文档库 最新最全的文档下载
当前位置:文档库 › 第十章 第4节 电磁感应中的动力学、能量和动量问题

第十章 第4节 电磁感应中的动力学、能量和动量问题

第十章  第4节  电磁感应中的动力学、能量和动量问题
第十章  第4节  电磁感应中的动力学、能量和动量问题

第4节电磁感应中的动力学、能量和动量问题

高考对本节内容的考查常以压轴计算题的形式呈现,即便以选择题的形式考查,通常题目难度也较大,因为这类题目可以说是以电磁感应为载体,把直线运动、相互作用、牛顿运动定律、机械能、动量、电路、磁场,甚至包括电场和交变电流等力学、电学知识全部综合到一起进行考查。

考点一电磁感应中的动力学问题[多维探究类]

1.两种状态及处理方法

2.抓住力学对象和电学对象间的桥梁——感应电流I、切割速度v,“四步法”分析电磁感应中的动力学问题

考法(一)导体棒在磁场中静止

[例1](2017·天津高考)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电

阻R。金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强

磁场中,磁场方向垂直于导轨平面向下。现使磁感应强度随时间均匀

减小,ab始终保持静止,下列说法正确的是()

A.ab中的感应电流方向由b到a

B.ab中的感应电流逐渐减小

C.ab所受的安培力保持不变

D.ab所受的静摩擦力逐渐减小

[解析]根据楞次定律,可判断ab中感应电流方向从a到b,A错误;磁场变化是均匀的,根据法拉第电磁感应定律,感应电动势恒定不变,感应电流I恒定不变,B错误;安培力F=BIL,由于I、L不变,B减小,所以ab所受的安培力逐渐减小,根据力的平衡条件,静摩擦力逐渐减小,C错误,D正确。

[答案] D

考法(二) 导体棒在磁场中做匀速运动

[例2] (2016·全国卷Ⅱ)如图,水平面(纸面)内间距为l 的平行金属导

轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上。t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动。t 0时刻,金

属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g 。求:

(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值。 [思路点拨]

分别画出金属杆进入磁场前、后的受力示意图,有助于快速准确的求解问题。

[解析] (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得 ma =F -μmg ①

设金属杆到达磁场左边界时的速度为v ,由运动学公式有 v =at 0②

当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为 E =Blv ③ 联立①②③式可得 E =Blt 0????F m -μg 。④

(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律 I =E R

⑤ 式中R 为电阻的阻值。金属杆所受的安培力为 F 安=BlI ⑥

因金属杆做匀速运动,由牛顿运动定律得 F -μmg -F 安=0⑦ 联立④⑤⑥⑦式得 R =B 2l 2t 0

m 。⑧

[答案] (1)Blt 0????F m -μg (2)B 2l 2

t 0m 考法(三) 导体棒在磁场中做加速运动

[例3] (2018·江苏高考)如图所示,两条平行的光滑金属导轨所在平面与水平面的夹角为θ,间距为d 。导轨处于匀强磁场中,磁感应强度大小为B ,方向与导轨平面垂直。质量为m 的金属棒被固定在导轨上,距底端的距离为s ,导轨与外接电源相连,使金属棒通有电流。金属棒被松开后,以加速度a 沿导轨匀加速下滑,金属棒中的电流始终保持恒定,重力加速度为g 。求下滑到底端的过程中,金属棒

(1)末速度的大小v ; (2)通过的电流大小I ; (3)通过的电荷量Q 。

[解析] (1)金属棒做匀加速直线运动, 根据运动学公式有v 2=2as 解得v =2as 。

(2)金属棒所受安培力F 安=IdB 金属棒所受合力F =mg sin θ-F 安 根据牛顿第二定律有F =ma 解得I =m g sin θ-a

dB 。

(3)金属棒的运动时间t =v

a ,

通过的电荷量Q =It 解得Q =

m g sin θ-a

2as dBa

[答案] (1)2as (2)m (g sin θ-a )

dB

(3)m (g sin θ-a )2as dBa

[易错提醒]

导体棒或线框做匀变速直线运动时,才能应用牛顿第二定律和运动学公式解题,如果是加速度变化的问题,一般要应用能量或动量观点。

考点二电磁感应中的能量与动量问题[多维探究类] 考法(一)电磁感应中的能量问题

[例1]如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4 m,导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN。Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=0.1 kg、电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4 kg、电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2,问:

(1)cd下滑的过程中,ab中的电流方向;

(2)ab刚要向上滑动时,cd的速度v多大?

(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8 m,此过程中ab 上产生的热量Q是多少?

[解析](1)由右手定则可判断出cd中的电流方向为由d到c,则

ab中电流方向为由a流向b。

(2)开始放置时ab刚好不下滑,ab所受摩擦力为最大静摩擦力,

设其为F max,有F max=m1g sin θ①

设ab刚要上滑时,cd棒的感应电动势为E,由法拉第电磁感应定律有E=BL v②

设电路中的感应电流为I,由闭合电路欧姆定律有

I=

E

R1+R2

设ab所受安培力为F安,有F安=BIL④

此时ab受到的最大静摩擦力方向沿斜面向下,

由平衡条件有F安=m1g sin θ+F max⑤

综合①②③④⑤式,代入数据解得v=5 m/s。

(3)设cd棒运动过程中在电路中产生的总热量为Q总,由能量守恒定律有m2gx sin θ=Q

+1

2m 2v 2 又Q =

R 1

R 1+R 2

Q 总 解得Q =1.3 J 。

[答案] (1)由a 流向b (2)5 m/s (3)1.3 J [题型技法]

