文档库 最新最全的文档下载
当前位置:文档库 › 路基连续压实控制系统技术介绍

路基连续压实控制系统技术介绍

连续压实技术

1.连续压实控制技术的原理 将振动碾压过程看做是一种动态试验过程(振动压实试验),振动压路机为动态加载设备。在碾压过程中振动轮同时受到来自机械本身的激振力和路基结构的抵抗力(反力)作用,二者的共同作用引起振动轮的振动响应,基于这种振动响应建立的评定与控制体系,实现碾压过程中的实时监测和反馈控制。 如果以振动轮为研究对象,那么不管什么填料,路基填筑体系对振动轮的作用总是可以用其抵抗力来表征。在振动轮参数和激振力已知的条件下,实测的振动响应信息包括了路基结构力的相关信息。 2.施工工序 2.1相关校验 在采用连续压实控制技术前要首先在试验段上进行相关校验即对比试验,检验并建立连续指标与常规质量验收指标间的相关关系,其相关系数只有达到规程的规定方能使用。 图2.1相关校验流程图工艺流程图

布范围并重新进行分析计算,仍然达不到要求,可能是所选择的方法和控制系统出现问题所致,需采用其他方法进行压实质量控制。 2.1.1碾压方案 在碾压时将整个碾压区域分成三个部分,同时碾压成不同密实状态,以下给出参考碾压遍数。 (1)轻度区:静压1遍+连续压实检测1遍; (2)中度区:静压1遍+强振1遍+连续压实检测1遍; (3)重度区:静压1遍+强振n遍+连续压实检测1遍。 2.2.2步骤 (1)数据预处理。由于各种原因导致的试验数据出现异常现象是经常发生的。因此,首先需要进行数据的预处理工作。比较好的办法就是做出散点图进行观察,如果数据出现异常点,要仔细分析原因进行甄别。 (2)计算相关系数。目前计算相关系数的商用软件非常普及,只要输入检测数据对,便可以方便地得到相关系数以及回归方程,并给出相关图。 (3)确定相关方程。得出相关系数r,在相关系数满足规程要求,即r>0.70时,将数值带入,即得到相关方程。 (4)确定目标振动压实值。根据现行路基相关标准的规定,按照路基填料类型查到K30最小的合格标准值,将其带入回归方程即可得到目标值。 3.过程控制 3.1过程控制流程图 图3.1过程控制流程图

土方路基压实度控制技术论文

浅谈土方路基压实度的控制技术 摘要:随着经济的迅猛发展以及现代化城市的飞速建设,我国公路建设正以前所未有的规模展开,而质量问题也越来越成为人们关注的焦点。高标准压实是保证路基应有强度和稳定性的一项最经济有效的措施,不但可以充分发挥路基土的强度,还可以降低路基的透水性,从而保证路面具有足够的抵抗车辆荷载作用的力学强度和稳定性能,提高道路的使用年限。 关键词:土方路基;压实度;控制 abstract:with the rapid development of economy and the rapid city modernization construction, the highway construction of our country is a hitherto unknown scale expansion, and quality issues have increasingly become the focus of attention.high standard compaction is to ensure the strength and stability of subgrade should be one of the most economical and effective measures, can not only give full play to the strength of subgrade soil, also can reduce roadbed permeability, thus ensuring the pavement is enough to resist the effect of vehicle load on the mechanical strength and stability, improve the service life of road key word:earth roadbed compaction degree; control 中图分类号:u213.1文献标识码:a 文章编号:2095-2104(2012 本文从压实度的概念入手,在选择合适的施工季节、原材料试

土质对路基压实度的影响

土质对压实度的影响 摘要:在土工建筑物施工过程中,填筑土的均匀性和压实的均匀性是很容易被人们忽视的重要问题。本文从土的性质角度出发,分析土的颗粒组成,土的均匀性和土的含水率大小控制对填筑土压实效果的影响,以利指导施工。 关键词:压实度;最优含水率;填筑土。 在修筑道路、堤坝、机场、运动场、挡土墙及建筑物基础回填等工程建设中,常需对填筑土进行压实,使其孔隙度减少,密度增加,压缩性及渗透性降低,强度提高,以满足工程地质条件要求。填土在压实或夯实处理前须了解其填筑特性,这要有试验确定。通过室内击实试验获得工程设计所需要的填筑参数最大干密度及最优含水量。土工试验规程制定了详细的操作步骤。土基需要承受外力作用传递而来的荷载,对土基进行必要的碾压达到要求是保建筑物应有强度与稳定性的一项最经济有效的技术措施。 我们通常采用压实度指标来控制土基施工质量,即通过室内击实试验得出填筑土的最大干密度,并以它为标准来控制施工时填筑土的干密度。然而在实际施工中,由于土基填料变化频繁,施工单位的试验人员和工程监理人员不能及时的根据土样的变化进行取样试验,确定填料的最大干密度和最优含水率,最终造成所测定的土基的压实度不是该种土样的真实压实度,或是由于土质不均,含水率难以控制造成质量检测中压实度不够抑或超百的问题出现。本文从土的性质角度出发,分析土的颗粒组成、土的均匀性土的含水率大小的控制对土基填筑土压实效果的影响,以利指导施工。 1. 土基压实的机理和意义 土是三相体,土颗粒为骨架,颗粒之间的空隙被水分和气体所占据,天然土体经自然历史的沉积,虽已具备一定的压实密度,但与土基使用性能的要求仍然相差较大,尤其是经土基施工后,扰动了土体颗粒原有组合,孔隙增加,结构破化,致使土体的强度和稳定性降低,必须对其进行人工和机械的压实。压实的目的在于对土颗粒进行重新组合,彼此挤紧,水分以薄膜包围土颗粒,空气被挤压排除,孔隙减少,土的单位重量提高,形成密实体,压实的意义在于提高土的c、φ值,降低渗透性,减少了毛细水上升,有效地防止水分积聚和侵蚀而到导致土基软化或因冻胀引起的不均匀变形,从而保证土基在设计年限内具有足够的强度和稳定性。 2. 不同土质的压实特性 土是填筑路基的基本材料,不同类型的土,其压实特性不同,施工时,应采用相应的压实措施。《公路土工试验规程》(JTG E40-2007),将土根据土颗粒粒径大小划分为:巨粒土、粗粒土、细粒土和特殊土。 巨粒土包括漂石和卵石,粒径大于60mm,含水率基本不影响压实效果,从填料平整难易和压实效果考虑,其最大粒径不宜超过压实层厚度的2/3。如果最大尺寸不超过压实厚度的1/3,就减少了填石材料被压碎的可能性,振动设备压实填石材料最经济最有效。 粗粒土包括砾石和砂,粒径范围是从60—0.075mm,若细粒径的土(粉土和黏土),含量为5%-10%,属于自流排水土。自流排水土颗粒较大,呈松散状态,水分易散失。大量的水分在压实过程中能够很容易挤压出来,压实工作在下雨和地面泥泞的情况也可以进行,自流排水土的压实对含水率不敏感,在完全干燥和含水饱和的情况下都可以达到最大干密度。当含水率介于干燥和饱和状态之间时,密实度稍低,自由排水土不受冷冻的影响。如果不属自由排水土,压实受含水率的影响,必须控制好最优含水率,才能获得最好的压实效果,砾石和砂相对于粉土和黏土容易压实,而且承载力高,虽然土在最优含水率下压实最有效,但是在干燥和半干燥地区,专门将土浇湿太浪费和不实际时,砾石和砂可在干燥状态下(含水率在

