文档库 最新最全的文档下载
当前位置:文档库 › 动力型磷酸铁锂电池的温度特性_李哲

动力型磷酸铁锂电池的温度特性_李哲

动力型磷酸铁锂电池的温度特性_李哲
动力型磷酸铁锂电池的温度特性_李哲

第47卷第18期2011年9月

机械工程学报

JOURNAL OF MECHANICAL ENGINEERING

Vol.47 No.18

Sep. 2011

DOI:10.3901/JME.2011.18.115

动力型磷酸铁锂电池的温度特性*

李哲韩雪冰卢兰光欧阳明高

(清华大学汽车安全与节能国家重点实验室北京 100084)

摘要:动力型磷酸铁锂电池的特性与环境温度紧密相关。电池的容量特性、内阻数值和荷电状态—开路电压曲线是反映电池基本性能的重要特性指标,也是参与电池管理系统设计的重要参数。主要进行不同环境温度下电池的以上各性能试验,研究在不同的环境温度下电池的容量、内阻和开路电压的变化规律。动力型磷酸铁锂电池的容量在低温下迅速降低,在高温下迅速上升,高温下的容量变化速度小于低温;随温度上升,充电和放电过程的欧姆内阻、极化内阻均下降,温度不同时电池的欧姆内阻变化率高于极化内阻变化率,低温下欧姆内阻的变化率大于高温下的变化率;同时,低温下的荷电状态—开路电压曲线低于高温下的曲线,但总体上,曲线受温度的影响并不显著。

关键词:磷酸铁锂电池温度容量内阻开路电压

中图分类号:U464

Temperature Characteristics of Power LiFePO4 Batteries

LI Zhe HAN Xuebing LU Languang OUYANG Minggao

(State Key Laboratory of Automotive Energy and Safety, Tsinghua University, Beijing 100084) Abstract:The characteristics of power LiFePO4 batteries are closely connected to ambient temperature. The capacity characteristic, resistance and state of charge-open circuit voltage (SOC-OCV) curve are important parameters to represent the performance of power batteries and to determine battery management system (BMS) design. The experiments in different ambient temperatures are carried out and the laws between temperature and capacity, resistance and OCV are studied. The capacity drops sharply under low temperature, and increases with a relatively slower rate than under low temperature when the temperature goes up. Ohmic and polarization resistances during charge and discharge process decrease when the temperature rises, and the change rate of ohmic resistance is higher than the polarization resistance, moreover, the change of ohmic resistance under low temperature is more significant than under high temperature. With the decrease of temperature, the SOC-OCV curve moves down, but generally, the curve is affected only slightly by the change of temperature.

Key words:Power LiFePO4battery Ambient temperature Capacity Resistance Open circuit voltage(OCV)

0 前言

电池所处的温度受到许多因素的影响,如环境温度、电池本身的热力学参数以及电池组的装配和热管理方法等[1-5]。同时,电池的容量特性、内阻数值和开路电压曲线是反映电池基本性能的重要指标,也是参与电池管理系统设计的重要参数:电池容量大小的变化规律[6]影响电池的寿命管理和荷电状态估算。电池内阻的数值影响动力电池的功率特

* 台达电力电子科教发展计划重点资助项目(20093000329)。20100901收到初稿,20110320收到修改稿 性,如式(1)、(2)所示,同时也影响电池热管理系统

对电池产热量的分析,如式(3)所示。

动力电池最大电流与功率分别为

min

max

t

U U

I

R

?

= (1)

max min max

P U I

= (2) 式中,I max为电池的最大放电电流,U为电池的开

路电压,U min为电池的放电截止电压,R t为电池在

放电过程中的总内阻,P max为电池的最大放电功率。

电池的产热情况与电流和电池内阻有关,如式

(3)所示

机 械 工 程 学 报 第47卷第18期

116

2g t Q I R = (3)

式中,Q g 为电池的产热率,I 为流经电池的电流,

R t 为电池的总内阻。

而电池的开路电压(Open circuit voltage ,OCV)曲线可以用于电池荷电状态(State of charge ,SOC)的校准,图1是某磷酸铁锂电池的SOC-OCV 曲线,可以利用这一曲线用OCV 的数值对SOC 进行校 正[7]

,该校正对提高电池SOC 估算的准确性有着重要意义。因此,了解以上三个电池特性在不同环境温度下的改变规律,可以更好地了解电池性能、设计管理系统[8-9]。

图1 某磷酸铁锂电池的SOC-OCV 曲线

1 试验对象

以 3.2 V/11 A ·h 磷酸铁锂动力电池单体 (天津产)为试验对象,采用DIGATRON 牌EVT500-500-80 kw-IGBT 电池试验台(德国产)和某国产高低温试验箱,分别进行了不同环境温度下电