电磁感应问题中的能量转化及焦耳热的求法

(1)能量转化

其他形式的能量――→克服安培力做功电能――→电流做功 焦耳热或其他

形式的能量 (2)求解焦耳热Q 的三种方法

考法(二) 电磁感应中的动量问题

[例2] (多选)如图,在水平面内固定有两根相互平行的无限长光

滑金属导轨,其间距为L ,电阻不计。在虚线l 1的左侧存在竖直向上的匀强磁场,在虚线l 2的右侧存在竖直向下的匀强磁场,两部分磁场

的磁感应强度大小均为B 。ad 、bc 两根电阻均为R 的金属棒与导轨垂直,分别位于两磁场中,现突然给ad 棒一个水平向左的初速度v 0,在两棒达到稳定的过程中,下列说法正确的是( )

A .两金属棒组成的系统的动量守恒

B .两金属棒组成的系统的动量不守恒

C .ad 棒克服安培力做功的功率等于ad 棒的发热功率

D .ad 棒克服安培力做功的功率等于安培力对bc 棒做功的功率与两棒总发热功率之和 [解析] 开始时,ad 棒以初速度v 0切割磁感线,产生感应电动势,在回路中产生顺时针方向(俯视)的感应电流,ad 棒因受到向右的安培力而减速,bc 棒受到向右的安培力而向右加速;当两棒的速度大小相等,即两棒因切割磁感线而产生的感应电动势相等时,回路中没有感应电流,两棒各自做匀速直线运动;由于两棒所受的安培力都向右,两金属棒组成的系统所受合外力不为零,所以该系统的动量不守恒,选项A 错误,B 正确。根据能量守恒定律可知,ad 棒动能的减小量等于回路中产生的热量和bc 棒动能的增加量,由动能定理可知,ad 棒动能的减小量等于ad 棒克服安培力做的功,bc 棒动能的增加量等于安培力对bc 棒做的功,所以ad 棒克服安培力做功的功率等于安培力对bc 棒做功的功率与两棒总发热功率之和,选项C 错误,D 正确。

[答案] BD

[延伸思考]

(1)双棒稳定时,是否还受安培力?

(2)若ad、bc棒的质量分别为m、2m,则两棒达到稳定时的速度为多大?

(3)接(2)问中,ad棒向左运动的过程中,ad棒产生的总焦耳热是多少?提示:(1)稳定时,产生电动势相等,回路中无感应电流,不受安培力。

(2)稳定时,v a=v b,由动量定理

对ad棒:-B I Lt=m v a-m v0

对bc棒:B I Lt=2m v b-0

得v a=v b=1 3 v0

(3)对系统应用能量守恒定律

Q总=1

2m v0

2-1

2m v a

2-1

2×2m v b

2

由公式Q=I2Rt得:Q a

Q总

R

2R=

1

2

则Q a=1

6m v0

2。

[一题悟通]

例题及相关延伸思考旨在让考生掌握利用动量、能量的观点解决电磁感应问题,会根据相关条件分析双杆切割磁感线运动问题,会用“三大力学观点”解决此类问题。

[例3]如图所示,在大小为B的匀强磁场区域内,垂直磁场方向的

水平面中有两根固定的足够长的金属平行导轨,在导轨上面平放着两根导

体棒ab和cd,两棒彼此平行,构成一矩形回路。导轨间距为l,导体棒

的质量均为m,电阻均为R,导轨电阻可忽略不计。设导体棒可在导轨上

无摩擦地滑行,初始时刻ab棒静止,给cd棒一个向右的初速v0,求:

(1)当cd棒速度减为0.8v0时的加速度大小;

(2)从开始运动到最终稳定,电路中产生的电能为多大?

(3)两棒之间距离增长量x 的上限。

[解析] (1)设当cd 棒速度减为0.8v 0时ab 棒的速度为v ′,由动量守恒定律得 m v 0=0.8m v 0+m v ′① 解得:v ′=0.2v 0 此时回路的电流是I =Bl (0.8-0.2)v 0

2R

cd 棒的加速度为a =BIl m

③ 解得:a =3B 2l 2v 0

10mR

(2)设两棒稳定时共同的末速度为v ,据动量守恒定律得 m v 0=(m +m )v ④ 解得:v =1

2

v 0⑤

由能量守恒定律得,最终稳定后电路中产生的电能为 Q =12m v 02-12(m +m )v 2=1

4

m v 02。

(3)由法拉第电磁感应定律得,电路中产生的感应电动势 E =

ΔΦΔt =Bl Δx Δt

⑥ 这段时间内回路的电流为I =

E

2R

⑦ 对cd 棒由动量定理得:-B I l Δt =m v -m v 0⑧ 由⑤~⑧解得Δx =

mR v 0

B 2l 2

。⑨ [答案] (1)3B 2l 2v 010mR (2)1

4m v 02 (3)mR v 0B 2l 2

“融会贯通”归纳好——“杆+导轨+电阻”四种模型剖析

1.如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻。整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下。将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度。重力加速度为g ,导轨电阻不计,杆与导轨接触良好。求:

(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量。

解析:(1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中

的感应电流I=

E R+R

杆所受的安培力F=BIL

根据牛顿第二定律有mg sin θ-B2L2v

2R=ma

当速度v=0时,杆的加速度最大,最大加速度a=g sin θ,方向沿导轨平面向下当杆的加速度a=0时,速度最大,

最大速度v m=2mgR sin θ

B2L2,方向沿导轨平面向下。

(2)杆cd从开始运动到达到最大速度过程中,根据能量守恒定律得mgx sin θ=Q总+1 2

m v m2

又Q杆=1

2Q总

所以Q杆=1

2mgx sin θ-

m3g2R2sin2θ

B4L4。

答案:(1)g sin θ2mgR sin θ

B2L2(2)

1

2mgx sin θ-

m3g2R2sin2θ

B4L4

2.如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层。匀强磁场的磁感应

强度大小为B,方向与导轨平面垂直。质量为m的导体棒从导轨

的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀

速滑到导轨底端。导体棒始终与导轨垂直,且仅与涂层间有摩擦,

接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度

为g。求:

(1)导体棒与涂层间的动摩擦因数μ;

(2)导体棒匀速运动的速度大小v;

(3)整个运动过程中,电阻产生的焦耳热Q。

解析:(1)在绝缘涂层上导体棒受力平衡,有

mg sin θ=μmg cos θ

解得μ=tan θ。

(2)在光滑导轨上

感应电动势E=BL v

感应电流I=E R

安培力F安=BIL

导体棒受力平衡有F安=mg sin θ

联立解得v =

mgR sin θ

B 2L 2

。 (3)摩擦生热Q ′=μmgd cos θ

由能量守恒定律有3mgd sin θ=Q +Q ′+1

2m v 2

联立解得Q =2mgd sin θ-m 3g 2R 2sin 2θ

2B 4L 4。

答案:(1)tan θ (2)mgR sin θ

B 2L 2

(3)2mgd sin θ-m 3g 2R 2sin 2θ

2B 4L 4

[反思领悟]

“杆+导轨+电阻”模型是电磁感应中的常见模型,选择题和计算题均有考查。该模型以单杆或双杆在导体轨道上做切割磁感线运动为情景,综合考查电路、动力学、功能关系等知识。在处理该模型时,要以导体杆切割磁感线的速度为主线,由楞次定律、法拉第电磁感应定律和欧姆定律分析电路中的电流,由牛顿第二定律分析导体杆的加速度及速度变化,由能量守恒分析系统中的功能关系。

(含答案)电磁感应中的动力学问题

电磁感应中的动力学问题分析 一、基础知识 1、安培力的大小 由感应电动势E =Bl v ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2、安培力的方向判断 3、导体两种状态及处理方法 (1)导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. (2)导体的非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4、解决电磁感应中的动力学问题的一般思路是 “先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力; 然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; 最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 二、练习 1、(2012·广东理综·35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金

属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻. (1)调节R x =R ,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I 及导体棒的速率v . (2)改变R x ,待导体棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x . 解析 (1)对匀速下滑的导体棒进行受力分析如图所示. 导体棒所受安培力F 安=BIl ① 导体棒匀速下滑,所以F 安=Mg sin θ② 联立①②式,解得I =Mg sin θBl ③ 导体棒切割磁感线产生感应电动势E =Bl v ④ 由闭合电路欧姆定律得I =E R +R x ,且R x =R ,所以I =E 2R ⑤ 联立③④⑤式,解得v =2MgR sin θB 2l 2 (2)由题意知,其等效电路图如图所示. 由图知,平行金属板两板间的电压等于R x 两端的电压. 设两金属板间的电压为U ,因为导体棒匀速下滑时的电流仍为I ,所以由欧姆定律知 U =IR x ⑥ 要使带电的微粒匀速通过,则mg =q U d ⑦ 联立③⑥⑦式,解得R x =mBld Mq sin θ . 答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mBld Mq sin θ 2、如图所示,两足够长平行金属导轨固定在水平面上,

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点 电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。本文结合例题分析应用动量定理解决电磁感应问题的思维起点。 一、 以累积公式q=It 结合动量定理为思维起点 直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。在时间△t 内安培力的冲量BLq t BLI t F =?=?,式中q 是通过导体截面的电量。利用该公式结合动量定理是解答此类问题思维起点。 例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。 析与解:当右棒运动时,产生感应电动势,两棒中有感 应电流通过,右棒受到安培力作用而减速,左棒受到安培力 作用而加速。当它们的速度相等时,它们之间的距离最大。 设它们的共同速度为v ,则据动量守恒定律可得: mv 0=2mv ,即02 1v v = 对于左棒应用动量定理可得: BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2= ? 由上述各式可得: x =220L B R mv 。 v

电磁感应动力学问题归纳.doc

电磁感应动力学问题归纳 重、难点解析: (一)电磁感应中的动力学问题 电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。 1.动态分析:求解电磁感应中的力学问题时,要抓好受力 分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零, 导体达到稳定运动状态。此时 a=0,而速度 v 通过加速达到最大值,做匀速直线运动;或通过减速达到稳定值,做匀速直线运动 . 2.两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析 . 3.常见的力学模型分析: 类型“电—动—电”型 示 意 图 棒 ab 长为 L,质量 m,电阻 R,导轨光 滑,电阻不计 BLE F S 闭合,棒 ab 受安培力R ,此时 BLE “动—电—动”型 棒 ab 长 L ,质量 m,电阻 R;导轨光滑,电阻不计 棒 ab 释放后下滑,此时 a g sin ,棒ab 速度 v↑→感应电动势E=BLv ↑→电 分 a mR ,棒ab速度v↑→感应电动势I E 析 BLv ↑→电流 I ↓→安培力 F=BIL ↓→ 加速度 a↓,当安培力F=0 时, a=0, v 最大。 运动 变加速运动 形式 最终 v m E 状态BL 匀速运动流 R ↑→安培力F=BIL↑→加速度a↓,当安培力 F mg sin 时, a=0, v 最大。 变加速运动 mgR sin v m 2 L2 匀速运动 B 4.解决此类问题的基本步骤: (1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向(2)依据全电路欧姆定律,求出回路中的电流强度. ( 3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向). ( 4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解。