路基连续压实施工方案

路基连续压实施工方案

目录 1.编制依据 (1) 2.使用目的 (1) 3.施工程序 (1) 4.施工准备 (2) 4.1施工测量和放样 (2) 4.2试验段实验 (3) 5. 施工工艺 (3) 5.1设备安装 (3) 5.2 设备检查 (4) 5.3 相关性校验 (5) 5.4 过程控制 (6) 5.5 质量检测 (8) 6.质量检测 (10) 6.1质量控制要点 (10) 6.2 质量控制方法 (10) 6.3 质量检验 (10)

路基连续压实施工方案 1.编制依据 (1)新建鲁南高铁招标文件、合同、设计图纸; (2)中国铁路总公司《铁路工程施工组织设计规范》(Q/CR-9004-2015); (3)《高速铁路路基工程施工技术规程》(Q/CR9602-2015); (4)《高速铁路路基工程施工质量验收标准》(TB 10751-2010); (5)《铁路路基填筑工程连续压实控制技术规程》(Q/CR9210-2015)(6)总体施工组织设计及现场实地调查情况; (7)本企业技术力量、设备状况、管理水平、施工经验; (8)同类铁路工程项目施工经验、施工工法、科技成果。 2.使用目的 目前路基压实质量控制指标主要有: K (压实系数)K30 (地基系数)EVD (动态变形模量) 这些指标主要依靠现场“抽样”试验获得,只能检测局部点的压实程度并且是事后检测, 费时费力.采用实时的、能够对整个碾压面压实质量进行全面监控和检测的连续压实控制技术是提高路基填筑质量的 一条崭新途径。 3.施工程序 高速铁路路基填筑工程连续压实控制按“设备检查、相关性校验、过程控制、质量检测”四个阶段进行。

土方路基的压实度控制

土方路基的压实度控制 路基的压实是路基施工过程中的重要工序,密实的路基对于提高道路的使用品质、增加路面使用寿命是极为重要的,而其重要性往往被施工人员所忽略。能否经济、合理、有效的进行土方压实直接影响工程进度、成本和质量。现就土方路基的压实控制进行简单的探讨。 一、压实意义 路基填土是工程施工中工程量大、投资多、影响工程质量的关键环节。密实的路基除了能够提高工程质量与进度、节约成本,还提高了路基的承载力,减少由于路基不稳定造成的路面结构的破坏,进而减少维修工作量与恶化营运。因此,在路基施工中要充分认识影响路基压实的各种因素,然后根据施工的现场情况合理的采取各种技术措施.做好各项准备工作,注意路基土的含水量、土质、压实功能等等对路基土的压实会产生影响的各种因素,充分发挥现场压实机械的工作效率,使所施工的路基达到压实标准的要求。 二、压实原理 压实使土颗粒重新排列组合、彼此挤紧、密度增加、粘聚力增大;孔隙水排出、土粒外表水膜更薄、土体的单位重量提高、增加内聚力、提高土体抗剪强度,将土体中连通孔隙的空气挤出、减小孔隙率、增大密度,提高土体的水稳定性、减少因冻胀引起的不均匀变形,从而形成密实的整体使土体强度增加,稳定性增强。大量试验和实践表明,土基压实后,路基的弹性模量、塑性变形、渗透量、毛细水作用以及隔温性能均有明显改善 三、土压实效果的主要影响因素 影响压实效果的主要因素有内因和外因两个方面。内在因素是填土性质的好坏、地基处理、含水量控制、外在因素是压实设备、压实时间与速度、土层松铺厚度、压实时的自然条件和人为因素等。 1、土的性质的影响 我国的地域辽阔、地形复杂,能用于土方路基填筑的自然建筑材料较多,施工单位和建设单位处于经济效益等方面的考虑,大多数遵循就地取材的原则来进行道路路基建设。因土壤的颗粒大小和组成成份对压实度有较大的影响。所以土或类似土的材料是否易于压实取决于土的粒径、颗粒表面特性以及级配。粒径较大的中粒土比表面积小,颗粒之间的粘结力弱,易于在外力作用下产生位移而容易压实;粉土、粘土颗粒小,比表面积大,颗粒间薄膜水互相吸附作用较强,自由水排出困难,压实阻力大而难于压实。接近立方体、棱柱体的易于压实;薄片、长条多的难压实。颗粒表面有一定粗糙度的虽然阻抗力要大些,但在碾压过程中产生位移后能稳定在新的位置,而表面光滑接近圆形的颗粒,虽易于移动,但不易稳定,常难于压实。而土粒级配是否良好,决定了土体能否被压实到理想密度,级配良好的土,可以用较少的压实功压到要求的密实度,级配差或不含级配的土,尽管投入相当大的压实功,仍会留下很大的空隙。因此在填料选择时应优选用天然级配较好的中、粗粒土,砂性土,尽