池容量、电池充放电内阻和电池开路电压曲线的 测试。 2 环境温度对电池容量的影响

将充满电的电池分别置于不同的环境温度中放电,讨论放出的容量与环境温度的关系。充电方法为,将电池以1/3 C 恒流充电至电压到达3.65 V ,改为恒压充电直至电流下降到1 A ,停止充电。放电方法为,在环境温度中静置1 h ,再以1/3 C 恒流放电直到电压下降到2 V 为止,计算放出的容量。

将同一型号的6块磷酸铁锂电池分别置于 -40 ℃、?20 ℃、0 ℃、30 ℃、50 ℃、60 ℃下进行放电过程,电池放出的容量如图2所示。

图2 LiFePO 4锂离子电池容量随环境温度的变化

可知,低温下,电池容量衰减得极快,而在常温左右,容量随着温度升高而增长,其速率相对低温下较慢。-40 ℃时,电池的容量仅为标称值的1/3,而在0 ℃到60 ℃,电池的容量从标称容量的80%升至110%。

将电池的容量变化与温度进行拟合,得到 2 5.06974exp(/55.90333)14.037290.99784C R θ=?×?+???=?? 式中,C 是电池容量,θ是温度,2R 是该拟合的相关系数。

3 环境温度对电池内阻的影响

测量电池内阻采用混合脉冲功率特性阶跃 法[10],试验步骤如下。

(1) 将电池放电至空。

(2) 静置1 h ,测量开路电压OCV ,记录数据

(OCV 数据供步骤(4)中使用,下同)。 (3) 用1/3 C(即3.67 A)充电电流为电池充电,调整SOC 值至0.025,在这个过程中,记录电池充电前10 s 中的电池电压变化,通过这些电压值和式

(4)~(7),计算得到电池在SOC 值为0状态下的充电内阻,包括欧姆内阻和总内阻的数值。

(4) 用1/3 C(即3.67 A)充电电流将电池充电,调整SOC 值分别至0.05、0.075、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1.0附近,重复第(2)、(3)步骤,即得到不同SOC 情况下电池的充电内阻和开路电压OCV 。另外,在SOC 较大时,尤其是在 10 ℃这一较低温度下,电池的内阻非常大,此时需要将电池的充电电流降至1/5 C ,以保证能够充入电量并保护电池安全。

(5) 完成充电电阻测量后,用1/3 C(即3.67 A)电流放电,分别调整电池的SOC 值至0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2、0.1、0.075、0.05、0.025、0,同(2)、(3)步骤中方法,即得到不同SOC 情况下,

2011年9月 李 哲等:动力型磷酸铁锂电池的温度特性

117

电池的放电内阻和开路电压OCV 。另外,在SOC 较小时,尤其是在10 ℃这一较低温度下,电池的内阻非常大,需要将电池的放电电流降至1/5 C ,以保证必需的放电持续时间和电池安全。这一步骤的示意图如图3、4所示。

图3 电池的充电内阻测量方法示意图

图4 电池的放电内阻测量方法示意图

电池的充电欧姆内阻c

o R 、充电总内阻c t R 、放电欧姆内阻d

o

R 和放电总内阻d t R 的计算公式分 别为

c

c 21

o

c c U U U R I I Δ?==Δ (4)

d d 54

o d d U U U R I I Δ?=

=Δ (5)

c c 31

t c c U U U R I I Δ?=

=Δ (6)

64

U U U R I I ?Δ==Δd

d t

d

d (7)

式中,c U Δ、d U Δ为充电和放电阶跃输入前后电池

的端电压变化量,c I Δ、d I Δ为充电和放电阶跃输入前后电池流经的电流变化量,U 1、U 2、U 3、U 4、U 5、

U 6分别为点1、2、3、4、5、6对应的电池端电压,

c I 、

d I 为电池的充电和放电电流。

获得电池的欧姆内阻和总内阻后,通过总内阻减去欧姆内阻得到电池的极化内阻,在本文中,极化内阻指浓差极化内阻和电化学极化内阻的加和。

在10 ℃,25 ℃和40 ℃三种不同温度下分别测算电池充放电的欧姆内阻、极化内阻和总内阻,测算结果如图5~10所示。

图5 三种温度下各SOC 值对应的电池充电欧姆内阻曲线

图6 三种温度下各SOC 值对应的电池放电欧姆内阻曲线

图7 三种温度下各SOC 值对应的电池充电极化内阻曲线

机 械 工 程 学 报 第47卷第18期

118

图8 三种温度下各SOC 值对应的电池放电极化内阻曲线

图9 三种温度下各SOC 值对应的电池充电总内阻曲线

图10 三种温度下各SOC 值对应的电池放电总内阻曲线

(1) 在较宽的SOC 区间内,如SOC 值处于0.3~1.0时,同一温度下电池的内阻基本上不变,无论是欧姆内阻、极化内阻还是总内阻。而在SOC 值较低的情况下,如SOC 值小于0.1这一区间,电池的内阻随着SOC 的降低而急剧增加,同时,极化内阻的上升速率远大于欧姆内阻。