电磁感应中的能量问题练习

电磁感应中的能量问题练习 一、单项选择题 1.如图所示,固定的水平长直导线中通有电流I,矩形线框与导线在同一竖直平面内,且一边与导线平行.线框由静止释放,在下落过程中() A.穿过线框的磁通量保持不变B.线框中感应电流方向保持不变 C.线框所受安培力的合力为零D.线框的机械能不断增大 答案: B 解析: 当线框由静止向下运动时,穿过线框的磁通量逐渐减小,根据楞次定律可得产生的感应电流的方向为顺时针且方向不发生变化,A错误,B正确;因线框上下两边所在处的磁场强弱不同,线框所受的安培力的合力一定不为零,C错误;整个线框所受的安培力的合力竖直向上,对线框做负功,线框的机械能减小,D错误. 2.如图所示,固定在水平绝缘平面上足够长的金属导轨不计电阻,但表 面粗糙,导轨左端连接一个电阻R,质量为m的金属棒(电阻也不计) 放在导轨上,并与导轨垂直,整个装置放在匀强磁场中,磁场方向与 导轨平面垂直.用水平恒力F把ab棒从静止起向右拉动的过程中 ①恒力F做的功等于电路产生的电能 ②恒力F和摩擦力的合力做的功等于电路中产生的电能 ③克服安培力做的功等于电路中产生的电能 ④恒力F和摩擦力的合力做的功等于电路中产生的电能和棒获得的动能之和 以上结论正确的有() A.①②B.②③C.③④D.②④ 答案: C 解析: 在此运动过程中做功的力是拉力、摩擦力和安培力,三力做功之和为棒ab动能增加量,其中安培力做功将机械能转化为电能,故选项C正确.

3. 一个边长为L 的正方形导线框在倾角为θ的光滑固定斜面上由静止开始沿斜面下滑,随后进入虚线下方方向垂直于斜面 的匀强磁场中.如图所示,磁场的上边界线水平,线框的下边ab 边始终水平,斜面以及下方的磁场往下方延伸到足够远.下列推理判断正确的是( ) A .线框进入磁场过程b 点的电势比a 点高 B .线框进入磁场过程一定是减速运动 C .线框中产生的焦耳热一定等于线框减少的机械能 D .线框从不同高度下滑时,进入磁场过程中通过线框导线横截面的电荷量不同 答案: C 解析: ab 边进入磁场后,切割磁感线,ab 相当于电源,由右手定则可知a 为等效电源的正极,a 点电势高,A 项错.由于线框所受重力的分力mg sin θ与安培力大小不能确定,所以不能确定其是减速还是加速,B 项错;由能量守恒知C 项 对;由q =n ΔΦR 知,q 与线框下降的高度无关,D 项错. 4. 如图所示,竖直放置的两根平行金属导轨之间接有定值电阻R ,质量不能忽略的金属棒与两导 轨始终保持垂直并良好接触且无摩擦,棒与导轨的电阻均不计,整个装置放在匀强磁场中,磁 场方向与导轨平面垂直,棒在竖直向上的恒力F 作用下加速上升的一段时间内,力F 做的功与 安培力做的功的代数和等于( ) A .棒的机械能增加量 B .棒的动能增加量 C .棒的重力势能增加量 D .电阻R 上放出的热量 答案: A 解析: 由动能定理有W F +W 安+W G =ΔE k ,则W F +W 安=ΔE k -W G ,W G <0,故ΔE k -W G 表示机械能的增加量.选A 项.

电磁感应动量定理的应用

电磁感应中动量定理的运用 动量定律I =?P 。 设想在某一回路中,一部分导体仅在安培力作用下运动时,安培力F 为变力,但其冲量可用它对时间的平均值进行计算,即I =F t ?, 而F =B I L (I 为电流对时间的平均值) 故有:B I L t ?=mv 2-mv 1 . 而I t=q ,故有q=BL mv 12mv - 理论上电量的求法:q=I ?t 。 这种方法的依据是电流的定义式I=q/t 该式的研究对象是通电导体的某一截面,若在t 时间内流过该截面的电量为q ,则流过该切面的电流为I =q/t ,显然,这个电流应为对时间的平均值,因此该式应写为I = q/t ,变形后可以得q =I t ,这个关系式具有一般性,亦即无论流经导体的电流是恒定的还是变化的,只要电流用这段时间内的平均值代入,该式都适用,而平均电流的求解,在电磁感应问题中最为常见的思路为:对某一回路来说,据法拉第电磁感应定律,得E=t ??φ,显然该感应电动势也为对其时间的平均值,再由I =R E (R 为回路中的总电阻)可以得到I = t R ??φ。 综上可得q =R φ?。若B 不变,则q =R φ?=R s B ? 电量q 与安培力的冲量之间有什么联系?可用下面的框图来说明。 从以上框图可见,这些物理量之间的关系可能会出现以下三种题型: 第一:方法Ⅰ中相关物理量的关系。 第二:方法Ⅱ中相关物理量的关系。 第三:就是以电量作为桥梁,直接把上面框图中左右两边的物理量联系起来,如把导体

棒的位移和速度联系起来,但由于这类问题导体棒的运动一般都不是匀变速直线运动,无法使用匀变速直线运动的运动学公式进行求解,所以这种方法就显得十分巧妙。这种题型难度最大。 2在解题中强化应用意识,提高驾驭能力 由于这些物理量之间的关系比较复杂,只能从理论上把握上述关系还不够,还必须通过典型问题来培养学生的应用能力,达到熟练驾驭的目的。请看以下几例:(1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应 强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量 为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点 cd时的速度为v,不计摩擦。求: (1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 分析与解 有的同学据题目的已知条件,不假思索的就选用动量定理,对该过程列式如下: mgt-B I Lt=mv -0显然该式有两处错误:其一是在分析棒的受力时,漏掉了轨道对 棒的弹力N,从而在使用动量定理时漏掉了弹力的冲量I N;其二是即便考虑了I N,这种解法也是错误的,因为动量定理的表达式是一个矢量式,三个力的冲量不在同一直线上,而且IN的方向还不断变化,故 我们无法使用I=Ft来求冲量,亦即无法使用前面所提到的方法二。 为此,本题的正确解法是应用前面提到的方法一,具体解答如下: 对应于该闭合回路应用以下公式: (2)如图2所示,在光滑的水平面上,有一垂直向下的 匀强磁场分布在宽度为L的区域内,现有一个边长为 a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边 界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析与解 这是一道物理过程很直观的问题,可分为三个阶段:进入和离开磁场过程中均为加速度不断减少的减速运动,完全进入磁场后即作匀速直线运动,那么这三个过程的速度之间的关系如何呢?乍看好象无从下手,但对照上面的理论分析,可知它属于第三类问题。首先,由于进入磁场和离开磁场两段过程中,穿过线圈回路的磁通量变化量Δφ相同,故有q0=q=Δφ/R;其次,对线框应用动量定理,设线框完全进入磁场后的速度为v′,则有:

电磁感应中的动力学和能量问题计算题专练

电磁感应中的动力学和能量问题(计算题专练) 1、如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少? (2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大? (3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少? 解析(1)m1、m2运动过程中,以整体法有 m1g sin θ-μm2g=(m1+m2)a a=2 m/s2 以m2为研究对象有F T-μm2g=m2a(或以m1为研究对象有m1g sin θ-F T=m1a) F T=2.4 N (2)线框进入磁场恰好做匀速直线运动,以整体法有 m1g sin θ-μm2g-B2L2v R =0 v=1 m/s ab到MN前线框做匀加速运动,有 v2=2ax x=0.25 m (3)线框从开始运动到cd边恰离开磁场边界PQ时: m1g sin θ(x+d+L)-μm2g(x+d+L)=1 2 (m1+m2)v21+Q 解得:Q=0.4 J 所以Q ab=1 4 Q=0.1 J 答案(1)2.4 N (2)0.25 m (3)0.1 J 2、如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状 态时速率为v,此时整个电路消耗的电功率为重力功率的3 4 .已知 重力加速度为g,导轨电阻不计,求: (1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab 中的电流强度I; (2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导

电磁感应中的动量问题

一、如图所示足够长光滑导轨MN所在平面有垂直纸面向里的匀强磁场,磁感应强度B,导轨间距为L,导 轨左端连接定值电阻R,导轨上放置质量为m、电阻r的导体棒,某时刻给导体棒一个瞬时向右的速度V0,则:(1)求从导体棒运动开始到静止时,通过电阻R的电量 (2)求导体棒从开始运动到最后,一共的位移为多少 二、如图所示足够长光滑导轨MN所在平面有垂直纸面向里的匀强磁场,磁感应强度B,导轨间距为L,导 轨左端连接定值电阻R,导轨上放置质量为m、电阻r的导体棒,某时刻开始在导体棒上施加水平向右的恒力F,使导体棒从静止开始运动,则从开始运动到稳定时,导体棒运动的位移为Xo , 则: (1)整个过程中R生热 (2)该过程共需要多长时间 三、已知正方形均匀线框,边长为a,开始时候线框右侧正好与边界磁场重合,磁感应强度为B,磁场宽度 b(a

四、如图光滑足够长导轨,电阻不计,导轨左端连接带电量为Q,电容C的电容器,开始时开关S打开, 导轨间距为L,导轨间存在匀强磁场B,一根质量为m电阻为R导体棒正好垂直放置在导轨上静止不动,则:(1)闭合开关S后,导体棒的最终速度是多少 (2)闭合开关稳定后,电容器的带电量是多少 五、平行光滑导轨M、N电阻忽略不计,长度足够,导轨间距为L,导轨间存在匀强磁场,磁感应强度B, 两根一样的光滑导体棒a、b都静止放置导轨上,两个导体棒的质量都是m,电阻都是R,两导体棒之间的距离为Xo,某时刻,给b棒一个瞬时向右的速度Vo,则: (1)从开始到系统稳定时,a棒共产生多少热量 (2)从开始到系统稳定时,安培力对b做功 (3)系统稳定时,两个导体棒a、b之间的距离为多少 六、如图所示两段光滑足够长(运动过程中一根导体棒只在一段导轨上运动)导轨,电阻不计,两边导轨 间距之比为2:1,磁感应强度一样,大小都为B,两根导体棒的质量关系为Ma=2Mb=2m,电阻关系是Ra=2Rb=2R,某时刻给a向右的速度Vo,给b瞬时向左的速度2Vo,则: (1)此后过程中导体棒b的最小速度是多少 (2)整个过程中导体棒b生成焦耳热

高中物理复习课:电磁感应中的动力学和能量问题教案

复习课:电磁感应中的动力学和能量问题教案 班级:高二理科(6)班下午第一节授课人:课题电磁感应中的动力学与能量问题第一课时 三维目标1.掌握电磁感应中动力学问题的分析方法 2.理解电磁感应过程中能量的转化情况 3.运用能量的观点分析和解决电磁感应问题 重点1.分析计算电磁感应中有安培力参与的导体的运动及平衡问题 2.分析计算电磁感应中能量的转化与转移 难点1.运用牛顿运动定律和运动学规律解答电磁感应问题 2.运用能量的观点分析和解决电磁感应问题 教具多媒体辅助课型复习课课 时 安 排 2课时 教学过程一、电磁感应中的动力学问题 课前同学们会根据微课视频完成学案上的知识清单:1.安培力的大小 2.安培力的方向判断 3.两种状态及处理方法 状态特征处理方法 平衡态加速度为零根据平衡条件列式分析 非平衡态 加速度不为 零 根据牛顿第二定律进行动态分析或结 合功能关系进行分析 4.力学对象和电学对象的相互关系