路基质量控制

路基工程质量控制标准 1、土方路基(挖方) (1)在土方路基开挖前,首先对原地面进行高程复测,原地面高程复测后,根据所测高程绘制出横断面图,计算出挖方工程量,将开挖断面图及挖方工程量报监理工程师审核批准,按监理工程师的要求施工放样,精确放出路基中线、测出路基宽度和坡顶线,并做好标记,定好木桩,撒好灰线,撒灰线时沿坡顶边线布设,并在路堑外侧做好护桩,以方便以后中桩恢复。 (2)在路堑开挖前,首先进行精确放样,用石灰标好路基中线及边线,若挖方计划作为填料使用,挖前要进行路基清表。若作为弃方,要按照业主指定的位置弃方。与监理工程师共同确定好挖方处到弃土场的运距,进行土方调配。做好标识牌,标明每个断面下挖深度。 (3)路堑开挖 ①根据设计图纸或现场地形做好堑顶截水沟,堑顶为土质坡体,且设计要求做浆砌片石截水沟的,应提前放线施工或采取防渗措施,确保坡体稳定。开挖时按图纸要求由上而下施工,做到分段分片开挖,切忌超挖、乱挖。开挖时两侧坡角线处要预留一定的宽度,预留的宽度要保证刷坡过程中设计边坡线的土层不受扰动。开挖的土方用自卸车运至指定的弃土场,沿线便道疏导畅通,弃土场整理文明有序,将弃置土方搭堆码方,不能损害地方群众庄稼及阻塞河流泄洪等。 ②土方开挖应按图纸要求自上而下的进行,不得乱挖或超挖。无论工程量多大,土层多深,均严禁用爆破法施工或掏洞取土。 ③开挖中如发现土层性质有变化时,应及时报监理工程师共同确定处理方案。 ④在整个施工期间,应及时完善排水设施,始终保证路基排水畅通。 (4)路槽修整 在开挖接近路槽标高时预留10cm左右土层先不进行开挖,重新精确放出路基中线及边线,用平地机进行粗平使之横坡度、平整度大体达到要求后再用压路机进行碾压,碾压密实后人工布点用平地机进行精平直到各项

现行有效铁标及个别铁建设文件清单

铁路现行有效标准、规范、规程及个别铁建设文件 序 号 标准名称标准编号替代标准实施日期备注 1 铁路建设项目现场管理规范Q/CR 9202-2015 TB10441-2008 2015-06-01 2 铁路建设项目工程试验室管理标 准 Q/CR 9204-2015 TB10442-2009 2015-06-01 3 铁路工程试验表格Q/CR 9205-2015 铁建设函 [2009]27号 2015-06-01 4 铁路路基填筑工程连续压实控制 技术规程 Q/CR 9210-2015 TB10108-2011 2015-06-01 5 铁路钢桥制造规范Q/CR 9211-2015 TB10212-2009 2015-06-01 6 铁路桥梁钻孔桩施工技术规程Q/CR 9212-2015 TZ322-2010 2015-06-01 7 铁路隧道超前地质预报技术规程Q/CR 9217-2015 铁建设 [2008]105号 2015-06-01 8 铁路隧道监控量测技术规程Q/CR 9218-2015 TB10121-2007 2015-06-01 9 铁路隧道施工抢险救援指南Q/CR 9219-2015 铁建设 [2010]88号 2015-06-01 10 铁路混凝土拌和站机械配置技术 规程 Q/CR 9223-2015 铁建设 [2012]113号 2015-06-01 11 铁路路基工程施工机械配置技术 规程 Q/CR 9224-2015 铁建设 [2012]113号 2015-06-01 12 铁路桥梁工程施工机械配置技术 规程 Q/CR 9225-2015 铁建设 [2010]125号 2015-06-01 13 铁路隧道工程施工机械配置技术 规程 Q/CR 9226-2015 铁建设函 [2008]777号 2015-06-01 14 高速铁路路基工程施工技术规程Q/CR 9602-2015 铁建设 [2010]241号 2015-06-01 15 高速铁路桥涵工程施工技术规程Q/CR 9603-2015 铁建设 [2010]241号 2015-06-01 16 高速铁路隧道工程施工技术规程Q/CR 9604-2015 铁建设 [2010]241号 2015-06-01 17 高速铁路通信工程施工技术规程Q/CR 9606-2015 铁建设 [2010]241号 2015-05-01 18 高速铁路信号工程施工技术规程Q/CR 9607-2015 铁建设 [2010]241号 2015-05-01 19 高速铁路电力工程施工技术规程Q/CR 9608-2015 铁建设 [2010]241号 2015-05-01 20 高速铁路电力牵引供电工程施工 技术规程 Q/CR 9609-2015 铁建设 [2010]241号 2015-05-01

土方压实度质量控制

土方路基压实度的质量控制 在各级公路施工中,路基压实度质量检验控制至关重要。路基及回填土的压实,目的在于提高其强度和稳定性,降低路基的透水性,减少因冰冻而引起的不均匀变形,从而保证路面具有足够的抵抗车辆荷载作用的力学强度和稳定性能,提高道路的使用年限。文章论述了造成路基面破损的原因是路基施工中压实度指标达不到要求,并提出只有对路基结构层充分压实,才能保证路基强度、刚度及平整度,保证及延长路基、路面的使用寿命,减少资金浪费。 一、路基填料控制 1.1 路基填料选择 采用能被压实到规定密实度能形成稳定的填方路基的材料,不准使用沼泽土、淤泥、冻土、有机土及泥炭,及液限>50和塑性指数大于26的土。同时土中不应含有草皮、树根等易腐朽物质,受条件限制采用黄土、膨胀土作填料时,必须经过处理满足规范要求时方可使用。 1.2 填土材料的填前试验 用于填筑的路基土施工前一定要完成下列试验: (1)液限、塑限、塑性指数、天然稠度和液性指数; (2)颗粒大小分析试验: (3)含水量试验; (4)密度试验:

(5)相对密度试验; (6)土的击实试验; (7)土的强度试验(CBR值),根据这些数据从理论上能够判定出土的种类,剔出不合格的土质。通过土的重型击实试验,绘出填方用土的干密度与含水量关系曲线。以便确定各类型土的最大密度和达到最大干密度的最佳含水量。 二、试验段控制 试验的目的是确定正确的压实方法,确保土方工程达到规定的密度。内容有:压实设备选择、压实工序、压实遍数、压路机的行走速度,以及确定填料的有效厚度。在施工现场选择不低于200m的路线做为试验段。压实试验中,应详细记录各种已定的填筑材料的压实工序、压实设备类型,各种填筑材料的含水量界线、松方厚度和压实遍数、测量高程变化等参数,压实试验必须按规定达到密实度的要求为止。 三、含水量的控制 施工中首先做好路基排水工程以及施工场地的临时排水设施,路堑施工土方含水量控制重点是人工降低地下水位,可开挖纵、横向渗水沟。含水区路堑碾压不宜使用振动压路机振压,建议采用D75链轨与3Y15/18间隔稳压;必要时采用无机结合料稳定以防止地下水位上升;土场内外挖纵、横渗水沟或采用无砂管降水,使土方含水量降

浅谈连续压实技术在改良土施工中的应用

浅谈连续压实技术在改良土施工中的应用 摘要】本文通过对连续压实技术的全面阐述,介绍了该技术的起源、发展、原 来及应用,通过分析该项技术的应用结果,认为连续压实控制技术可以在改良土 施工中推广应用。 【关键词】铁路路基改良土施工连续压实技术过程控制 1.前言 近年来,随着我国铁路的快速发展,对铁路建设中的质量要求也越来越高。 对于高速铁路,路基除了要满足规范规定的基本要求外,还应该具有足够的抗永 久变形能力(沉降问题)和路基力学性能分布的均匀性(不均匀问题),这样才 能为高速行驶的列车提供一个安全、舒适和平稳的运行环境。根据路基工程的特点,保证路基达到应有性能的技术措施主要靠压实来实现。因此,在施工过程中 控制路基的压实质量是路基工程中一项非常重要的任务。 对于现行控制体系中存在的不足,应该采取“过程控制+结果控制”的双重控制 手段进行。由于常规的检验和控制方法都是对抽样点的检验,比较费时费力,并 且不一定具有足够的代表性,因此采取连续检验和控制技术已成为一种路基施工 质量过程控制的必然趋势。 利用振动压路机的碾压过程进行连续压实测试,可以起到“过程控制+结果控制”作用,发现问题就会有的放矢的进行处理,最大限度地降低验收检验不合格的风险,这是对采用常规控制指标进行验收的有力保证。 由中铁十九局集团有限公司承建的新建石家庄至济南铁路客运专线站前工程SJZ-3标段起讫里程为改DK79+555.99~DIIK117+459.28,正线长度为37.904km, 其中特大桥4座,全长23.986km,占线路长度的63.3%,路基长度为13.918km,占线路长度的36.7%。区间路基以填方形式通过冲洪积平原,地形平坦开阔,现 大部辟为耕地。填料为化学改良土。 2.连续压实控制的起源及发展 连续压实控制(CCC)起源于上个世纪七十年代北欧。瑞典于1976年提出了 压实计方法,通过判别振动压路机振动轮响应信号的畸变程度(指标为压实计值CMV——响应信号的谐波比)来评定被压材料的压实状态。进入八十年代后,有 多个国家对CCC技术从原理、量测设备、处理软件等方面进行了广泛研究。德国 方法(指标为振动模量Evid)要求路基为线弹性体,这实际上对于碾压合格的路 基是适用的,同时要求压路机与路基之间必须紧密接触,无弹跳现象发生。此外,计算Evid需要的参数大都需要事先确定,必须与性能参数均为已知的专有振动压 路机捆绑在一起才能实现,由于价格昂贵,在中国应用的不多。而早期的瑞典方 法相对于德国方法来讲,不需要特别专用的压路机,但其适用条件受限——自该 压实计(谐波比CMV)方法出现后,其指标CMV一直存在争议,国内外(中国、 美国、日本……)的实践表明:CMV在很多情况下并不能正确反映被压材料的压 实状态(CMV大的地方压实质量未必就好,反之亦然),给现场的实际控制带来 诸多不便,容易造成误判,这也是国际上许多国家放弃CMV这个指标的主要原因。到了2000年以后,随着技术的成熟,研究重点已转移到如何进行智能压实 的问题——压路机根据土体的变化进行自动调幅调频以优化压实。目前在连续压 实控制领域,把压路机具有被压材料特性而进行自动调节振动工艺参数的压实称 作“智能压实(IC)”,它是CCC技术与压路机械进一步结合的产物,是筑路技术 的“第三次革命”。

铁路路基施工方案

哈家咀段路基施工方案 一编制依据 1)依据本工程队的设计文件、招、投标文件的技术要求。 2)兰州至中川机场线路施工设计图。 3)《铁路路基设计规范》TB10001 —2005、《铁路路基工程施工安全技术规程》TB10302 —2009、《铁路路基填筑工程连续压实控制技术规程》TB10108 —2011、《铁路路基工程施工质量验收标准》TB10751 —2010 。。 4)现场踏勘、调查工地周边环境条件所了解的情况和收集的信息。 5)国家法律、法规及甘肃省有关规定和当地民众的民俗风情。 二编制原则 1)遵守国家和甘肃省有关的法律、法规以及相关文件要求。 2)按照国家有关的法律法规要求,做好环保、水保等保护工 作。 3)认真做好施工调查研究,充分考虑当地自然环境和施工条件,进行施工方案比选,因地制宜的制定施工方案。 4)努力改进施工工艺,提高机械化施工水平,以求先进的施 5)先重点后一般,全面规划重点突破,强调施工组织设计的

