文档库 最新最全的文档下载
当前位置:文档库 › 气相色谱测定大米中有机磷农药残留量

气相色谱测定大米中有机磷农药残留量

气相色谱测定大米中有机磷农药残留量

王冬群,韩敏晖,陆 宏

(慈溪市农业监测中心,浙江慈溪 315300)

摘 要:利用气相色谱仪建立了大米中12种有机磷类农药残留量的测定方法。测定结果表明,在DB-1701中,供试的12种农药在大米中的分离状况良好,12min内就出峰完毕。12种农药在3个添加水平下的平均回收率为63.00%~126.33%,相对标准偏差在1.15%~11.12%之间,检出限在0.0010~0.0037mg/kg之间。建立的方法具有测定有机磷农药种类多、快速、准确度和精密度高等优点,能满足农药多残留分析的要求。

关键词:大米;有机磷农药;农药残留;气相色谱;测定

中图分类号:TS207.5+3 文献标识码:A 文章编号:1007-7561(2009)04-0033-03

Determination of the organophosphorus pesticide residues

in rice by gas chromatograph

W ANG D ong2qun,H AN Min2hui,LU H ong

(Cixi Agricultural Supervision and T esting Center,Cixi Zhejiang 315300)

Abstract:A method for the determination of12kinds of the residues of organophosphorus pesticide in rice by gas chromatograph was developed.The result showed that all the residues were separated well in DB-1701in 12min.The average recovery rate of the12pesticides with3am ounts of addition were ranged from63.00%to 126.33%.The relative standard deviation were around1.15%~11.12%and the detection limit0.0010~0.0037mg/kg.This method has the merits of rapid,high accuracy,precision and can meet the needs of de2 terminating pesticide residue.

K ey w ords:rice;organ oph osph orus pesticide;pesticide residue;gas chr om atography(G C/FP D);determ ination

稻米是我国日常食用的主要食物,它的质量安全与否与人们的身心健康密切相关。水稻是所有农作物中使用农药最为频繁,量最大的作物之一。但由于稻谷经常是储藏一段时间后去壳食用,造成人们对稻米的农药残留情况不重视,目前,有关大米中的农药残留检测方法与研究少见报道。检测稻谷中有机磷农药残留大多采用的是国家标准G B/T5009. 20[1]、G B/T5009.103[2]和G B/T5009.104[3]等方法,这些方法步骤比较复杂、耗时较长,在液液分配中还容易出现乳化现象,从而影响准确性和精密度[4]。本方法对大米中12种有机磷农药残留量的气相色谱测定方法进行了研究,以期供相关人员参考。

1 材料与方法

1.1 主要仪器和试剂

仪器:Agilent公司6890N气相色谱仪,配7683自动进样器,火焰光度检测器(FPD);Fluko fa25组织匀浆机;DB-170130m×0.32mm(id)×0.25μm (film)作为检测用色谱柱;HP-530m×0.32mm

收稿日期:2008-12-15

作者简介:王冬群(1976-),男,浙江宁波人,工程师,硕士.(id)×0.25μm(film)作为验证用色谱柱;LT JM-12精米机;万能粉碎机;飞鸽牌T DC-40B离心机; DSY-III氮吹仪。

试剂:丙酮为色谱纯,乙腈为AR级;氯化钠为AR级,140℃烘3h,冷却后,储于密闭容器中。

甲胺磷、乙酰甲胺磷、乐果、毒死蜱、氧化乐果、甲基对硫磷、甲拌磷、马拉硫磷、对硫磷、杀螟硫磷、水胺硫磷和三唑磷等12种农药标准样品均由农业部环境保护科研监测所提供,浓度均为100mg/kg,用丙酮配制并稀释成适当含量的混合储备液,临用时根据需要用丙酮稀释成适当含量的混合标准溶液。

1.2 气相色谱条件

DB-1701色谱柱 载气为高纯氮气,流量30m L/min;氢气流量75m L/min,空气流量110m L/min;柱前压9.95psi,恒流方式,尾吹氮气;进样口温度220℃,检测器温度250℃;采用不分流进样方式,进样量1μL,0.85min后吹扫。柱温程序:初始温度100℃,以40℃/min升温至200℃,再以2℃/min升温至210℃,然后以30℃/min升温至

粮油食品科技第17卷2009年第4期质量控制

240℃并保留4min 至样品全部流出。

HP -5色谱柱柱温程序:初始温度100℃,以6℃/min 升温至130℃,再以40℃/min 升温至200℃,再以2℃/min 升温至210℃,然后以30℃/min 升温至240℃并保留4min 至样品全部流出。其

余色谱条件同DB -1701。1.3 供试材料

制备大米样品 在田间随机抽取一定数量的稻谷,去屑,在室内阴干,室温条件下保存。稻谷用精米机去壳后,用万能粉碎机粉碎。1.4 提取与净化

称取25.0g 大米样品置于125m L 的试剂瓶中,加入乙腈50.0m L ,用组织匀浆机高速匀浆2min ,提取4h ,加入15.0m L 超纯水,剧烈振荡,静止30min ,倒入加有4g 氯化钠的50m L 离心管中,充分振荡1min ,摇匀;离心管以4000r/min 离心6min ,吸取上

层乙腈10.00m L 到10m L 带塞玻璃试管中,用水浴80℃的氮吹仪吹至近干,用丙酮定容至2.0m L 。1.5 定性、定量方法

采用标准农药样品保留时间定性,双柱确认,外标法面积定量。

2 结果与分析

2.1 大米本底色谱图

不含有机磷农药残留的大米处理后经HP -5和DB -1701毛细管柱分离得到的本底色谱图基线平稳,没有干扰杂质的色谱峰,图1为经DB -1701毛细管柱分离得到的不含12种有机磷农药残留的大米本底色谱图

图1 经DB -1701色谱柱分离的大米本底色谱图

2.2 米中添加12种有机磷农药标准色谱图谱

将12种有机磷农药标准品添加到米中,使样品中农药的浓度都为0.05mg/kg ,然后按1.4处理样品,经DB -1701柱子分离后的12种有机磷农药色谱图见图2。在不到12min 的时间里12种农药都得到了很好的分离。经HP -5柱子分离后的12种有机磷农药色谱图见图3。在14min 左右的时间里,除对硫磷和毒死蜱峰重合没有分离外,其余10种农药都得到了较好的分离

。 2.3 12种有机磷农药保留时间、线性回归方程和

相关系数测定结果

分别配制12种有机磷农药的单标溶液,测定12种农药经HP -5和DB -1701分离后的保留时间,结果见表1。

以浓度为0.05、0.10、0.50、1.00mg/kg 的12种有机磷混合标准溶液分别进样,经DB -1701分离,得到12种农药的线性回归方程和相关系数。从表1可以看出,12种有机磷农药的线性方程相关性较好,相关系数在0.9978~1.0000之间。