教学过程指导学生处理学案上的例题和拓 展训练 例1:如图所示,在磁感应强 度为B,方向垂直纸面向里的 匀强磁场中,金属杆MN放 在光滑平行金属导轨上,现用平行于金属杆的恒力F,使MN从静止开始向右滑动,回路的总电阻为R,试分析MN 的运动情况,并求MN的最大速度。 拓展训练1:如图所示,两根足 够长的平行金属导轨固定在倾 角θ=30°的斜面上,导轨电 阻不计,间距L=0.4 m。导轨 所在空间被分成区域Ⅰ和Ⅱ, 两区域的边界与斜面的交线为 MN,Ⅰ中的匀强磁场方向垂直 斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5 T。在区域Ⅰ中,将质量m1=0.1 kg,电阻R1=0.1 Ω的金属条ab放在导轨上,ab刚好不下滑。然后,在区域Ⅱ中将质量m2=0.4 kg,电阻R2=0.1 Ω的光滑导体棒cd置于导轨上,由静止开始下滑。cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10 m/s2。问: (1)cd下滑的过程中,ab中的电流方向; (2)ab刚要向上滑动时,cd的速度v多大; 例2:如图所示的图中,导体棒ab垂直放在水平导轨上,导轨处在方向垂直于水平面向下的匀强磁场中。导体棒和导轨间接触良好且摩擦不计,导体棒、导轨的电阻均可忽略,今给导体棒ab一个向右的初速度V0。有的同学说电容器断路无电流,棒将一直匀速运动 下去;有的同学认为棒相当于电 源,将给电容器充电,电路中有电 流,所以在安培力的作用下,棒将 减速。关于这个问题你怎么看呢?

高考物理--电磁感应中的动力学问题(习题)

第61课时 电磁感应中的动力学问题(题型研究课) [命题者说] 电磁感应动力学问题是历年高考的一个热点,这类题型的特点一般是单棒或双棒在磁场中切割磁感线,产生感应电动势和感应电流。感应电流受安培力而影响导体棒的运动,构成了电磁感应的综合问题,它将电磁感应中的力和运动综合到一起,其难点是感应电流安培力的分析,且安培力常常是变力。这类问题能很好地提高学生的综合分析能力。 (一) 运动切割类动力学问题 考法1 单杆模型 [例1] (2016·全国甲卷) 水平面(纸面)间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上。t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动。t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g 。求 (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值。 单杆模型的分析方法 (1)电路分析:导体棒相当于电源,感应电动势E =BLv ,电流I = E R +r 。 (2)受力分析:导体棒中的感应电流在磁场中受安培力F 安=BIL ,I =BLv R +r ,F 安=B 2L 2v R +r 。 (3)动力学分析:安培力是变力,导体棒在导轨上做变加速运动,临界条件是安培力和其他力达到平衡,这时导体棒开始匀速运动。 考法2 双杆模型 [例2] (1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l ,两根质量均为m 、电阻均为R 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。在t =0时刻,两杆都处于静止状态。现有一与导轨平行,大小恒为F 的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。 (2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面,导轨上横放着两根导体棒ab 和cd ,构成矩形回路。在整个导轨平面都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd 静

电磁感应中的动量问题练习

电磁感应中的动量问题练习 1.如图所示,光滑的弧形金属双轨与足够长的水平光滑双轨相连,间距为L,在水平轨道空间充满竖直向上的匀强磁场,强度为B,质量为m 2、电阻为R 2的乙金属棒静止在双轨上.而质量为m 1、电阻为R 1的甲金属棒由h 高处由静止滑下.轨道电阻不计,甲棒与乙棒不会相碰.求: (1)整个过程中,乙棒受到的最大磁场力.(2)整个过程电路释放的热量. .(1)21222R R gh L B +. (2)2121m m gh m m +] 2.如图所示,金属杆a 在离地面h 处从静止开始沿弧形轨道下滑,导轨的水平部分有竖直向上的匀强磁场B,水平部分导轨上原来放有一 金属杆b,已知a 杆的质量为m a ,b 杆的质量为m b ,且m a :m b =3:4,水平导轨足够长,不计摩 擦.求: (1)a 和b 最终的速度分别是多大?gh V V b a 273== (2)整个过程回路释放的电能是多 少?gh m a 7 4 (3)若已知杆的电阻之比R a :R b =3:4,其余电阻不计,整个过程中,a 、b 上产生的热量分别是多少?gh m Q gh m Q a b a a 49164912== 、 3.在如图11-21所示的水平导轨上(摩擦、电阻忽略不计),有竖直向下的匀强磁场,磁感强度B ,导轨左端的间距为L 1=4l 0,右端间距为l 2=l 0。今在导轨上放置ACDE 两根导体棒,质量分别为m 1=2m 0,m 2=m 0,电阻R 1=4R0,R 2=R 0。若AC 棒以初速度V 0向右运动,求AC 棒运动的过程中产生的总焦耳热Q AC ,以及通过它们的总电量q 。 [ ] a h b

物理 电磁感应中的能量问题 基础篇

物理总复习:电磁感应中的能量问题 【考纲要求】 理解安培力做功在电磁感应现象中能量转化方面所起的作用。 【考点梳理】 考点、电磁感应中的能量问题 要点诠释: 电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。 电能求解的主要思路: (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。 (2)利用能量守恒求解:机械能的减少量等于产生的电能。 (3)利用电路特征求解:通过电路中所产生的电流来计算。 【典型例题】 类型一、根据能量守恒定律判断有关问题 例1、如图所示,闭合线圈abcd用绝缘硬杆悬于O点,虚线表示有界磁场B,把线圈从图示位置释放后使其摆动,不计其它阻力,线圈将() A.往复摆动 B.很快停在竖直方向平衡而不再摆动 C.经过很长时间摆动后最后停下 D.线圈中产生的热量小于线圈机械能的减少量 【思路点拨】闭合线圈在进出磁场的过程中,磁通量发生变化,闭合线圈产生感应电流,其机械能转化为电热,根据能量守恒定律机械能全部转化为内能。 【答案】B 【解析】当线圈进出磁场时,穿过线圈的磁通量发生变化,从而在线圈中产生感应电流,机械能不断转化为电能,直至最终线圈不再摆动。根据能量守恒定律,在这过程中,线圈中产生的热量等于机械能的减少量。 【总结升华】始终抓住能量守恒定律解决问题,金属块(圆环、闭合线圈等)在穿越磁场时有感应电流产生,电能转化为内能,消耗了机械能,机械能减少,在磁场中运动相当于力学部分的光滑问题,不消耗机械能。上述线圈所出现的现象叫做电磁阻尼。用能量转化和守恒定律解决此类问题往往十分简便。磁电式电流表、电压表的指针偏转过程中也利用了电磁阻尼现象,所以指针能很快静止下来。 举一反三 【变式】光滑曲面与竖直平面的交线是抛物线,如图所示,抛物线的方程是y=x2,下半部处在一个水平方向的匀强磁场中,磁场的上边界是y=a的直线(图中的虚线所示).一个小金属块从抛物线上y=b(b>a)处以速度v沿抛物线下滑.假设抛物线足够长,金属块沿抛物线下滑后产生的焦耳热总量是( )