(2) 随着温度的降低,电池充放电的欧姆内阻、极化内阻和总内阻均增加。这是因为,上述测试方法得到的是电池的直流内阻,该直流内阻主要由电池极板、极柱等金属连接件和电解液的欧姆内阻共同组成。本试验中使用的电解液为锂盐电解质和有机溶剂,该电解液主要依靠电解质的离子导电,因此,在一定的温度范围内,温度降低,离子迁移速度降低,电解液的欧姆内阻增大,由于电解液的内

阻是电池欧姆内阻的主要来源,因此,温度降低,电池的欧姆内阻增大。同时,温度降低,离子移动速度减慢,化学反应速度降低,浓差极化和电化学极化增大,这使得极化内阻也增大。

另外,在SOC 值处于较宽的中后段区间内时,不同的温度下的电池极化内阻差距较小,而不同温度下的电池欧姆内阻则相差较大,即欧姆内阻比极化内阻对于环境温度更加敏感。

(3) 由充放电欧姆内阻曲线可以看出,25 ℃虽然是10 ℃和40 ℃的中位温度,但是25 ℃曲线明显地更倾向于40 ℃曲线。也就是说,相比高温,电池欧姆内阻的变化对于低温更加敏感,变化的速度在低温下更大。

(4) 温度越低,电池的充放电欧姆内阻随SOC 值减小而上升的速率和幅度均越大。

(5) 随着SOC 值的降低,10 ℃下电池的充放电极化内阻的上升要早于25 ℃和40 ℃曲线的上升。10 ℃环境温度下,电池的极化内阻在SOC 值小于0.5时就表现出上升迹象,而25 ℃和40 ℃曲线上,直到SOC 值小于0.1才能观测到极化内阻的显著上升现象。即温度越低,随着SOC 值的降低,其极化内阻上升得更早,这一现象与低温下浓差扩散速度的减慢有关。另外,这一规律对于欧姆内阻并不明显。

4 环境温度对电池开路电压的影响

开路电压OCV 和SOC 的关系图是反应电池基本性能的重要曲线,不同种类的电池该条曲线的形态也各不相同。在同一温度同样的试验规则下,SOC-OCV 曲线的可重复性非常好,因此该曲线也是用于校正SOC 估算误差的一种方法。研究SOC-OCV 曲线在不同环境温度下的变化具有重要意义。

SOC-OCV 曲线的试验步骤和第3节中一致,两套试验可以结合起来,同时进行。

图11和图12分别为10 ℃、25 ℃和40 ℃下电池充电和放电过程中测得的SOC-OCV 曲线。

图11 三种温度下电池的充电SOC-OCV 曲线

2011年9月李哲等:动力型磷酸铁锂电池的温度特性

119

图12 三种温度下电池的放电SOC-OCV曲线

比较各温度下充电过程与放电过程的SOC-OCV曲线,如图13所示。

图13 三种温度下充放电过程SOC-OCV曲线比较

(1) 磷酸铁锂电池的开路电压随着电池SOC的增加而单调增加。但是SOC-OCV曲线在很宽广的中段SOC范围内上升缓慢,曲线非常平坦,在SOC 值为0.3~1.0的区间里,电池的开路电压OCV随着SOC值的变化而变化很小;而磷酸铁锂电池在SOC值小于0.3的范围内,电池的开路电压OCV 随着SOC值的降低下降得非常快。

(2) 如图13所示,充电和放电过程的SOC-OCV 曲线存在差异,放电得到的曲线总是略低于充电得到的SOC-OCV曲线。这是由于,充电到某一SOC 数值开始静置时,电压持续降低至逐渐趋近电池的OCV真值,而放电到同一SOC数值开始静置时,电压持续升高至逐渐趋于电池的同一OCV真值。由于这一趋近过程理论上所需时间非常长,即使在测量OCV时已静置相当长时间,放电曲线上得到的OCV依然小于充电曲线上得到的OCV。

(3) 不同温度下得到的SOC-OCV曲线不同,一般地,温度越低,曲线越低,但在某些SOC位置上也存在例外。充分静置后获得的OCV数据基本不受极化电压的影响,其数值可由Nernst方程得到,这一方程指出,OCV与电池的标准电动势、电池热力学温度和反应物产物量的浓度积有关,由于方程中的温度以热力学温度计算,因此,在10~40℃的温度范围内,其OCV的相对差异很小。观察图11和图12中SOC值大于0.1以后的曲线部分,可以发现,25 ℃和40 ℃曲线十分接近,但是10 ℃曲线较以上两者偏低,即低温下OCV数值略偏低,这一偏离程度和温度不是线性关系,温度越低偏离的速率越快。