表1 12种有机磷农药保留时间、线性回归方程和

相关系数

农药名称保留时间/min

DB -1701HP -5线性回归方程

相关系数

甲胺磷 2.724 4.728y =7493.98x +7.020.9987乙酰甲胺磷 3.683 6.573y =3579.54x -58.400.9995甲拌磷 4.1578.124y =4550.05x +56.210.9980氧化乐果 4.6557.519y =2641.55x -48.070.9995乐果 5.7158.362y =3919.42x +29.990.9986毒死蜱 6.62510.651y =4118.45x +46.760.9985甲基对硫磷 6.7439.652y =4690.88x +44.320.9983马拉硫磷7.11410.379y =3394.13x +41.560.9978对硫磷7.77010.651y =4564.13x +51.890.9983杀螟硫磷7.27410.178y =3879.90x -11.650.9998水胺硫磷8.15410.802y =3496.00x +8.03 1.0000三唑磷

11.304

13.908

y =4476.36x +5.83

1.0000

2.4 方法灵敏度、准确度和精密度的测定

当取样25.0g ,定容2.0m L ,进样1μL ,以试剂丙酮

基线噪音的3倍计算方法的检出限,结果见表2。质量控制

粮油食品科技第17卷2009年第4期

表2 方法的回收率、精密度及检出限的测定

农药名称

添加水平0.05mg/kg(n=3)

回收率平均值/%RS D/%

添加水平0.10mg/kg(n=3)

回收率平均值/%RS D/%

添加水平0.40mg/kg(n=3)

回收率平均值/%RS D/%

检出限

/(mg/kg)

甲胺磷82.67 1.4063.007.9467.80 6.260.0020乙酰甲胺磷108.67 2.13126.33 3.9079.408.180.0027甲拌磷72.6711.1264.67 5.4371.36 4.740.0013氧化乐果131.33 3.83116.00 5.2486.73 5.960.0037乐果88.009.9182.67 2.5288.338.590.0020毒死蜱100.00 5.2983.007.5291.777.470.0012甲基对硫磷82.00 2.4470.67 4.3281.907.570.0013马拉硫磷79.33 2.9173.33 6.7387.378.380.0015对硫磷80.00 2.5073.00 2.7486.709.590.0013杀螟硫磷100.67 1.1584.67 1.8084.639.120.0013水胺硫磷102.00 1.9687.33 5.6590.738.040.0012三唑磷118.67 2.5890.00 5.8895.309.720.0010

方法准确度的测定:在米中添加浓度为2mg/kg 的12种有机磷农药混合标准液,添加水平分别为0.05、0.10、0.40mg/kg。每个添加水平重复做3次,按本方法的1.4处理,准确度和精密度测定结果见表2。

由表2可以看出,12种有机磷农药在3个添加水平下的平均回收率在63.00%~126.33%之间,相对标准偏差在1.15%~11.12%之间,12种农药的检出限在0.0010~0.0037mg/kg之间。

3 结论

由于大米本底色谱比较干净,因此可以通过适当减少样品定容体积,提高方法的检出限。利用中极性毛细管柱DB-1701和弱极性毛细管柱HP-5相互确证的方式提高了农药定性的准确性。建立的方法可以满足12种农药的准确度、精密度和灵敏度要求[5]。此方法具有测定有机磷农药种类多、净化效果好、简便快速、准确度和精密度高、简便实用等优点,有一定的实用价值。

参考文献:

[1]G B/T5009.20-2003,食品中有机磷农药残留的检测方法[S].

[2]G B/T5009.103-2003,植物性食品中甲胺磷和乙酰甲胺磷农药残

留量的测定[S].

[3]G B/T5009.104-2003,植物性食品中氨基甲酸酯类农药残留量

的测定[S].

[4]施海萍,王驰,李大文,等.稻谷中几种有机磷农药残留的检测方

法[J].粮油食品科技,2007,15(4):54-55.

[5]全国农药残留试验研究协作组.农药残留量实用检测方法手册(第二卷)[M].北京:化学工业出版社,2001.435. 完

安科色选全球销量超10000台

截至2009年5月,合肥美亚光电技术有限责任公司旗下的“安科”牌色选机全球销量超10000台,在国内色选机市场销量领先,已成为中国最大的色选机研发与生产基地之一。作为我国色选机领域的领军者,美亚光电缘何能在面临诸多挑战、激烈竞争的市场环境中遥遥领先,啃下令人眼红的市场份额?

雄厚的科研实力和生产实力

美亚光电是专门从事光、机、电一体化产品的研发、生产和销售的高科技企业,致力于食品安全检测设备的研发。以创新发展为立足点,不断推出新产品,全方位构建产品族群,满足不同客户的多层次需求。

公司聚集了众多顶尖科技人才,其中大专以上学历的员工占80%以上,硕士以上学历的员工占10%以上,公司上下形成了良好的“尊重知识、尊重人才、尊重劳动、尊重创新”的氛围。公司成立以来,始终坚持以人为本的思想,牢固树立人才安全意识、核心人才意识、人力资本意识,大力实施人才强企战略,努力为企业发展提供坚实的组织和人才保证,使人力资源的优势得到了有效发挥。

公司拥有各类先进的数控、研发及检测设备近200套。各类光谱分析仪、大型激光切割机、高精度镗铣加工中心、全自动贴片焊设备、全自动高温老化室等,实现精妙构思的同时,保证了产品卓越的性能。

严格的质量管理

以产品求发展,以质量赢市场,过硬的品质是“安科”的根本所在。公司严格遵从IS O9001质量管理体系,将国际先进的ERP管理系统渗透到产品生产环节的全过程,随时监测、层层检验、全程跟踪。通过对产品质量的高定位,为广大消费者的合法权益保驾护航。

全天候的售后服务

产品售后服务的影响力日益显著。公司立足长远,不断完善售后体系,以多种贴心周到的服务,让用户感受美亚无微不至的关怀。公司拥有一支全天候的售后服务队伍,完善的售后服务网络管理系统,在随时掌握用户需求的基础上,极速响应,力争在最短时间内解决问题。此外,公司每年组织的全国巡访计划确保售出的每台设备无故障隐患,真正让用户高枕无忧,使用户的色选机始终保持在最佳状态。

强劲的实力,骄人的业绩为公司带来诸多荣誉:国家科技进步二等奖、国家重点新产品、国家规划布局内重点软件企业、承担国家863计划企业、承担国家火炬计划企业、安徽省科学技术奖一等奖、安徽省名牌产品、安徽省著名商标……。

一直以来,美业光电在自主研发、质量把关和服务提升上的全面进取为“安科”的成功写下了精彩的注脚。如今,安科色选全球销量超10000台,是基于不断的自我挑战,是秉承“诚信、求实、创新”的企业理念,使“安科”品牌在中国、乃至全球均获得业界的肯定和用户广泛的赞赏,已成为在光电领域比肩世界同行的民族精英。

