率也就越高,最后[C8mim]Cl通过阴离子之间的复分解反应转化成疏水性1-辛基-3-甲基咪唑六氟硼酸盐([C8mim]PF6)而与APIs实现分离。 2.2.黄酮类化合物的提取 黄酮类化合物主要是一种具有2-苯基色原酮的化合物,在防治及治疗老年高血压、脑溢血、糖尿病以及过敏性疾病等发挥重要的作用。Zhang等人使用微波辅助法研究了从黄芩中提取黄酮类化合物(黄芩苷、汉黄芩苷、黄芩素和汉黄芩素),结果表明四种萃取物的产率分别是5.18%(30min)、8.77%(90s)、16.84%(30min)和18.58%(3h),与传统的萃取方法相比在萃取效率上有明显的提升,并且发现离子液体的中阴离子种类(Br-、Cl-、BF4-、OAc-和CF3SO3)和咪唑阳离子上取代的烷基链的长度([C2mim]+、[C8mim]+、[C10mim]+和[C12mim]+等)也会对萃取效率产生影响,萃取产率随着烷基链的增长而减小,含Br-离子液体对萃取效率有较强的影响,其原因可能是Br-与四种萃取物发生较强的相互作用,Xie和Swatloski在研究离子液体萃取能力过程中也得到了相似的结论。冯吉等人研究了可以用于降低血小板聚集、预防心脑血管疾病的一类多酚化合物的提取,在超声辅助条件下,以1-丁基-3-咪唑四氟硼酸盐代替有机溶剂为萃取剂提取虎杖中的虎杖苷和白藜芦醇,集提取,分离和纯化与一体,具有提取时间短、溶剂用量少、操作过程简单的特点。张露月等人以离子液体[Bmim]BF4为萃取剂提取金钗石斛总黄酮和石斛碱,与传统的加热回流的方式相比,两组分的产率都有很大的提高,提取时间由90min降为185s,并且扫描电镜(SEM)观察后发现:发现离子液体微波协同处理后处理后的对结构的破坏更为严重,张冕[23]在采取离子液体-微波辅助方法提取女贞子中特女贞苷时,比较不同的提取方式对植物结构形貌的破坏程度也同样发现,离子液体处理后的植物细胞

相关文档