5 结论

本文考察了磷酸铁锂电池的容量、充放电内阻与开路电压和温度的关系,得到了不同温度下各SOC对应的充放电总内阻、欧姆内阻和开路电压规律。

(1) 环境温度对磷酸铁锂电池容量的影响很大,低温时容量迅速衰减,高温时容量迅速增大,但其变化速度小于低温时。

(2) 环境温度对于电池欧姆内阻和总内阻的影响很明显,一般地,温度越低内阻越大、欧姆内阻比极化内阻对温度更敏感、欧姆内阻的变化对低温更敏感。另外,温度越低,极化内阻在小SOC值段的上升更早。

(3) 电池的SOC-OCV曲线在不同温度下的差

机械工程学报第47卷第18期120

异较小,温度越低,SOC-OCV曲线越低,且低温下曲线的偏离速度更大。

对电池的容量的估算要考虑环境温度带来的影响;电池在低温和小SOC值条件下的内阻很大,大电流充放容易过度发热并损坏电池;磷酸铁锂电池在低温条件下的工作性能较差;SOC-OCV曲线在不同温度下的一致性较高。这些结论明确了磷酸铁锂电池的温度特性,对于设计电池热管理系统[11]具有重要意义。

参考文献

[1] DOUGHTY D H, BUTLER P C, JUNGST R G, et al.

Lithium battery thermal models[J]. Journal of Power

Sources, 2002, 110(2):357-363.

[2] PESARAN A A. Battery thermal models for hybrid

vehicle simulations[J]. Journal of Power Sources, 2002,

110(2):377-382.

[3] 秦明俊, 朱鹏, 于立军, 等. 镍氢电池温度场及其结构

影响的数值分析[J]. 机械工程学报, 2009, 45(1):

277-281.

QIN Mingjun, ZHU Peng, YU Lijun, et al. Numerical

analysis of the temperature field and structural influence

of nickel-hydrogen battery[J]. Journal of Mechanical

Engineering, 2009, 45(1):277-281.

[4] 潘宏斌, 赵家宏, 冯夏至, 等. 仿真分析技术在镍氢电

池模组结构优化设计中的应用[J]. 机械工程学报,

2005, 40(12):58-61.

PAN Hongbin, ZHAO Jiahong, FENG Xiazhi, et al. Use

of simulation technology on the construction design of

nickel hydride metal piles[J]. Chinese Journal of Mechanical Engineering, 2005, 40(12):58-61.

[5] 王青松, 孙金华, 姚晓林, 等. 锂离子电池中的热效应

[J]. 应用化学, 2006, 23(5):489-493.

WANG Qingsong, SUN Jinhua, YAO Xiaolin, et al.

Thermal behavior inside lithium-ion batteries[J]. Chinese

Journal of Applied Chemistry, 2006, 23(5):489-493.

[6] 李哲, 仝猛, 卢兰光, 等. 动力型铅酸电池及LiFePO4

锂离子电池的容量特性[J]. 电池, 2009, 39(1):30-32.

LI Zhe, TONG Meng, LU Languang, et al. Capacity

characteristics of power lead-acid and LiFePO4 Li-ion

batteries[J]. Battery Bimonthly, 2009, 39(1):30-32.

[7] 李哲, 卢兰光, 欧阳明高. 提高安时积分法估算电池

SOC精度的方法比较[J]. 清华大学学报, 2010, 50(8):

1294-1296, 1301.

LI Zhe, LU Languang, OUYANG Minggao. Comparison

of methods for improving SOC estimation accuracy

through an ampere-hour integration approach [J]. J.

Tsinghua Univ., 2010, 50(8):1294-1296, 1301.

[8] 范美强, 廖维林, 吴伯荣, 等. 电动车用MH-Ni电池温

度特性研究[J]. 电池工业, 2004, 9(6):287-289.

FAN Meiqiang, LIAO Weilin, WU Borong, et al.

Temperature characteristic of Ni-MH battery used in

EVs[J]. Chinese Battery Industry, 2004, 9(6):287-289.

[9] 唐明跃. 环境温度对VRLA电池性能的影响[J]. 电信

技术, 2002(5):38-40.

TANG Mingyue. The temperature effect on performance

of VRLA batteries [J]. Telecommunications Technology,

2002(5):38-40.

[10] HUNT G. Freedom car battery test manual for

power-assist hybrid electric vehicles[R]. Idaho Falls:

INEEL, 2003.

[11] 付正阳, 林成涛, 陈全世. 电动汽车电池组热管理系

统的关键技术[J]. 公路交通科技, 2005, 22(3):119-123.

FU Zhengyang, LIN Chengtao, CHEN Quanshi. Key

technologies of thermal management system for EV

battery packs [J]. Journal of Highway and Transportation

Research and Development, 2005, 22(3):119-123.