粮油食品科技第17卷2009年第4期质量控制

气相色谱法附答案

气相色谱法(附答案) 一、填空题1. 气相色谱柱的老化温度要高于分析时最高柱温_____℃,并低于固定液的最高使用温度,老化时,色谱柱要与_____断开。答案:5~10 检测器 2. 气相色谱法分离过程中,一般情况下,沸点差别越小、极性越相近的组分其保留值的差别就_____,而保留值差别最小的一对组分就是_____物质对。答案:越小难分离3.气相色谱法分析非极性组分时应首先选用_____固定液,组分基本按沸点顺序出峰,如烃和非烃混合物,同沸点的组分中_____大的组分先流出色谱柱。答案:非极性极性4.气相色谱法所测组分和固定液分子间的氢键力实际上也是一种_____力,氢键力在气液色谱中占有_____地位。答案:定向重要 5.气相色谱法分离中等极性组分首先选用_____固定液,组分基本按沸点顺序流出色谱柱。答案:中极性 6.气相色谱分析用归一化法定量的条件是______都要流出色谱柱,且在所用检测器上都能_____。 答案:样品中所有组分产生信号 7.气相色谱分析内标法定量要选择一个适宜的__,并要求它与其他组分能__。答案:内标

物完全分离 8.气相色谱法常用的浓度型检测器有_____和_____。答案:热导检测器(TCD) 电子捕获检测器(ECD) 9. 气相色谱法常用的质量型检测器有_____和_____。答案:氢火焰检测器(FID) 火焰光度检测器(FPD) 10. 电子捕获检测器常用的放射源是_____和_____。答案:63Ni 3H 11. 气相色谱分析中,纯载气通过检测器时,输出信号的不稳定程度称为_____。答案:噪音 12. 顶空气体分析法是依据___原理,通过分析气体样来测定__中组分的方法。答案:相平衡平衡液相 13. 毛细管色谱进样技术主要有_____和______。答案:分流进样不分流进样 14. 液—液萃取易溶于水的有机物时,可用______法。即用添加_____来减小水的活度,从而降低有机化合物的溶解度。答案:盐析盐 15.气相色谱载体大致可分为______和______。答案:无机载体有机聚合物载体

实验3 气相色谱法测定残留溶剂

实验三气相色谱法测定残留溶剂 一、实验目的 1.通过本次实验,了解气相色谱法(GC)的原理及仪器构造; 2.掌握用气相色谱法(GC)测定3种残留溶剂(丙酮、正己烷、乙酸乙酯)的方法; 3.掌握外标一点法计算有机溶剂残留量的方法; 二、实验原理 1.气相色谱原理:利用物质的沸点、极性及吸附物质的差异来实现混合物的分离。 2. 《中国药典》法定的测定有机溶剂残留的原理与方法:不同性质的有机溶剂残留,在气相色谱中的 保留行为不同,在气相色谱柱(填充柱或毛细管柱)中获得分离后,被检测器检测产生相应信号。通过与标准对照信号的比较,即可确定残留量。 三、仪器结构 1.气路系统及其部件 气路—载气、燃气及助燃气 氮气、氢气和氦气,常用氮气。 氢气为燃气,空气助燃。 减压阀—使高压气体降低到使用压力。 净化器—除去气体中可能存在的有害物质。 稳压阀和稳流阀—保证气体流量稳定,使色谱峰特性不因气源变化而变化 2.进样系统(sample injection)与分离系统-色谱柱(capillary column) 微量注射器 使用前注意注射器针尖的光滑性,使用后及时清洗干净。 进样器 气化室经加热使样品气化,由载气带入色谱柱。为了避免气化的样品与金属接触产生分解,一般气化室均装有去活(硅烷化)的玻璃(玻璃衬管)或石英插管,并在插管内塞有少许硅烷化玻璃棉。 这样可使未气化物残留在插管内,在完成分析时取出插管更换或清洗。 色谱柱 如HP-5(5%-苯基-95%二甲基聚硅氧烷)(30m*0.25mm*0.25μm)30m是柱长,0.25mm应指内径,内径决定了色谱柱的柱容量,0.25μm不是壁厚,是液膜厚度。分析样品温度不一样,对膜厚有不同要求,温度高液膜要厚,温度低液膜要薄。

实验一气相色谱法测定混合醇

实验一 气相色谱法测定混合醇 一、实验目的 1.掌握气相色谱法的基本原理和定性、定量方法。 2.学习归一化法定量方法。 3.了解气相色谱仪的基本结构、性能和操作方法。 二、实验原理 色谱法具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 常用的定量方法有好多种,本实验采用归一法。 归一法就是分别求出样品中所有组分的峰面积和校正因子,然后依次求各组分的百分含量。10000?'?=∑ f A f Ai Wi i 归一法优点:简洁;进样量无需准确;条件变化时对结果影响不大。 缺点:混合物中所有组分必须全出峰;必须测出所有峰面积。 [仪器试剂] 三、实验仪器与试剂 气相色谱仪;微量注射器1μL 乙醇、正丙醇、正丁醇,均为色谱纯 四、实验步骤 1. 色谱条件 色谱柱 OV-101弹性石英毛细管柱 25m×0.32mm

柱温150℃;检测器200℃;汽化室200℃ 载气氮气,流速1.0cm/s。 2. 实验内容 开启气源(高压钢瓶或气体发生器),接通载气、燃气、助燃气。打开气相色谱仪主机电源,打开色谱工作站、计算机电源开关,联机。按上述色谱条件进行条件设置。温度升至一定数值后,进行自动或手动点火。待基线稳定后,用1μL 微量注射器取0.5μL含有混合醇的水样注入色谱仪,同时按下数据采集键。 五、数据处理 1. 面积归一化法定量 组分乙醇正丙醇正丁醇 峰高(mm) 半峰宽 (mm) 峰面积 (mm2) 含量(%) 将计算结果与计算机打印结果比较。 【思考题】 1. 本实验中是否需要准确进样?为什么? 2. FID检测器是否对任何物质都有响应?

气相色谱法测定环氧乙烷.doc

气相色谱法测定 明胶空心胶囊中环氧乙烷 摘要: 目的:对生产的明胶空心胶囊中环氧乙烷测定气相色谱法进行方法验证;方法:定性除了采用传统的对照品保留时间定性又采用了供试品加标定性和双柱定性,定量采用加标回收率验证方法准确性,方法精密度采用RSD%验证;结论:定性采用保留时间定性、DB-624色谱柱和PLOT/Q色谱柱双柱定性和加标定性,方法定性互相验证正确。定量加标回收率为98.44~99.98%,方法准确。方法精密度RSD%为3.6~4.1,方精密度好可靠。 引言: 依据《中国药典》(2010版)正文第二部分1204页明胶空心胶囊中环氧乙烷的测定气相色谱法,实验人员照残留溶剂测定法(附录ⅧP第二法附录61页)实验。采用了HP-5、DB-W AX、DB-624和PLOT/Q色谱柱实验(都是方法规定的色谱柱)。其中HP-5和DB-W AX均难以有效分离广生生产的供试品中的干扰峰,改用固定液为(6%)氰丙基苯基(94%)二甲基聚硅氧烷DB-624毛细管柱实现了基线分离,试验了供试品加标定性,加标回收率,加标RSD%。之后,依照残留溶剂测定法“附注(3)干扰峰的排除”又在另一根截然不同的气-固色谱柱做了实验。PLOT/Q色谱柱固定相为聚苯乙烯—二乙烯基苯型的高分子多孔小球。两者检验结果一致,排除了测定中有共出峰的干扰。 1 实验部分 1.1仪器与试剂 Agilent 7890A GC/FID ; GC Chemstation (B.04.01) 工作站;Agilent 7694E顶空进样 器。对照品:环氧乙烷(浓度5mg/ml,美国Accustandard);溶剂:水(实验室超纯水);供试品:明胶空心胶囊(广生胶囊提供)。 1.2色谱条件 ①色谱条件 色谱柱:DB-624毛细管柱(30m*0.53mm*3.0um),固定相:(6%)氰丙基苯基(94%)二甲基聚硅氧烷;柱温:40℃保持5min,升温速率25℃/min,上升到150℃终止程序升温,后运行温度230℃,后运行时间3 min;载气流速:5mL/min。 汽化室:汽化室110℃,分流比1:1。 检测器:260℃,氢气40mL/min,空气400mL/min,尾吹33 mL/min。

气相色谱法测定萘含量知识点解说.