电磁感应中的能量转换问题_经典

在电磁感应中的动力学问题中有两类常见的模型. 类型“电—动—电”型“动—电—动”型 示 意 图 棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计 分析S闭合,棒ab受安培力F= BLE R ,此 时a= BLE mR ,棒ab速度v↑→感应电 动势BLv↑→电流I↓→安培力F= BIL↓→加速度a↓,当安培力F=0 时,a=0,v最大,最后匀速 棒ab释放后下滑,此时a=gsin α,棒 ab速度v↑→感应电动势E=BLv↑→ 电流I= E R ↑→安培力F=BIL↑→加速 度a↓,当安培力F=mgsin α时,a= 0,v最大,最后匀速 运动 形式 变加速运动变加速运动 最终状态匀速运动vm= E BL 匀速运动vm= mgRsin α B2L2

1、如图甲所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L.M、P两点间接有阻值为R的电阻.一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直.整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b向a方向看到的装置如图乙所示,请在此图中画出ab杆下滑过程中某时刻的受力示意图. (2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab杆中的电流及其加速度的大小. (3)求在下滑过程中,ab杆可以达到的速度最大值.

1、解析 (1)如右图所示,ab 杆受重力mg ,竖直向下;支持力FN ,垂直斜面向上;安培力F ,平行斜面 向上. (2)当ab 杆速度为v 时,感应电动势 E =BLv ,此时电路中电流 I =E R =BLv R ab 杆受到安培力F =BIL =B2L2v R 根据牛顿运动定律,有ma =mgsin θ-F =mgsin θ-B2L2v R a =gsin θ-B2L2v mR . (3)当B2L2v R =mgsin θ时,ab 杆达到最大速度vm =mgRsin θB2L2

电磁感应中的动量问题

(2)求导体棒从开始运动到最后,一共的位移为多少 一、如图所示足够长光滑导轨MN所在平面有垂直纸面向里的匀强磁场,磁感应强度B,导轨间距为L,导轨 左端连接定值电阻R,导轨上放置质量为m、电阻r的导体棒,某时刻开始在导体棒上施加水平向右的恒力F,使导体棒从静止开始运动,则从开始运动到稳定时,导体棒运动的位移为Xo , 则: (1)整个过程中R生热 (2)该过程共需要多长时间 二、已知正方形均匀线框,边长为a,开始时候线框右侧正好与边界磁场重合,磁感应强度为B,磁场宽度 b(a

三、如图光滑足够长导轨,电阻不计,导轨左端连接带电量为Q,电容C的电容器,开始时开关S打开, 导轨间距为L,导轨间存在匀强磁场B,一根质量为m电阻为R导体棒正好垂直放置在导轨上静止不动,则:(1)闭合开关S后,导体棒的最终速度是多少 (2)闭合开关稳定后,电容器的带电量是多少 四、平行光滑导轨M、N电阻忽略不计,长度足够,导轨间距为L,导轨间存在匀强磁场,磁感应强度B,两 根一样的光滑导体棒a、b都静止放置导轨上,两个导体棒的质量都是m,电阻都是R,两导体棒之间的距离为Xo,某时刻,给b棒一个瞬时向右的速度Vo,则: (1)从开始到系统稳定时,a棒共产生多少热量 (2)从开始到系统稳定时,安培力对b做功 (3)系统稳定时,两个导体棒a、b之间的距离为多少 五、如图所示两段光滑足够长(运动过程中一根导体棒只在一段导轨上运动)导轨,电阻不计,两边导轨 间距之比为2:1,磁感应强度一样,大小都为B,两根导体棒的质量关系为Ma=2Mb=2m,电阻关系是Ra=2Rb=2R,某时刻给a向右的速度Vo,给b瞬时向左的速度2Vo,则: (1)此后过程中导体棒b的最小速度是多少 (2)整个过程中导体棒b生成焦耳热

专题突破电磁感应中的动力学问题课后练习

专题突破电磁感应中的动力学问题 (答题时间:30分钟) 1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后() A. 金属棒ab、cd都做匀速运动 B. 金属棒ab上的电流方向是由b向a C. 金属棒cd所受安培力的大小等于2F/3 D. 两金属棒间距离保持不变 2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg, 边长为1 m,电阻为1 16Ω,与绝缘板间的动摩擦因数μ2=0.4。OO′为AD、BC的中线。在金属框有可随金属框同步移动的磁场,OO′CD区域磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域磁场如图(c)所示,AB恰在磁场边缘以(g=10 m/s2)。若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()

A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2 B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2 C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止 D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s2 3. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是() 4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。当线圈和小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入磁场,线圈平面和磁场方向始终垂直。若小车运动的速度v随车的位移x变化的v-x图象如图乙所示,则根据以上信息可知() A. 小车的水平长度l=15 cm B. 磁场的宽度d=35cm C. 小车的位移x=10 cm时线圈中的电流I=7 A D. 线圈通过磁场的过程中线圈产生的热量Q=1.92J