作者简介:李哲,女,1983年出生,博士。主要研究方向为动力电池测

试与管理。

E-mail:lizhe02@https://www.wendangku.net/doc/5b6904451.html,

韩雪冰,男,1987年出生。主要研究方向为动力电池耐久性。

E-mail:coldsnowicer@https://www.wendangku.net/doc/5b6904451.html,

卢兰光,男,1967年出生,高级工程师,博士。主要研究方向为燃料电池、动力电池测试与建模。

E-mail:lulg@https://www.wendangku.net/doc/5b6904451.html,

欧阳明高(通信作者),男,1958年出生,清华大学汽车安全与节能国家

重点实验室主任,教授,博士研究生导师。主要研究方向为节能与新能源汽车动力系统与控制。

E-mail:ouymg@https://www.wendangku.net/doc/5b6904451.html,

(完整版)磷酸铁锂动力电池特性及应用(精)

磷酸铁锂动力电池特性及应用 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。 一般锂离子电池的电解质是液体的,后来开发出固态及凝胶型聚合物电解质,则称这种锂离子电池为锂聚合物电池,其性能优于液体电解质的锂离子电池。 磷酸铁锂电池的全名应是磷酸铁锂锂离子电池,这名字太长,简称为磷酸铁锂电池。由于它的性能特别适于作动力方面的应用,则在名称中加入“动力”两字,即磷酸铁锂动力电池。也有人把它称为“锂铁(LiFe)动力电池”。 采用LiFePO4材料作正极的意义 目前用作锂离子电池的正极材料主要有:LiCoO2、LiMn2O4、LiNiO2及LiFePO4。这些组成电池正极材料的金属元素中,钴(Co)最贵,并且存储量不多,镍(Ni)、锰(Mn)较便宜,而铁(Fe)最便宜。正极材料的价格也与这些金属的价格行情一致。因此,采用 LiFePO4正极材料做成的锂离子电池应是最便宜的。它的另一个特点是对环境无污染。 作为可充电电池的要求是:容量高、输出电压高、良好的充放电循环性能、输出电压稳定、能大电流充放电、电化学稳定性能、使用中安全(不会因过充电、过放电及短路等操作不当而引起燃烧或爆炸)、工作温度范围宽、无毒或少毒、对环境无污染。采用LiFePO4作正极的磷酸铁锂电池在这些性能要求上都不错,特别在大放电率放电(5~10C放电)、放电电压平稳上、安全上(不燃烧、不爆炸)、寿命上(循环次数)、对环境无污染上,它是最好的,是目前最好的大电流输出动力电池。 LiFePO4电池的结构与工作原理 LiFePO4电池的内部结构如图1所示。左边是橄榄石结构的LiFePO4作为电池的正极,由铝箔与电池正极连接,中间是聚合物的隔膜,它把正极与负极隔开,但锂离子Li+可以通过而电子e-不能通过,右边是由碳(石墨)组成的电

磷酸铁锂电池测试方法

低温磷酸铁锂电池测试方法及检测标准 1.电池测试方法 1.1蓄电池充电 在20℃士5℃条件下,蓄电池以1I 3 (A)电流放电,至蓄电池电压达到2.0 V,静置 1h,然后在20℃±5℃条件下以1I 3 (A)恒流充电,至蓄电池电压达3.65V时转恒 压充电,至充电电流降至0.1I 3 时停止充电。充电后静置lh。 1.2 20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在20℃士5℃下以1I 3 (A)电流放电,直到放电终止电压2.0V 。 c) 用1I 3 (A)的电流值和放电时间数据计算容量(以A.h计)。 d) 如果计算值低于规定值,则可以重复a)一c)步骤直至大于或等于规定值,允许5次。 1.3 -20℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-20℃士2℃下储存20h。 c) 蓄电池在-20℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 1.4 -40℃放电容量 a) 蓄电池按1.1方法充电。 b) 蓄电池在-40℃士2℃下储存20h。 c) 蓄电池在-40℃士2℃下以1I 3 (A)电流放电,直到放电终止电压2.0V。 d) 用c)电流值和放电时间数据计算容量(以A.h计),并表达为20℃放电容量的百分数。 备注:1I 3— 3h率放电电流,其数值等于C 3 /3。 C 3 — 3 h率额定容量(Ah)。 1.5 高温荷电保持与容量恢复能力: a) 蓄电池按1.1方法充电。 b) 蓄电池在60℃士2℃下储存7day。 c) 蓄电池在20℃士5℃下恢复5h后,以1I 3 (A)电流放电,直到放电终止电压2.OV d) 用 c)的电流值和放电时间数据计算容量(以A.h计),荷电保持能力可以表达为额定容量的百分数。 e) 蓄电池再按1.1方法充电。 f) 蓄电池在20℃士5℃下以11 3 (A )电流放电,直到放电终止电压2.0V 。