煤气中萘含量的测定 二、气相色谱法 1.方法原理、适用范围和引用标准 (1)方法原理用二甲苯或甲苯吸收煤气中的萘及其它杂质(茚、硫茚、甲基萘等),吸入液加入一定量内标液正十六烷,用气相色谱法分离,测定萘的含量。 (2)适用范围本标准规定了城市燃气中萘含量的气相色谱分析测定方法,适用于萘含量在5mg/m3以上的城市燃气。 (3)引用标准GB/T682《化学试剂三氯甲烷》;GB/T684《化学试剂甲苯》。 2.操作步骤 (1)调整仪器按下列条件调整仪器,允许根据实际情况作适当变动。各组分的相对保留值见下表。 各组分的相对保留值 气相色谱条件如下:汽化温度,250℃;柱箱和色谱柱温度,恒温130℃;载气,氮气;柱前压,约73.5kPa(0.75kgf/cm2);流速,35mL/min(柱后测量);检测器,

火焰离子化检测器;检测器温度,140℃;辅助气流速度,氢气,40mL/min ,空气,400mL/min ;灵敏度和衰减的调节,在萘的绝对进样量为2.5×10-8g 时,产生的峰高不低于10mm ;记录仪纸速,1㎝/min 。 (2)校准 ①标准样品的制备 正十六烷标准溶液:称取7.5g 正十六烷(称准至0.0002g ),置于50mL 容量瓶中,用二甲苯稀释至刻度,混匀,密封贮存备用,溶液浓度应定期检查。 萘标准溶液:称取7.5g 萘(称准至0.0002g ),置于50mL 容量瓶中,用二甲苯稀释至刻度,混匀,密封贮存备用。 校准用标准样品系列的制备:在6个50mL 的小口试剂瓶中,用50mL 量筒各加30mL 二甲苯。用100μL 微量注射器各加100μL 正十六烷标准溶液,再分别加入20μL 、60μL 、100μL 、150μL 、200μL 、300μL 萘标准溶液,混匀,加盖保存备用。 ②标准曲线的确定 调整好色谱仪,用10μL 微量注射器分别抽取标样0.4μL ,注入色谱仪。测量正十六烷和萘的保留时间(s )和峰高(㎜),以保留时间与峰高的乘积作峰面积,或用积分仪直接测量正十六烷和萘的峰面积。按下式分别计算各标准样品中萘和正十六烷的质量比Y i 和峰面积比X i 。 i i i V V m m Y 2121?= i i i A A X 21= 式中 Y i —第i 个标准试样中萘与正十六烷的质量比;

气相色谱质谱联用仪技术指标(新)

气相色谱/质谱联用仪技术指标 1.2温度:操作环境15?C~35?C 1.3 湿度:操作状态25~50%,非操作状态5~95% 2.性能指标 2.1质谱检测器 2.1.1具有网络通讯功能,可实现远程操作。结构紧凑,无需冷却水及压缩空气冷却。 2.1.2*侧开式面板,无须取下质谱仪机盖即可进行维护。玻璃窗口可显示离子源类 型,灯丝运行情况和离子源连接状态。需提供彩页证明文件。 2.1.3质量数范围:2-1000amu,以0.1amu递增

2.1.4分辨率:单位质量数分辨 2.1.5质量轴稳定性: 优于0.10amu/48小时 2.1.6灵敏度: EI:全扫描灵敏度(电子轰击源EI):1pg八氟萘(OFN),信/噪比≥ 1400:1 (扫描范围: 50-300amu) 2.1.7*仪器检出限IDL:10fg八氟萘。并提供三份以上现场安装验收报告。 2.1.8最大扫描速率:大于19,000amu/秒 2.1.9动态范围:全动态范围为106 2.1.10选择离子模式检测(SIM)最多可有100组,每组最多可选择60个离子 2.1.11质谱工作站可根据全扫描得到的数据,自动选择目标化合物的特征离子并对其进 行分组,最后保存到分析方法当中,无须手动输入。(AutoSIM) 2.1.12具有全扫描/选择离子检测同时采集功能 2.1.13两根长效灯丝的高效电子轰击源,采用完全惰性的材料制成 2.1.14*离子化能量:5~241.5eV 2.1.15离子化电流:0~315uA 2.1.16离子源温度:独立控温,150~350?C可调 2.1.17*分析器:整体石英镀金双曲面四极杆,独立温控, 106?C ~200?C。非预四极杆 加热。需提供彩页等证明文件。 2.1.18质量分析器前有T-K保护透镜。 2.1.19检测器:三维离轴,检测器。长效高能量电子倍增器 2.1.20真空系统:250升/秒以上分子涡轮泵 2.1.21气质接口温度: 独立控温,100~350℃ 2.1.22TID 痕量离子检测技术,在数据采集的过程中优化信号。 2.1.23自动归一化调谐。 2.1.24EI源可以采用氢气做为载气,CI源可以采用氨气替代甲烷气。 2.1.25具备早期维护预报功能(EMF) 2.1.26可提供质量认证功能(OQ/PV) 2.2 气相色谱仪 2.2.1 主机 2.2.1.1 电子流量控制(EPC):所有流量、压力均可以电子控制,以提高重现性,配有13路电子流量控制; 2.2.1.2 压力调节:0.001psi。 2.2.1.3 大气压力传感器补偿高度或环境变化; 2.2.1.4 程序升压/升流:3阶;