科学性、实施性、可操作性、严密性和可靠性。 三编制范围 新建兰州至中川机场铁路项目哈家咀段路基DK40+500 / DK41+801.23 、DK42+471.60 ?DK42+753.30 段范围内的路基 工程。 四工程概况 本段路基工点位于兰州市永登县树坪镇,线路与机场高速及 201省道并行。DK40+500?DK41+801.23 段位于碱沟河谷阶地 地区,地形起伏较大,河谷切割较深,工程与河床平行,行走于 碱沟一级阶地上。DK42+471.60 ?DK42+753.30 段位于李麻沙 沟阶地区,该段谷地地形起伏较大,沟谷切割较深,河谷宽约100? 400m,高程1681?1796m。工程与沟床近平行,行走于李麻沙沟一阶级地上。 工点处涉及地层:第四系全新统冲积砂质黄土,黏质黄土、 细沙、中砂、砾砂、细圆砾土,第四系上更新统风积砂质黄土,

路基压实度的控制措施

路基压实度的控制措施 路基是道路的主体和路面的基础,公路路基的好坏也就决定了这条公路寿命的长短,根据以往的施工经验路基压实度达不到要求是造成路面局部沉陷或过早破坏的主要原因之一。因此对路基进行高标准的压实,做好路基压实度的控制就显得尤其重要,是保证路基应有强度和稳定性的有效的技术措施,但压实度也是现场施工过程中较难达到的指标,因为实际施工时影响因素较多,从现场施工情况及路基检测分析,影响路基压实度的因素有地基或下承层强度、气候、土料的选择、土的含水量、松铺厚度、压实机械、碾压遍数等。 1、地基或下承层的强度 在填筑路堤时,如地基强度不够,路堤的第一层是很难达到较高压实度的。因此在填筑路堤之前,必须先将原地面清表后进行碾压,使其达到要求的密实度后再填筑路堤。如地基本身比较湿软,直接在上面填筑路堤,往往会很困难,路堤的第1层,甚至第2层也无法上重型压路机进行碾压,如用重型压路机进行碾压时,土层就会发生“弹簧”现象,碾压遍数愈多,“弹簧”现象愈严重。在这种情况下,应该先采取有效的地基处理措施,或者先在地基上用砂、砂砾、砂砾土、钢碴或其他类似的材料填筑1~3层,进行适当碾压后,再进行填土。下承层强度的高低,对所需压实层的密实度也有明显的影响。如铺筑在土基上的同一种级配集料,用相同的压实机械和方法碾压时,土基强度高,集料的密实度就大;土基强度低,集料的密实度就小。 2、施工季节的选择

施工季节的选择对填方碾压有很大的影响,下雨的天气能很快使已压实的填方路基表面变得泥泞,特别是粉质土壤更加严重。故应根据不同地区气候特点选择合理的施工季节。一般要求选择气温适度、降水较少的季节进行路基施工,方能对路基填土含水量及路基压实度实行有效的控制。 3、土料的选择 在路基施工中,如果土质不良,即使松铺厚度适中,碾压合乎规范,仍然很难达到压实度标准。所以,一切路基填土都必须经过试验,就填筑路堤而言,最合适的土是砂砾土、砾土及亚砂土。这些土的内摩阻力小,粘结力小,渗水性强,其合理含水量空间较大,容易压实,又有足够的强度、稳定性,遇水不致过分软化。用这些土作填料不易引起路基沉陷。另外,施工中应注意填料粒径不能超标,若填料粒径超标过多过大,就易形成骨架作用,使压路机压不实,出现空隙,这样就达不到要求的干密度。粉土质土和细砂土的土质稍差些,这些低粘性土,也比较容易压实,在饱和状态下,这些土容易变成流塑状并失去承载能力。用这种土填筑路堤的边坡,在良好的水文地质条件下是足够稳定的。但是若不作与之配套的防护工程,是容易受水冲刷的。亚粘土和重亚粘土的压实比较难,但与粉质土相比较它们仍是比较有利的土,这些土具有较高的粘性与不透水性。最难以压实的土是粘土,在潮湿状态,这种土不稳定,塑性较差并容易发生剪切,在干燥状态下,很容易丧失水分,使土体龟裂。其特点是液限大,最佳含水量大,而最大干密度小,路基碾压不实,易形成“软簧”现象,这种土一般

路基连续压实施工方案

目录 1.编制依据 (1) 2.使用目的 (1) 3.施工程序 (1) 4.施工准备 (2) 4.1施工测量和放样 (2) 4.2试验段实验 (3) 5. 施工工艺 (3) 5.1设备安装 (3) 5.2 设备检查 (4) 5.3 相关性校验 (5) 5.4 过程控制 (6) 5.5 质量检测 (8) 6.质量检测 (10) 6.1质量控制要点 (10) 6.2 质量控制方法 (10) 6.3 质量检验 (10)

路基连续压实施工方案 1.编制依据 (1)新建鲁南高铁招标文件、合同、设计图纸; (2)中国铁路总公司《铁路工程施工组织设计规范》(Q/CR-9004-2015); (3)《高速铁路路基工程施工技术规程》(Q/CR9602-2015); (4)《高速铁路路基工程施工质量验收标准》(TB 10751-2010); (5)《铁路路基填筑工程连续压实控制技术规程》(Q/CR9210-2015)(6)总体施工组织设计及现场实地调查情况; (7)本企业技术力量、设备状况、管理水平、施工经验; (8)同类铁路工程项目施工经验、施工工法、科技成果。 2.使用目的 目前路基压实质量控制指标主要有: K (压实系数)K30 (地基系数)EVD (动态变形模量) 这些指标主要依靠现场“抽样”试验获得,只能检测局部点的压实程度并且是事后检测, 费时费力.采用实时的、能够对整个碾压面压实质量进行全面监控和检测的连续压实控制技术是提高路基填筑质量的一条崭 新途径。 3.施工程序 高速铁路路基填筑工程连续压实控制按“设备检查、相关性校验、过程控制、质量检测”四个阶段进行。