铁锂电池与铅酸对比

铁锂电池与铅酸对比

磷酸铁锂电池和密封阀控式铅酸蓄电池的比较 一、产品性能比较和系统组成比较 磷酸铁锂电池和铅酸电池性能比较详见表4。 表4 磷酸铁锂电池和铅酸电池性能比较 电池性能 说明 磷酸铁锂电池 铅酸电池 单体电压 (V ) 3.2 2 重量比能量 (wh/kg ) 110~130 30~50 体积比能量 (wh/L ) 180~220 80~120 循环寿命 1C100%充放 ≥1000次 250~350次 高温性能 循环寿命变化 45℃为25℃时减半 35℃为25℃时减半 低温性能 -20℃容量保持率 50% 55% 自放电 常温搁置28天 4% 5% 充放电效率 >99% 80% 耐过充性能 一般 好 安全性 优 优 环保 无污染 污染 磷酸铁锂蓄电池与铅酸蓄电池在-48V 直流电源系统的组成比较如表5所示。 表1 磷酸铁锂电池组和铅酸电池组参数比较 组单体组单体组单体组单体浮充均充铅酸电池40~572448243.2 1.854.0 2.2556.4 2.35 1.13 1.18铁锂电池40~571651.2 3.243.2 2.755.2 3.4557.6 3.6 1.08 1.13铁锂电池 40~57 1548 3.243.2 2.88 54.0 3.6 56.4 3.76 1.13 1.18 电池设备工作范围只数 标称电压(V)电压比值放电终止电压(V)浮充电压(V) 均充电压(V) 资料显示: ? 充满电后4.0V 的磷酸铁锂蓄电池静置15分钟后回落到3.4V ,电池开 口电压3.4V 。 ? 单体工作电压为2.0V~4.2V 。 ? 在3.65V 以下可以充电性能稳定。 ? 单体电池放电时,3.0V 以下电压下降很快。 综合以上信息,建议48V 直流系统的蓄电池组只数选择16只的配置方案。 二、基站应用方案比较及投资比较 磷酸铁锂电池应用在基站中,主要考虑到不同放电率对该种电池放电容量的影响较小,以及耐受较宽的环境温度。以下将针对基站的功耗、后备时间进行电池容量选择的分析。

磷酸铁锂动力电池维护手册(整合版1)

沃特玛电池有限公司 磷酸铁锂动力电池使用手册 电子部 2013-3-15 [为了方面售后服务更好的对OPT管理系统进行维护,特此制定本手册,希望对售后服务有所帮助]

前言 为应对日益突出的燃油供求矛盾和环境污染问题,世界主要汽车生产国纷纷加快部署,将发展新能源汽车作为国家战略,加快推进技术研发和产业化,同时大力发展和推广应用汽车节能技术。节能与新能源汽车已成为国际汽车产业的发展方向。新能源客车,目前正在飞速发展。 当新能源客车穿行于街市,走进人们的生活时,对它的了解和认知也就成我们的必修课。然而,在这新能源之风势在必行之际,谈到动力电池,我们中大多数的人对其都知之甚少,这其中包括很多从事纯电动客车工作的相关从业人员,也正因为如此,才给你们的工作和和生活到来了诸多的困难和疑惑。 为解决这些问题,让从事纯电动客车工作的相关从业人员对动力电池有一些初步的了解和认识,本手册将通过重点介绍磷酸铁锂动力电池和管理系统的运用与维护来让大家了解动力电池的相关知识。为了更好服务客户,让相关从业人员熟悉和掌握我公司的纯电动客车动力电池,也为更好的发挥磷酸铁锂动力电池优越的性能,做好相关的维护保养工作,特制定本手册。希望此举能为大家避免在使用或维护我公司产品时造成不必要的困扰和预防产生一些不可挽回的损失。 烦请在使用或维护沃特玛公司纯电动客车动力电池之前,详细阅读本手册!

目录 前言2 第一章为何选择磷酸铁锂电池作为动力电池5 1.1电池的概念 (5) 1.2磷酸铁锂电池优势: (5) 1.3动力电池种类性能对比: (5) 1.4.关键设计说明 (6) 1.5.产品用途 (7) 第二章动力电池系统构成8 2.1.电池组的主要参数(以五洲龙为例)8 2.2电池组结构说明及其示意图 (9) 第三章技术特性13 3.1 单体放电特性 (13) 3.2不同放电倍率下的放电曲线 (13) 3.3 单体充电特性 (14) 3.4 五洲龙电池系统充放电特性曲线图 (15) 3.5 保存特性 (15) 3.6寿命特性 (16) 第四章. 电池系统的使用与安装17 4.1 电池系统使用环境 (17) 4.2 电池系统的使用 (18) 4.4电池系统的安装 (18) 第五章动力电池信息仪表认识23 5.1混合动力电池信息仪表认识 (23) 5.2纯电动电池信息仪表认识 (24) 第六章动力电池存储、维护与保养25 6.1 储存、维护和保养基本要求 (25) 6.2维护与保养: (25) 6.3日常保养: (27) 6.4周保养: (28) 6.5.月保养: (29) 第七章OPT管理系统运用与维护31 7.1电池管理系统BMS基本结构 (31) 7.2 BMS管理系统安装 (33) 7.3 BMS故障处理方法 (34) 第八章紧急处理方案43