有机磷农药残留风险评估

有机磷农药残留风险评估 1 有机磷农药化学特性 有机磷是磷酸的酯,由磷酸与三种醇连续反应生成。它们被用作溶剂、杀虫剂、阻燃剂和增塑剂。有机磷农药(OPs)主要是磷、磷硫或磷硫酸的酯类、酰胺类或硫醇类衍生物,广泛应用于农业、商业建筑或家庭和花园中防治昆虫病害[1]。大部分OPs属于有机硫代磷酸亚基,其官能团为硫代磷酸P=S键。敌畏和草甘磷主要是P=O键。许多有机硫代磷酸酯(OTPs)由硫转化为毒性较高的氧。这种转化发生在人体内的肝酶和环境下的氧气和光的影响。氧和硫都被水解成毒性较低的烷基磷酸盐,并在排泄前进一步身体代谢。OPs包括超过100种化合物,根据IPCS INCHEM(国际化学品安全规划)和美国EPA(美国环保署),他们被归类为“剧毒”(HT)(老鼠口服LD50值小于50毫克/公斤)“适度有毒”(MT) (LD50值超过50毫克/公斤,低于500毫克/公斤)[2]。 2 接触有机磷农药的途径 一般人口通过家庭使用杀虫剂产品和消费受污染的饮料和食品而在环境上接触OPs。职业性暴露人群包括农药行业工作者从事的生产活性成分或制备配方和农业工人可能从事混合物的制备和应用作为不同的活动的一部分,包括重返以前治疗领域和专业涂抹器。接触杀虫剂也影响从事公共卫生应用的工人。每个人群的主要接触途径各不相同。一般人群以摄入为主,职业性暴露组以吸入和皮肤吸收为主[3]。室内工作人员主要通过吸入接触,较少通过皮肤吸收接触;室外工作人员主要通过皮肤接触和吸入接触(小于10%)。皮肤的吸收量因药剂的不同而不同,通过眼睛暴露也可能是通过蒸气、粉尘或气溶胶,这甚至可能导致全身中毒。OPs的毒性几乎完全是由于乙酰胆碱酯酶(AChE)的抑制,这是一种神经末端的酶,导致乙酰胆碱的积累,引起人体呼吸、心肌和神经肌肉传导损伤[2]。 当OPs进入人体后,通过两步代谢途径代谢为特异性和非特异性代谢产物。非特异性代谢物为二烷基磷酸(DAPs),可分为二甲基磷酸(DMPs)和二乙基磷酸(DEPs)。DMP包括二甲基磷酸(DMP)、二甲基硫代磷酸(DMTP)和二甲基二硫代磷酸(DMDTP),DEP包括二乙基磷酸(DEP)、二乙基硫代磷酸(DETP)和二乙基二硫代磷酸(DEDTP)[4]。 3 有机磷农药在食物中的残留 有研究表明,某些特定的食物是人类接触OPs的来源。即使这些食物中的化合物含量很低,也可能会对人类健康造成风险,因为它们的食用寿

气相色谱法的应用

气相色谱法的应用 气相色谱法在石油工业中的应用 ⑴石油气的分析石油气(C1~C4)的成分分析,目前都采用气相色谱法。以25%丁酮酸乙酯为固定液,6201担体,柱长12.15m,内径4mm,柱温12℃,氢为载气,流速25ml/nin,热导池电桥电流120~150mA, C1~C4各组分得较好的分离见图10。图10 石油在丁酮酸乙酯柱上的分离1-空气;2-乙烷;3-乙烯;4-二氧化碳;5-丙烷;6-丙烯;7-异丁烷8-乙炔;9-正丁烷;10-正丁烯;11-异丁烯12- 反丁烯-2,3;13- 顺丁烯-2,4;14-丁二烯北京化工研究院近期研究出用多孔氧化铝微球色谱固定相,对C1~C4烃分离很好,柱长2m,内径2mm,内填充0.3%阿皮松L,改性?-Al2O3,微球120~130目;柱温85℃,氮为载气,流速15ml/min,氢火焰离子化检测器。分离谱见图11. 此外吉林化学工业公司研究院还研制了石墨化炭黑和改性石墨化炭黑色谱固定相分离C1~C4烃。⑵石油馏的的分析气相色谱法分析石油馏分的效能与分析速度是精密分馏等化学方法所不能比拟的。如一根60m长、内径0.17mm的弹性石英毛细管柱,内涂OV-101,在程序升温条件下(柱温40~90℃)进样0.6?1,分流比150:1,分析了65~165℃大港直馏气油。用一根30m长、内径0.25mm 毛细管柱,涂PEG1500,柱温80℃,汽化100℃,氮为载气,分流比100:1,汽油中微量芳香烃得到很好的分离(见图12)。图11 低级烃类的气相色谱分离图1-CH4;2-C2H6;3-C2 H4;4-C3 H8;5-C2 H2;6-C8 H6;7-iC4 H10;8-nC4 H10;9-丙二烯;10-丁烯-1;11-iC5 H12 12--i C4 H6;13- 反丁烯-2;14- 顺丁烯-2;15-丁二烯16-丙炔图12汽微量芳烃的油中色谱分离1-苯;2-甲苯;3-乙苯;4-对二甲苯;5-一间二甲苯; 6-邻二甲苯 气相色谱法在环境科学中的应用 我国在环境科学研究、监督检测中,广泛使用气相色谱法测定大气和水中痕量胡害物质。 ⑴大气中微量-氧化碳的分析 汽车尾气中含有一氧化碳,工业锅炉和家用煤炉燃烧不完全放出一氧化碳,都污染环境。大气中痕量一氧化碳常用转化法没定。国产SP-2307色谱仪具有转化装置,使CO转化为CH4。CO+3H2Ni催化/380℃→CH4+H2O 色谱柱固定相可用5A筛分子,GDX-104,Porpak Q等,以分子筛为例,13X或5A分子筛60~80目(先经500~550℃活化2小时)以氢气载气, 57ml/nin;氢焰检测器;空气400ml/min;尾吹氮气80ml/min。柱长2m,内径2mm,柱温36℃,检测室130℃,转化炉380v;进样量1mm。可测大气中ppm级一氧化碳。

气相色谱法测定聚乳酸中的单体残留

气相色谱法测定聚乳酸中的单体残留(作者:__________ 单位: __________ 邮编:____________ ) 作者:李红梅王传栋,李俊起,刘阳 【摘要】测定聚乳酸中丙交酯的含量。采用毛细管气相色谱法,色谱系统为:AC20色谱柱;柱温150C ;载气为氮气;检测器为FID。在色谱条件下,测得丙交酯线性良好(丫0.99);平均回收率为 99.8%;RSD0.18%最低检测限为3.413卩g/mL,样品中丙交酯残留量符合要求。该方法灵敏、准确、可靠。 【关键词】毛细管气相色谱法;聚乳酸;丙交酯;单体残留;测定Abstract : To determine the contents of residual lactide in PLA.A Simple capillary gas chromatography method was established with FID detector. The capillary colu mn was AC20 with 150C ;the residual monomecontents were calculated by the exter nal sta ndard method.The lin earities were fairly good(丫0.99). The average recoveries were 99.8 % with RSD of 0.18%. The limit of detection was 3.413 卩g/mL. The contents of residual monomer in samples were complied with the specificati on