第二十二讲-电磁感应与动量结合

第二十二讲电磁感应与动量结合 电磁感应与动量的结合主要有两个考点: 对与单杆模型,则是与动量定理结合。例如在光滑水平轨道上运动的单杆(不受其他力作用),由于在磁场中运动的单杆为变速运动,则运动过程所受的安培力为变力,依据动量定理 F t P ?=?安,而又由于F t BIL t BLq ?=?= 安 ,= BLx q N N R R ?Φ = 总总 , 21 P mv mv ?=-,由以上四 式将流经杆电量q、杆位移x及速度变化结合一起。 对于双杆模型,在受到安培力之外,受到的其他外力和为零,则是与动量守恒结合考察较多一、安培力冲量的应用 例1:★★如图所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈(B ) A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 分析:进入和离开磁场的过程分别写动量定理(安培力的冲量与电荷量有关,电荷量与磁通量的变化量有关,进出磁场的安培力冲量相等) 点评:重点考察了安培力冲量与电荷量关系。 例2:★★★如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为( C )

电磁感应中的“双杆问题”

电磁感应中的“双杆问题”(10-12-29) 命题人:杨立山 审题人:刘海宝 学生姓名: 学号: 习题评价 (难、较难、适中、简单) 教学目标: 综合应用电磁感应等电学知识解决力、电综合问题; 学习重点:力、电综合的“双杆问题”问题解法 学习难点:电磁感应等电学知识和力学知识的综合应用,主要有 1.利用能的转化和守恒定律及功能关系研究电磁感应过程中的能量转化问题 2.应用动量定理、动量守恒定律解决导体切割磁感线的运动问题。 重点知识及方法点拨: 1.“双杆”向相反方向做匀速运动 当两杆分别向相反方向运动时,相当于两个电池正向串联。 2.“双杆”中两杆都做同方向上的加速运动。 “双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 3.“双杆”在不等宽导轨上同向运动。 “双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。 4感应电流通过直导线时,直导线在磁场中要受到安培力的作用,当导线与磁场垂直时,安培力的大小为F=BLI 。在时间△t 内安培力的冲量R BL BLq t BLI t F ?Φ ==?=?,式中q 是通过导体截面的电量。利用该公式解答问题十分简便。 电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。

练习题 1.如图所示,光滑平行导轨仅其水平部分处于竖直向上的匀强磁场中,金属杆b 静止在导轨的水平部分上,金属杆a 沿导轨的弧形部分从离地h 处由静止开始下滑,运动中两杆始终与轨道垂直并接触良好且它们之间未发生碰撞,已知a 杆的质量m a =m 0,b 杆的质量m b = 3 4 m 0,且水平导轨足够长,求: (1)a 和b 的最终速度分别是多大? (2)整个过程中回路释放的电能是多少? (3)若已知a 、b 杆的电阻之比R a :R b =3:4,其余电阻不计,则整个过程中a 、b 上产生的热量分别是多少? 2.两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L 。导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求: (1)在运动中产生的焦耳热最多是多少. (2)当ab 棒的速度变为初速度的3/4时,cd 棒的加速度是多少? 3.如图所示,光滑导轨EF 、GH 等高平行放置,EG 间宽度为FH 间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab 、cd 是质量均为m 的金属棒,现让ab 从离水平轨

电磁感应的能量问题

电磁感应的能量问题 电磁感应中的动力学问题 1.安培力的大小 ?? ? ?? 感应电动势:E=Blv 感应电流:I= E R+r 安培力公式:F=BIl ?F= B2l2v R+r 2.安培力的方向 (1)先用右手定则确定感应电流方向,再用左手定则确定安培力方向。 (2)根据楞次定律,安培力方向一定和导体切割磁感线运动方向相反。 1.电磁感应中动力学问题的动态分析 联系电磁感应与力学问题的桥梁是磁场对电流的安培力,由于感应电流与导体切割磁感线运动的加速度有着相互制约关系,因此导体一般不是匀变速直线运动,而是经历一个动态变化过程再趋于一个稳定状态,分析这一动态过程的基本思路是: 导体受力运动――→ E=BLv感应电动势错误!感应电流错误!通电导体受安培力→合外力变化――→ F合=ma加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定的临界状态。 2.解题步骤 (1)用法拉第电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向。 (2)应用闭合电路欧姆定律求出电路中的感应电流的大小。 (3)分析研究导体受力情况,特别要注意安培力方向的确定。 (4)列出动力学方程或平衡方程求解。 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态。

处理方法:根据平衡条件——合外力等于零,列式分析。 (2)导体处于非平衡态——加速度不为零。 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析。

4.电磁感应中的动力学临界问题 (1)解决这类问题的关键是通过运动状态的分析,寻找过程中的临界状态,如速度、加速度为最大值或最小值的条件。 (2)基本思路是: 电磁感应中的能量问题 1.能量的转化 闭合电路的部分导体做切割磁感线运动产生感应电流,感应电流在磁场中受安培力。外力克服安培力做功,将其它形式的能转化为电能,电流做功再将电能转化为其它形式的能。 2.实质 电磁感应现象的能量转化,实质是其它形式的能和电能之间的转化。 1.能量转化分析 (1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程。 (2)当磁场不动、导体做切割磁感线的运动时,导体所受安培力与导体运动方向相反,此即电磁阻尼。在这种情况下,安培力对导体做负功,即导体克服安培力做功,将机械能转化为电能,当感应电流通过用电器时,电能又转化为其它形式的能,如通过电阻转化为内能(焦耳热)。 即:其他形式的能如:机械能 ――――――→安培力做负功 电能――――→电流做功 其他形式的能如:内能 (3)当导体开始时静止、磁场(磁体)运动时,由于导体相对磁场向相反方向做切割磁感线

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

相关文档
相关文档 最新文档