磷酸铁锂电池充放电曲线和循环曲线

磷酸铁锂电池充放电曲线和循环曲线我公司生产的磷酸铁锂电池以其无毒、无污染,高安全性,循环寿命长,充放电平台稳定等优点受到锂电池专家的关注。我公司所生产的LiFePO4动力电池在国内、外均处于领先水平,填补了国内、外大功率磷酸铁锂动力电池的空白,并获得多项国家专利。10C充放电1000次循环容量衰减在25%以内,充放电平台稳定,安全性能优良,可大电流充放电,完全解决了钴酸锂,锰酸锂等材料做动力型电池所存在的安全隐患和使用寿命问题。磷酸铁锂动力电池将取代铅酸、镍氢电池、钴酸锂和锰酸锂锂电池,引领汽车工业走进绿色时代。我公司生产的磷酸铁锂18650-1200mAh的电池充放电曲线和大电流循环曲线如下:

我公司生产的磷酸铁锂CR123A-500mAh的电池大电流循环曲线如下

新型磷酸铁锂动力电池 中心议题: ?磷酸铁锂电池的结构与工作原理 ?磷酸铁锂电池的放电特性及寿命 ?磷酸铁锂电池的使用特点 ?磷酸铁锂动力电池的应用状况 自锂离子电池问世以来,围绕它的研究、开发工作一直不断地进行着,上世纪90年代末又开发出锂聚合物电池,2002年后则推出磷酸铁锂动力电池。 锂离子电池内部主要由正极、负极、电解质及隔膜组成。正、负极及电解质材料不同及工艺上的差异使电池有不同的性能,并且有不同的名称。目前市场上的锂离子电池正极材料主要是氧化钴锂(LiCoO2),另外还有少数采用氧化锰锂(LiMn2O4)及氧化镍锂(LiNiO2)作正极材料的锂离子电池,一般将后两种正极材料的锂离子电池称为“锂锰电池”及“锂镍电池”。新开发的磷酸铁锂动力电池是用磷酸铁锂(LiFePO4)材料作电池正极的锂离子电池,它是锂离子电池家族的新成员。

磷酸铁锂电池直流内阻测定精编

磷酸铁锂电池直流内阻 测定精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

LiFePO4/C锂离子电池直流内阻测试研究 摘要:研究了圆柱形动力磷酸铁锂锂离子电池在不同电流、不同测试持续时间下的直流内阻。分析了电池SOC、充电电流和放电电流、持续时间以及电流和时间的交互作用对电池直流内阻的影响。研究表明,测试电流和持续时间对电池的直流内阻影响比较大,在30~80%SOC范围内相同测试条件下电池的直流内阻变化不大;放电测试条件下的直流内阻略高于充电测试条件下的直流内阻;在0~10s 内,电池的直流内阻测试值与测试时间呈线性变化关系;容量型电池与功率型电池的直流内阻变化规律相同。 关键词:直流内阻,磷酸铁锂,锂离子电池,动力电池,测试方法 Study on the DC internal resistance of LiFePO4/C Li- ion battery Abstract: DC internal resistance of battery is an essential parameter for designing vehicle auxiliary system and battery pack. The effects of current, time, SOC on DC internal resistance of LiFePO4/C Li-ion battery were tested and analyzed respectively. The research shows that the DC internal resistance is similar at 30~80% SOC on the same test methods, the DC internal resistance with

关于磷酸铁锂电池的知识

关于磷酸铁锂电池的知识 导读:锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。 磷酸铁锂电池,是指用磷酸铁锂作为正极材料的锂离子电池。锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料、磷酸铁锂等。其中钴酸锂是目前绝大多数锂离子电池使用的正极材料。从材料的原理上讲,磷酸铁锂也是一种嵌入/脱嵌过程,这一原理与钴酸锂,锰酸锂完全相同。 1.介绍 磷酸铁锂电池属于锂离子二次电池,一个主要用途是用作动力电池,相对NI-MH、Ni-Cd电池有很大优势。 磷酸铁锂电池充放电效率较高,倍率放电情况下充放电效率可达90%以上。而铅酸电池约为80%。 2.八大优势 安全性能的改善 磷酸铁锂晶体中的P-O键稳固,难以分解,即便在高温或过充时也不会像钴酸锂一样结构崩塌发热或是形成强氧化性物质,因此拥有良好的安全性。有报告指出,实际操作中针刺或短路实验中发现有小部分