气相色谱法测定水体中的有机物

GC测定水体中的有机污染物 李磊030212007028,李先江030212007033 (中国海洋大学化学化工学院,山东青岛266100) 摘要:根据水体现状,我们怀疑是农药厂排放的有毒废水导致鱼类大量死亡。针对可能存在的剧毒有机污染物,我们对重铬酸钾氧化法、恒电流库仑滴定法、微分脉冲阳极溶出伏安法以及气相色谱法的优缺点进行了详细的分析和比较,选择气相色谱法对水体中存在的有机污染物进行定性和定量分析。 关键词:GC;有机污染物;色谱柱;化学需氧量 中图分类号:X131.2 1.前言: 通过文献介绍水体中的鱼大量死亡,由此我们猜测可能是由于水体中存在大量的有害物质所致。通过分析我们发现,池塘所傍河流的上游有三个工厂,水污染很大程度上是因为上游工厂排放的废水不达标造成的。大部分工厂排放的废水中都含有有机物,而有机污染物含量超标将严重影响水体中生物的生命活动,而且有些难以降解的物质的存在也会通过生物链最终在人体内积累,危害人类的身体健康和生命安全。 通常情况下,工厂排放的废水中均含有有机物,下表则罗列了不同类型的污水中BOD5和COD的含量以及不同类型的工厂所排放的污染物的种类: 图一污水类型及BOD和COD含量

农药行业是化学工业中的污染大户,也是治理污染难度最大的行业。农药生产废水历来以毒性大、浓度高、治理难成为社会关注的重点。 由于农药种类多,生产历程长、反应步骤多,因此产生的有毒污染物很多,极有可能是罪魁祸首,我们以农药中合成最多,应用最广泛,最具代表性的乐果、甲基对硫磷、马拉硫磷、对硫磷四种有机磷农药为分析对象。同时,它们也是国家环保重点监测对象。 我们将就假设对水样进行定性和定量的分析,从而找出最终的结果。在测定过程中我们将分别对重铬酸钾氧化法、恒电流库仑滴定法、微分脉冲阳极溶出伏安法以及气相色谱法的优缺点进行比较,选择合适的方法进行测定。 2.水体有机污染物的种类和相关简介: 水体中的有机污染物有许多,包括以下这些种类: 酚类化合物、苯胺类化合物、硝基苯类、总有机卤化物、石油类、挥发性和半挥发性有机污染物、苯系物、挥发性卤代烃、氯苯类化合物、邻苯二甲酸酯类、甲醛、有机氯农药、有机磷农药、三氯乙醛、多环芳烃、二恶英类、多氯联苯。

气相色谱法测定苯系物..

093858 张亚辉 气相色谱法测定苯系物 一. 实验目的 1、掌握气相色谱保留值定性及归一化法定量的方法和特点; 2、熟悉气相色谱仪的使用,掌握微量注射器进样技术。 二. 实验仪器与试剂 1. GC-2000型气相色谱仪,4台 2. 医用注射器,1支 3. 苯、甲苯、二甲苯混合物 三.实验原理 气相色谱法是以气体(载气)作为流动相的柱色谱分离技术,它主要是利用物质的极性或吸附性质的差异来实现混合物的分离,它分析的对象是气体和可挥发的物质。 顶空气相色谱法是通过测定样品上方气体成分来测定该组分在样品中的含量,常用于分析聚合物中的残留溶剂或单体、废水中的挥发性有机物、食品的气味性物质等等,其理论依据是在一定条件下气相和液相(固相)之间存在着分配平衡。顶空气相色谱分析过程包括三个过程:取样,进样,分析。根据取样方式的不同,可以把顶空气相色谱分为静态顶空气相色谱和动态顶空气相色谱。本实验采用静态顶空气相色谱法。 色谱定量分析,常用的方法有峰面积(峰高)百分比法、归一化法、内标法、外标法和标准加入法。本实验采用归一化法。归一化法要求所有组分均出峰,同时还要有所有组分的标准样品才能定量,公式如下: (1) 式中x i 代表待测样品中组分i 的含量,Ai 代表组分i 的峰面积,fi 代表组分i 的校正因子。 因为所测样品为同系物,我们可以简单地认为各组分校正因子相同,则(1)式可化简为 %100??= ∑i i i i i A f A f x % 100?=∑i i i A A x

载气携带被分析的气态混合物通过色谱柱时,各组分在气液两相间反复分配,由于各组分的K值不同,先后流出色谱柱得到分离。 气相色谱的结构如下所述: (1)气路系统(Carrier gas supply) 气路系统:获得纯净、流速稳定的载气。包括压力计、流量计及气体净化装置。 载气:要求化学惰性,不与有关物质反应。载气的选择除了要求考虑对柱效的影响外,还要与分析对象和所用的检测器相配。 净化器:多为分子筛和活性碳管的串联,可除去水、氧气以及其它杂质。(2)进样系统:进样器+气化室 液体进样器:不同规格的专用注射器,填充柱色谱常用10μL;毛细管色谱常用1μL;新型仪器带有全自动液体进样器,清洗、润冲、取样、进样、换样等过程自动完成,一次可放置数十个试样。 气体进样器:推拉式、旋转式(六通阀)。 气化室:将液体试样瞬间气化的装置。无催化作用。 (3)柱分离系统 填充柱:内径2~4 mm,长1~3m,内填固定相; 毛细管柱:内径0.1~0.5mm,长达几十至100m,涂壁固定液毛细管柱因渗透性好、传质快,因而分离效率高(n可106)、分析速度快、样品用量小。 柱温:是影响分离的最重要的因素。(选择柱温主要是考虑样品待测物沸点和对分离的要求。)柱温通常要等于或略低于样品的平均沸点(分析时间20-30min);对宽沸程的样品,应使用程序升温方法。 (4)检测系统 检测器是气相色谱仪的关键部件。实际应用中,通常采用热导检测器(TCD)、氢火焰离子化检测器(FID)、电子捕获检测器(ECD)等,本实验选用热导检测器的结构,主要根据不同的气体有不同的热导系数,对待侧物进行检测。热导检测器包括:池体(一般用不锈钢制成);热敏元件:电阻率高、电阻温度系数大、且价廉易加工的钨丝制成;参考臂:仅允许纯载气通过,通常连接在进样装置之前;测量臂:需要携带被分离组分的载气流过,则连接在紧靠近分离柱出口处。四、实验条件 色谱柱:长2m,102白色担体60~80目,涂渍角鲨烷或PEG为固定液,液担比为5﹕100 柱温:80,气化室温度:100,检测器温度120,载气:氢气 五、实验内容 (1)配制苯、甲苯、二甲苯标准混合液(各取1,5,5)取1μL,测谱图,归一