如何控制地基压实度

我们知道,土是由固体颗粒、液态自由水和气体组成的三相体,以土为骨架,水、气占据一定空洞充填孔隙,通常,对土进行打击和碾压使大小土块、土颗粒重新排列和靠近,使小颗粒充填大颗粒之间的孔隙,而部分水和空气将排出,产生这种现象的结果是单位体积内土颗粒增加。由于土颗粒比重大于水、气而使单位体积的密度增大,减小孔隙率,称之为压实。工程上衡量路基路面的压实程度是工地实际达到干密度与室内标准击实试验得到最大干密度的比值百分数为压实度,提高压实质量是尽可能增大单位体积内固体颗粒的比例,即增大干密度,也增大了路基承载力,不易产生弹簧,所以,路基压实中,应尽量采取大吨位的压实机械,提高压实度。三凯九标内的填筑土多为强风化岩,裂隙发育强烈,中间多为沉积粘土,液限偏高,颗粒组成为大小不均匀的风化岩颗粒,中粒偏多,但易碾碎,通过对九标的土质进行分析,发现该种土质的液限为43%~48%之间,而塑限为30%左右,最佳含水量为12~18%之间,最大干密度在1.8~2.0之间,而土的容量在2.6左右,这表明土中砾石含量偏高,不易吸水而表明液塑限特征的液限在43~48%、塑限为30%左右的土最佳含水量最小应为20%以上,但实际最佳含水量在12~18%之间,原状土的天然含水量W>20%但由于试验室没有碾压设备,原状土中颗粒不易破碎,工地上用18吨以上压路机碾压,土中有了大量小于0.5mm的风化岩颗粒,不是单纯的粘土颗粒,故液限急剧下降,减小到WL为小于35%,WP为小于20,由于W>WP,也就是说天然含水量超过塑限,从而使粘土粒成塑性状态。实际中极易产生弹簧现象。假如填方下一层含水量偏高,由于上一层的压实作用使上下层之间产生毛细现象,从当前层显得含水量偏高,又造成压实不够,从而影响多层压实质量。针对这种情况,所以我们在实际工作中应注意观察土质的变化,严格控制含水量而随时采取措施。 如何指导现场施工 试验研究是为施工生产服务的,在工程施工过程中,如何利用土的各种性质,针对不同的材料正确控制,运用不同方法以提高压实质量以及压实效率是我的最终目的。签于三凯九标土质的特殊,表面看填料是石加土,其中石占80%以上,颗粒分析后中粒偏多,中细粒土偏少,大于20cm粒径的风化岩占60%以上具有一定的强度。但这种强风化岩极易破碎,遇水容易变成破碎体。经压实机械压实后,基本上变成了土,路基大部分又处于半挖半填地段,控制不好极易形成滑动楔体。试验证明在填土厚度大于50cm下层风化岩很难破碎,形成很多空隙,压实度很难达到,这对路基质量极为不利。容易产生不均匀沉降,造成路面开裂.假如路基排水不好易形成山体滑坡,损坏路基,在小于20cm松铺厚度就不易达到平整度要求,细粒粘土形成表面光滑,坑洼不平压实不均匀,这种填料的渗透性比较强,水往下渗,容易造成路基沉降,影响路堤质量。针对这种情况,考虑使用大吨位压实机械使岩体破碎级配发生改变,变得更均匀一些,待空隙中的空气和水尽可能排出,土的颗粒数充满空气和水所占空隙,达到理想压实效果。严格控制含水量,由于边坡外为森林覆盖,岩层破碎容易渗水,建议高边坡下设置盲沟、渗沟,将水排出路基外,这样避免渗水对路基的浸泡影响路堤质量,另取土场应注意及时排水,防止积水下渗,减小土的含水量,由于土的含水量偏高,造成弹簧的情况下,路基的强度将不够,这样填土势必引起上一层的填土,由于压实机械作用下沉降抵消压实功,弹簧部分将向四周扩散,将影响大面积的填土质量,所以路基压实效果务必重视排水。 前面已经说明,对于偏湿土我们可以采取晾晒方法,使之接近最佳含水量再碾压可取得很好的压实效果,但对于过湿土,在考虑进度的条件下,可以加一些带有细颗粒土的弱风化岩灰进行拌和,从而降低含水量接近于最佳含水量提高干密度,对于偏干土我们可以采取增加压路机吨位或增加碾压遍数的办法来进行压实,压实机械增大吨位和增加碾压遍数相当于增加了土的压实功,尽量使土中的空气排出,增加土的颗粒成份,增大干密度。对于土很干的时候可考虑洒水碾压来达到最好压实效果。

路基连续压实作业指导书

路基连续压实作业指导书-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

新建黔江至张家界至常德铁路路基工程 编号:QZCLZ- 001 路基连续压实施工作业指导书 单位:中铁三局集团黔张常铁路项目经理部 编制: 审核: 批准: 2015年05月08日发布 2015年06月1日实施

目录 1.适用范围 (1) 2.作业准备 (1) 3.技术概述 (2) 4.技术要求 (7) 5.施工程序与工艺流程 (7) 6.施工要求 (8) 7.劳动组织 (8) 8.材料要求 (8) 9.设备机具配置 (9) 10.质量控制及检验 (9) 11.安全及环保要求 (11)

新建黔张常铁路路基工程 路基连续压实作业指导书 1.适用范围 本作业指导书适用于黔张常铁路10标路基连续压实施工。 2.施工准备 2.1 内业技术准备 在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前技术培训,考核合格后持证上岗。 2.2施工现场准备 2.2.1 进行测量放线 1) 复测线路中线、水准必须与相邻工段的线路中线、水准贯通闭合。 2) 每次测量结果必须进行复核。测量的原始记录应完整地保存至竣工测量完毕之后。 3) 对重要的中线控制桩设置护桩,并做好记录。 4) 设立路基边桩。根据复测后的中线、水准按横断面施工设计图及加宽值测设,在地形、地质变化处应加设边桩。路基边桩应随填层不断移动。 2.2.2 试验段试验。 开工前根据填料种类和压实机械,选择30-50m长路堤做填筑压实试验,以确定合理的铺填厚度、压实遍数和CMV值。