十食品中有机磷农药残留量的测定-气相色谱法

实验十四、食品中有机磷农药残留量的测定-气相色谱法 (GB/T 5009.20-2003 食品中有机磷农药残留量的测定) 气相色谱法测定食品中有机磷农药残留量 一、目的与要求 1.掌握气相色谱仪的工作原理及使用方法。 2.学习食品中有机磷农药残留的气相色谱测定方法。 二、原理 食品中残留的有机磷农药经有机溶剂提取并经净化、浓缩后,注入气相色谱仪,气化后在载气携带下于色谱柱中分离,由火焰光度检测器检测。当含有机磷的试样在检测器中的富氢焰上燃烧时,以HPO碎片的形式,放射出波长为526nm的特性光,这种光经检测器的单色器(滤光片)将非特征光谱滤除后,由光电倍增管接收,产生电信号而被检出。试样的峰面积或峰高与标准品的峰面积或峰高进行比较定量。 三、仪器与试剂 (一)仪器 1.气相色谱仪:附有火焰光度检测器(FPD)。 2.电动振荡器 3.组织捣碎机 4.旋转蒸发仪 (二)试剂 1.二氯甲烷 2.丙酮 3.无水硫酸钠:在700℃灼烧4h后备用。 4.中性氧化铝:在550℃灼烧4h。 5.硫酸钠溶液 6.有机磷农药标准贮备液:分别准确称取有机磷农药标准品敌敌畏、乐果、马拉硫磷、对硫磷、甲拌磷、稻瘟净、倍硫磷、杀螟硫磷及虫螨磷各10.0mg,用苯(或三氯甲烷)溶解并稀释至100mL,放在冰箱中保存。 7.有机磷农药标准使用液:临用时用二氯甲烷稀释为使用液,使其浓度为敌敌畏、乐果、马拉硫磷、对硫磷、甲拌磷每毫升各相当于 1.0μg,稻瘟净、倍硫磷、杀螟硫磷及虫螨磷每毫升各相当于2.0μg。 四、实验步骤 (一)样品处理 1.蔬菜:取适量蔬菜擦净,去掉不可食部分后称取蔬菜试样,将蔬菜切碎混匀。称取10.0g混匀的试样,置于250mL具塞锥形瓶中,加30g~100g无水硫酸钠脱水,剧烈振摇后如有固体硫酸钠存在,说明所加无水硫酸钠已够。加0.2g~0.8g活性炭脱色。加70mL二氯甲烷,在振荡器上振摇0.5h,经滤纸过滤。量取35mL滤液,在通风柜中室温下自然挥发至近干,用二氯甲烷少量多次研洗残渣,移入10mL具塞刻度试管中,并定容至2mL,备用。 2.谷物:将样品磨粉(稻谷先脱壳),过20目筛,混匀。称取10g置于具塞锥形瓶中,加入0.5g中性氧化铝(小麦、玉米再加0.2g活性炭)及20mL二氯甲烷,振摇0.5h,过滤,滤液直接进样。若农药残留过低,则加30mL二氯甲烷,振摇过滤,量取15mL滤液浓缩,并定容至2mL进样。 3.植物油:称取5.0g混匀的试样,用50mL丙酮分次溶解并洗入分液漏斗中,摇匀后,加10mL水,轻轻旋转振摇1min,静置1h以上,弃去下面析出的油层,上层溶液自分液漏

气相色谱法测定蒽含量

气相色谱法测定蒽含量 1.1.1 适用范围 本检验方法适用于粗蒽中蒽含量的测定。 1.1.2 仪器 容量瓶(50 mL)、胶头滴管、超声波清洗仪、烘箱(可控温至60~65℃)。 1.1.3 试剂 甲苯:分析纯。 蒽:色谱纯。 1.1.4 溶液配制 (1) 标准品的配制:称取0.1 g 标准品蒽于洁净干燥的50 mL 容量瓶中,(称准至0.0001 g),加入少量甲苯,待试样完全溶解后,冷却至室温,加甲苯定容至刻线,摇匀作为蒽标准溶液。 (2) 样品的配制:称取0.2 g 样品(称准至0.0001 g)于50 mL 容量瓶中,加入少量甲苯溶解,(在60 ℃超声波水浴中超声5 min)冷却至室温后定容,摇匀后进样。 1.1..5 检测条件 进样口:分流/非分流进样口;温度:230℃;分流比:19:1。 手动进样 色谱柱: HP-5(30m×0.25um×0.25 um),100%二甲基聚硅氧烷,非极性;柱流速4.5 mL/min ,压力16.638 psi 。 载气:氮气(99.99%)。 检测器:火焰离子检测器(FID) 温度:260 °C H2流量:30 mL/min 空气流量:400 mL/min 。 进样数量: 0.2μL 。 柱温箱:程序升温。 表 1 程序升温过程 1.1.6 实验步骤 (1) 首先打开氮气,保证毛细管柱始终被氮气保护,然后打开气相色谱仪电源。 (2) 打开电脑上的气相工作站软件,打开 “样品”,选择“方法”中“粗蒽”,然后点击“注册样品”,之后启动升温程序。 (3) 待检测器温度到达设定温度250℃时,打开空气和氢气,按点火按钮点火,点着后检测器的数据有数值显示后表示点火成功。 (4) 待工作站基线稳定后,打开“样品”项,填写样品名称,点击“注册样品”。此时具备进样条件,可以将标准品或样品按要求稀释后进样。 (5)样品分析结束后,读取相应保留时间的样品峰面积,根据如下计算公式进行计算。 (6) 实验结束后,打开样品按钮,在“方法”中选择“turn off”,然后点击“注册样品”,进行关机程序。此时可以关闭氢气和空气,暂时不要关闭氮气,待检测器及气化室温度均降至60 ℃后,关闭氮气,然后关闭气相色谱工作站软件和气相色谱仪电源。 1.1.7 结果计算 蒽含量的质量分数数值以%表示,按式(1)计算 )(样品质量 标准蒽峰面积 标蒽百分含量 标准蒽质量 样品峰面积 蒽含量水%1/W -???= (6) 注:标蒽每天进样3~5针,取相近数值计算平均值作为标蒽峰面积。 1.1.8试验误差

气相色谱法习题答案(中山)

气相色谱法习题答案 15.已知某石油裂解气,经色谱定量测出峰面积A i 与各组分的质量校正因子f i '列于下表中。假定全部组分都在色谱图上出峰,求各组分的质量分数为多少? 出峰次序空气甲烷二氧化碳乙烯乙烷丙烯丙烷峰面积A i 34 3.14 4.62988726048.3校正因子f i 0.84 1.00 1.00 1.00 1.05 1.28 1.36w(%) 3.47 0.38 0.56 36.16 11.08 40.38 7.97 解:按照公式:(%)100i i j j j f A w f A = ?∑,计算结果见上表末行! 例: 381 .0% 10036 .13.4828.126005.18700.129800.16.400.114.384.03400 .114.3%=??+?+?+?+?+?+??=甲烷 16.在一定色谱条件下,对某厂生产的粗蒽质量进行检测。今欲测定其中的蒽含量,用吩嗪为内标。称取试样0.130g ,加入内标吩嗪0.0401g 。溶解后进样分析,测得一下数据:蒽峰高51.6mm ,吩嗪峰高57.9mm 。已知f '蒽=1.27,f '吩嗪=1.00。求试样中蒽的质量分数。 (34.91%) 解:(题目最后一行中f '芬嗪中的“芬”错误!答案的有效数字位数应为3位!) ' '' '=1.2751.6=65.53=1.0057.9=57.9 ==65.53/57.90.0401=0.04545(g)%=0.04545/0.130100=34.91.2751.60.040%= 100m f H m f H m m m m m f H m f H m =?=???????= 蒽-进样蒽蒽吩嗪-进样吩嗪吩嗪蒽-进样吩嗪-进样蒽蒽 吩嗪 蒽蒽吩嗪吩嗪吩嗪样 由于采用内标法,因此蒽与吩嗪的进样比例相同:蒽或直接利用公式:蒽1 10034.9 1.0057.90.130 ?=?? 17.已知某试样含甲酸、乙酸、水及苯等。称取试样1.055g ,内标为0.1907g 的 381.0

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

气相色谱-质谱联用 原理和应用介绍

气相色谱法-质谱联用 气相色谱法–质谱法联用(英语:Gas chromatography–mass spectrometry,简称气质联用,英文缩写GC-MS)是一种结合气相色谱和质谱的特性,在试样中鉴别不同物质的方法。GC-MS的使用包括药物检测(主要用于监督药物的滥用)、火灾调查、环境分析、爆炸调查和未知样品的测定。GC-MS也用于为保障机场安全测定行李和人体中的物质。另外,GC-MS 还可以用于识别物质中以前认为在未被识别前就已经蜕变了的痕量元素。 GC-MS已经被广泛地誉为司法学物质鉴定的金标方法,因为它被用于进行“专一性测试”。所谓“专一性测试”就是能十分肯定地在一个给定的试样中识别出某个物质的实际存在。而非专一性测试则只能指出试样中有哪类物质存在。尽管非专一性测试能够用统计的方法提示该物质具体是那种物质,但存在识别上的正偏差。 目录 1 历史 2 仪器设备 2.1 GC-MS吹扫和捕集 2.2 质谱检测器的类型 3 分析 3.1 MS全程扫描 3.2 选择的离子检测 3.3 离子化类型 3.3.1 电子离子化 3.3.2 化学离子化 3.4 GC-串联MS 4 应用 4.1 环境检测和清洁 4.2 刑事鉴识 4.3 执法方面的应用

4.4 运动反兴奋剂分析 4.5 社会安全 4.6 食品、饮料和香水分析 4.7 天体化学 4.8 医药 5 参考文献 6 参考书目 7 外部链接 历史用质谱仪作为气相色谱的检测器是上个世纪50年代期间由Roland Gohlke和Fred McLafferty首先开发的。当时所使用的敏感的质谱仪体积庞大、容易损坏只能作为固定的实验室装置使用。 价格适中且小型化的电脑的开发为这一仪器使用的简单化提供了帮助,并且,大大地改善了分析样品所花的时间。1964年,美国电子联合公司(Electronic Associates, Inc. 简称EAI)-美国模拟计算机供应商的先驱在开始开发电脑控制的四极杆质谱仪Robert E. Finnigan的指导下[3]开始开发电脑控制的四极杆质谱仪。到了1966年,Finnigan和Mike Uthe的EAI分部合作售出500多台四极杆残留气体分析仪。1967年,Finnigan仪器公司the (Finnigan Instrument Corporation,简称FIC)组建就绪,1968年初就给斯坦福大学和普渡大学发送了第一台GC/MS的最早雏型。FIC最后重新命名为菲尼根公司(Finnigan Corporation)并且继续持世界GC/MS系统研发、生产之牛耳。 1966年,当时最尖端的高速GC-MS (the top-of-the-line high-speed GC-MS units)单元在不到90秒的时间里,完成了火灾助燃物的分析,然而,如果使用第一代GC-MS至少需要16分钟。到2000年使用四极杆技术的电脑化的GC/MS仪器已经化学研究和有机物分析的必不可少的仪器。今天电脑化的GC/MS仪器被广泛地用在水、空气、土壤等的环境检测中;同时也用于农业调控、食品安全、以及医药产品的发现和生产中。 气质联用色谱是由两个主要部分组成:即气相色谱部分和质谱部分。气相色谱使用毛细管柱,其关键参数是柱的尺寸(长度、直径、液膜厚度)以及固定相性质(例如,5%苯基

蔬菜中有机磷农药残留量的检测与分析_本科生毕业论文

黑龙江东方学院 本科生毕业论文 蔬菜中有机磷农药残留量的检测与分析 姓名 学号 专业食品科学与工程 班级 指导教师 学部食品与环境工程学部 答辩日期

蔬菜中有机磷农药残留量的检测与分析 摘要 有机磷农药作为一类高效、广谱的杀虫剂正被广泛地用于农业防害以及家庭、仓储等的杀虫,但大量使用后产生的环境危害也日益严重。农药的急性中毒,特别是果蔬食品污染后引发的群体中毒事件屡有发生。因此建立果蔬有机磷残留检测技术是很有必要的。 本课题采用乙腈浸提,同时对茄果类、瓜类、甘蓝类、白菜类、绿叶类、豆类6类蔬菜共24个品种,采用气相色谱法检测有机磷中高毒农药甲胺磷、氧化乐果、甲拌磷、对硫磷、甲基对硫磷、毒死蜱、敌敌畏、乙酰甲胺磷、三唑磷、杀螟硫磷、水胺硫磷等13种农药残留情况。本次检测蔬菜样品24个,其中检出含有被测农药样品8个,检出率33.3%;被测农药不合格的样品3个,总合格率87.5%。有5种高毒农药被检出,其中毒死蜱的检出率最高,达到25%,氧化乐果的检出率为16.7%,甲胺磷、水胺硫磷、乙酰甲胺磷均为8.3%。 关键词:气相色谱;有机磷农药;蔬菜

in the detection and analysis Abstract The ganophosphorus agricultural chemicals take one kind highly effective, Guang Pu the pesticide widely to use in agricultural against evil as well as the family, the warehousing and so on insect disinfestation, but uses after massively, produces the environment harm day by day is also serious. Agricultural chemicals acute poisoning, after specially fruits and vegetables food contamination, initiates the community poison event sometimes occurs. Therefore the establishment fruits and vegetables ganophosphorus remains the examination technology to have the necessity very much. this topic uses the methyl cyanide to soak raises, simultaneously to the eggplant fruit class, the melon class, the sea cabbage class, the cabbage class, the green leaf class, the legumes 6 kind of vegetables altogether 24 varieties, uses in the gas phase chromatography examination ganophosphorus the high poisonous agricultural chemicals methylamine phosphorus, the oxidized rogor, the thimet, the parathion, the methyl parathion, to kill by poison the tick, the phosphate insecticide, the acetyl methylamine phosphorus, the triazole phosphorus, to kill the snout moth sulfur phosphorus, Shui Anliu the phosphorus and so on 13 kind of pesticide residue situation. This examination vegetables sample 24, picks out includes is measured agricultural chemicals sample 8, detection rate 33.3%; Is measured agricultural chemicals unqualified sample 3, total qualified rate 87.5%. Some 5 kind of high poisonous agricultural chemicals are picked out, kills by poison the tick the detection rate to be highest, achieves 25%, the oxidized rogor detection rate is 16.7%, the methylamine phosphorus, Shui Anliu the phosphorus, the acetyl methylamine phosphorus is 8.3% Key word:Gas chromatography; Organic phosphorus agricultural chemicals; Vegetables

相关文档