ENH路基连续压实智能监测系统

路基连续压实智能监测系统 ENH路基连续压实智能监测系统 产品介绍 ENH路基连续压实智能监测系统,全方位数字化施工,实现远程监控、机群协同、碾压过程实时显示正在碾压轮迹以及已经碾压轮迹的通过率,有效防止过压和欠压,实现对施工段的最优碾压;施工过程的全过程控制,与施工同步,不干扰施工,具有高效性;人机界面友好,操作简单,具有易操作性。 传统路基压实度检测方法的分析 压实度是路基施工质量主要检测的关键指标之一,路基压实质量不达标,会造成的路基沉降、路面断裂等严重的质量问题。在公路工程施工中常用的有灌砂法及核子密度仪测定法和环刀法等。而以上方法的应用具有相当的局限性,操作复杂、检测结果不具有代表性更加剧了这种局限性。同时因为以上方法普遍具有相当大的破坏性,因此需要一种无损、快速、准确的检测方法是目前急需解决的问题之一。 路基连续压实度智能监测系统 RQS中所提供的路基智能压实传感器,是ENH通过多年实际项目经验,结合国内多家压路机械生产厂商设备特点,研发的一款安装在压路机振动钢轮上的实时压实度采集设备。通过内置传感器对压路机

压实数据、以及压实材料反馈力波形图的采集分析,传输到系统云中心与相应的实验数据模型进行对比,判断当前压实材料的压实度是否合格。全程做到无损、准确、快速的检测。 系统特点及优势 1、实时反馈压实参数,为操作员提供最真实的压实信息和精确指导,从而提高压实质量。 2、压实导航功能将指导操作员进行最优压实增加压实效率,降低压实油耗。 3、根据压实状态图,快速定位碾压薄弱区域,确定位置,确保检测的科学性、可靠性,提高监测测效率; 4、碾压过程实时显示正在碾压轮迹以及已经碾压轮迹的通过率,有效防止过压和欠压,实现对施工段的最优碾压; 5、施工过程的全过程控制,与施工同步,不干扰施工,具有高效性;人机界面友好,操作简单,具有易操作性; 6、提供压路机远程监测功能,为机主提供查看施工过程的另一个有效的渠道。 产品功能界面

路基压实度控制技术

路基压实度控制技术 在高等级公路施工中,路基压实情况经常影响公路施工质量,如何达到施工压实标准,克服由于压实原因带来的路基不均匀沉降,是公路工程施工中急待解决的重要问题。本文就影响路基压实的因素和控制方法进行分析和讨论。 一、影响公路施工压实度的分析 一般来讲影响压实的因素主要有以下几种。 1.含水量对压实过程的影响 压实的机理是通过锤击或碾压克服土颗粒间的内摩擦力和黏结力,使土颗粒产生位移并互相靠近。土的内摩阻力和粘结力是随着密实度而增加的,土的含水量小时,土颗粒间的内摩阻力大,压实到一定程度后,某一压实力不能克服土颗粒间的抗力,压实所得的干密度小。当含水量增加时,水在土颗粒间起润滑作用,使土的内摩阻力减小,因此,同样的压实功可以得到较大的干密度。在这个过程中,单位土体积中空气的体积逐渐减小,而固体体积和水的体积逐渐增加,当土的含水量达到某一限度后,虽然内摩阻力还在减小,但单位土体中空气的体积已压缩到最小限度,而水的体积不断增加,由于水是不可压缩的,因此在同一压实功下,土的干密度反而逐渐减小,土只有在某一含水量下,才能压实到最大干密度,这个含水量称为最佳含水量。因此,在现场施工中,细粒土以及天然沙砾土、级配碎石、石灰稳定土和水泥稳定土等多种路基材料都有在一定的含水量条件下才能压实到

最大的干密度。若含水量小,要想达到较大的干密度非常困难;若含水量过大,不但不能得到较大的干密度,而且还会出现“弹簧现象”。对于特别干旱或潮湿的地区,更要注意这一点。 2.碾压厚度对压实的影响 压实厚度对压实效果具有明显影响。相同压实条件下(土质、湿度与功能不变),由实测土层不同深度的密实度或压实度得知,密实度随深度呈递减,表层5cm最高。不同压实工具的有效压实深度有所差异,根据压实工具类型、土质及土基压实的基本要求,路基分层压实的厚度有具体规定数值。通过大量的实践证明,碾压应有适当的厚度,碾压层过厚,非但下层的压实度达不到要求,而且碾压层上层的压实度也要受到不利的影响。同时,碾压的厚度随所用的压路机的类型而变。 3.碾压遍数对压实的影响 压实功能对压实效果的影响,是除含水量而外的另一重要因素。压实功能与压实效果曲线表明:同一种土的最佳含水量随功能的增大而减小,最大干容重则随功能的增大而提高;在相同含水量的条件下,功能越高,土基密实度越高。据此规律,工程实践中可以增加压实功能,以提高路基强度或降低最佳含水量。但必须指出,用增加压实功能的办法提高土基强度的效果有一定限度,功能增加到一定限度以上,效果提高愈为缓慢。 4.碾压方式对压实质量的影响 路基的施工技术规范都要求碾压时必须“先轻后重,先慢后快,先边缘

关于公路路基路面压实度评定方法

公路路基路面压实度评定方法 压实度是施工质量控制的一个重要质量指标,压实度不够成为高速公路发生早期损坏原因之一。 1、现场测定(或计算)基层(或底基层)、砂石路面及路基土的各种材料的施工压实度常用挖坑灌砂法、环刀法等。施工压实度按下式计算: K=ρd ρc ×100 (1) 式中:K——测定地点的施工压实度,%; ρd——试样的干密度,g cm3 ?; ρc——由击实试验得到的试样的最大干密度,g cm3 ?。 2、对沥青路面的压实度,新的施工规范已经明确地转变对压实度的观念,即由原来采用的钻孔密度控制压实度转变为重点以压实工艺为主,钻孔作为辅助性检验。钻孔取样应在路面完全冷却后进行,对普通沥青路面通常在第二天取样,对改性沥青及SMA路面宜在第三天以后取样。沥青面层的压实度按下式计算: K=D D0 ×100 (2) 式中:K—沥青层某一测定部位的压实度,%; D—由试验测定的压实沥青混合料试件实际密度,g cm3 ?; D0—沥青混合料的标准密度,g cm3 ?。 沥青路面的压实度,采取重点控制碾压工艺过程,适度钻孔抽检压实度校核的方法。 对于碾压工艺的控制包括压路机的配置(台数、吨位及机型)、排列和碾压方式、压路机与摊铺机的距离、碾压温度、碾压速度、碾压路段长度等。 钻孔作为压实度辅助性检验,可以根据需要选择实验室标准密度、最大理论密度、试验路密度中的1~2中作为钻孔法检验评定的标准密度计算压实度。施工中采用核子密度仪等无损检测设备进行压实度控制时,宜以试验路密度作为标准密度。 施工及验收过程中的压实度不得采用配合比设计时的标准密度,应按如下方法逐日检测确定标准密度: (1)以实验室密度作为标准密度,即沥青拌合厂每天取样1~2次实测的马歇尔试件密度,取平均值作为该批混合料铺筑路段压实度的标准密度。其试件成型温度与路面复压温度

土质填方路基施工质量的控制措施

土质填方路基施工质量的控制措施 路基是公路的重要组成部分,是路面的基础,与路面共同承受交通荷载的作用,是按路线位置和一定技术要求修筑的带状构物。路基施工质量的好坏将直接影响到路面的稳定性和整条路线的使用品质。对土质填方路基来说,影响施工质量的因素主要由土质、含水量、压实功能(如机械性能、压实遍数及速度、土层厚度)及压实时外界自然和人为的其他因素等。本文结合作者多年施工经验,以连徐高速公路CA标 K91+240~K96+045.9段为例对土质填方路基施工质量的控制进行一些粗浅的探讨。路基填料压实度标准对质量的影响在路基压实过程中,随着碾压遍数的增加,土体空隙率V 逐渐减小,干密度γ逐渐增大,压实层的表面高程h 逐渐变小是一种客观规律,对每一种压路机而言,均存在碾压遍数N 和土体V、h、γ间的相关关系,而且当碾压遍数超过一定值N' 后,上述关系均趋于稳定(图1)。这种规律表明,V、h、γ三种指标均可作为压实度检测的依据。N’ N 图1 碾压遍数N 、空隙率V、干密度γ与压实高程h 关系图我国现行路基压实,采用了干密度比的压实检测方法。即以实测压实土的干密度γ和标准击实试验(重锤或轻锤)得到的最大干密度γ0之比,作为压实度K的检测标准,K=γ/γ0。高速公路采用重型击实试验方法,对不同深度路基要求达到不同的压实标准,即 0~80cm,K=0.95 80~150cm,K=0.93 >150cm,K=0.90 由于该段路基最高填土在7.0m以上,最低在3.0m 左右,均为高填方路基,工程量较大,总计需土方量67万㎡,项目所在地区为垅岗洼地、相间分布,地势起伏平缓的鲁南低山丘陵的剥蚀残丘和黄海平原过渡地带,地下水位一般埋深在1.5~3.0m,并随汛期发生变化,不但地下水位相对较高,距地表1.5~3.5m深不是弱风化岩就是黄砂或蛾礓石,取土深度受限制,造成取土场分布较散,同一个断面不同深度范围内土质的液限和塑性指数又不同,如果对土质不仔细进行分析或者在检测压实度时都采用同一个干密度,就会出现压实遍数远远的超过,压实度达不到;或者压实遍数还没有到,轮迹较明显,压实度超过100%。前者,浪费了机械台班不说,还无法报验,影响了施工进度,后者给工程带来质量隐患。针对这种情况,要对每个取土场不同土层取样进行土壤分析,通过试验确定不同类型土质的最大干密度和最佳含水量。表1 同一断面不同层次最大干密度层数编号塑性指数最大干密度(KN/MЗ)最佳含水量(%)1 25.1 1.827 14.63 2 16.3 1.90 11.98 3 12.9 1.95 12.4 每个取土场同一断面不同类型的土质根据土壤厚度按一定比例,掺拌均匀后取样分析,再通过击实确定出它们的最大干密度和最佳含水量,试验结果如下:表2 各取土场最大干密度取土场编号塑性指数最佳干密度(KN/MЗ)最佳含水量(%)K91+700 13.9 1.971 13.6 K93+200 17.2 1.861 14.5 K95+800 19.4 1.91 14.6 K96+100 19.1 1.905 13.7 K97+200 20.2 1.932 12.8 在实际施工中,分层取土多数是采用用挖掘机在预定的深度范围内不分层采集装车。个别时候,不可避免出现掺拌不均匀的情况,根据试验标准,大多数压实度均合格,个别路段压路机反复碾压,压实度仍不够(含水量符合要求)这就得对该段土样进行分析。因此,在现场测定压实度时,必须核准该层填土的土源,施工时特别注意不同土质不可混合到同一填筑层上,否则影响了压实度检测,出现不必要的麻烦。目前,造成路基沉降变形的原因很多,现行路基规范的压实检测方法和标准不当也是重要原因之一。工程实践表明,采用现行压实度检测方法和标准,除上述施工中普遍存在的问题外,下面所述的几个方面,都对施工质量存在不同程度的影响。1、执行现行标准,不能保证高速公路在使用中不产生沉降、变形。2、路基设计强度指标E0和土基压实施工控制指标压实度K间,没有直接的关系。3、路基填土越高,下层土体所受自重应力越大,但土基压实度要求却越低(K=0.90),违背了路基受力和稳定性的客观规律。4、25~50t振动压路机普遍用于路基压实,与现行击实试验方法不相匹配。 5、路基填料允许含有10~15cm 粒径石料,但土夹石则无法进行标准击实试验,施工中压实度检测也有困难。 6、粘性土击实试验和路基压实常有“反弹”现象,增大压实功CBR 值反而可能降低。 7、土质多变路段,室内击实试验周期较长,难以及时指导施工。事先预做试验,则在γ0选值上存在人为因素。路基施工过程质量控制◆施工方法连徐高速公路CA标K91+240~K96+045.9段路基土方施工方法主要是:用挖掘机配合自卸汽车运输土方,用推土机配合平地机找平,洒水车配合压路机碾压。主要施工流程图如下:图1 原地面施工流程示意图图2 土方铺筑压实工序流程示意图◆确定石灰用量在路基施工中,素土填

相关文档
相关文档 最新文档