样品出现燃烧现象,但未出现一例爆炸事件,而过充实验中使用大大超出自身放电电压数倍的高电压充电,发现依然有爆炸现象。虽然如此,其过充安全性较之普通液态电解液钴酸锂电池,已大有改善。寿命的改善 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 长寿命铅酸电池的循环寿命在300次左右,最高也就500次,而磷酸铁锂动力电池,循环寿命达到2000次以上,标准充电(5小时率)使用,可达到2000次。同质量的铅酸电池是“新半年、旧半年、维护维护又半年”,最多也就1~1.5年时间,而磷酸铁锂电池在同样条件下使用,理论寿命将达到7~8年。综合考虑,性能价格比理论上为铅酸电池的4倍以上。大电流放电可大电流2C快速充放电,在专用充电器下,1.5C 充电40分钟内即可使电池充满,起动电流可达2C,而铅酸电池无此性能。 高温性能好 磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。工作温度范围宽广(-20C--+75C),有耐高温特性磷酸铁锂电热峰值可达350℃-500℃而锰酸锂和钴酸锂只在200℃左右。 大容量 具有比普通电池(铅酸等)更大的容量。5AH-1000AH(单体) 无记忆效应 可充电池在经常处于充满不放完的条件下工作,容量会迅速低于额定容量值,这种现象叫做记忆效应。像镍氢、镍镉电池存在记忆性,而

磷酸铁锂电池直流内阻测定

LiFePO /C锂离子电池直流内阻测试研究 4 摘要:研究了圆柱形动力磷酸铁锂锂离子电池在不同电流、不同测试持续时间下的直流内阻。分析了电池SOC、充电电流和放电电流、持续时间以及电流和时间的交互作用对电池直流内阻的影响。研究表明,测试电流和持续时间对电池的直流内阻影响比较大,在30~80%SOC 范围内相同测试条件下电池的直流内阻变化不大;放电测试条件下的直流内阻略高于充电测试条件下的直流内阻;在0~10s内,电池的直流内阻测试值与测试时间呈线性变化关系;容量型电池与功率型电池的直流内阻变化规律相同。 关键词:直流内阻,磷酸铁锂,锂离子电池,动力电池,测试方法 /C Li-ion battery Study on the DC internal resistance of LiFePO 4 Abstract: DC internal resistance of battery is an essential parameter for designing vehicle auxiliary system and battery pack. The effects of current, time, SOC on DC internal resistance of LiFePO4/C Li-ion battery were tested and analyzed respectively. The research shows that the DC internal resistance is similar at 30~80% SOC on the same test methods, the DC internal resistance with discharging methods is larger than it with charging methods, and the DC internal resistance is linear with the test time in 10s at the same SOC and current. The DC internal resistance variation rules of the high energy battery are similar to the high power battery. , Li-ion battery, power battery, Keywords: DC internal resistance, LiFePO 4 test methods 内阻是评价电池性能的重要指标之一。内阻的测试包括交流内阻与直流内阻。对于单体电池,一般以交流内阻来进行评价,即通常称为欧姆内阻。但对于大型电池组应用,如电动车用电源系统来说,由于测试设备等方面的限制,不能或不方便来直接进行交流内阻的测试,一般通过直流内阻来评价电池组的特性。在实际应用中,也多用直流内阻来评价电池的健康度,进行寿命预测,以及进行系统SOC、输出/输入能力等的估计。在生产中,可以用来检测故障电池如微短路等现象。 直流内阻的测试原理是通过对电池或电池组施加较大的电流(充电或放电),持续较短时间,在电池内部还没有达到完全极化的情况下,根据施加电流前后电池的电压变化和施加的电流,计算电池的直流内阻。测试直流内阻必须选择好四个参数:电流(或采用的倍率)、脉冲时间、荷电状态(SOC)、测试环境温度。这些参数的变化对直流内阻有较大的影响。 直流内阻不仅包括了电池组的欧姆内阻部分(交流内阻部分),还部分包括了电池组的一些极化电阻。而电池的极化受电流、时间等影响比较大。目前常用的直流内阻测试方法有以下三个:(1)美国《FreedomCAR电池测试手册》中的HPPC测试方法:测试持续时间为10s,施加的放电电流为5C或更高,充电电流为放电电流的0.75。具体电流的选择根据电池的特性来制定。(2)日本JEVSD713 2003的测试方法,原来主要针对Ni/MH电池,后也应用于锂离子电池,首先建立0~100%SOC下电池的电流一电压特性曲线,分别以1C、2C、5C、10C的电流对设定SOC下的电池进行交替充电或放电,充电或放电时间分别为10s,计算电池的直流内阻。(3)我国“863”计划电动汽车重大专项《HEV用高功率锂离子动力蓄电池性能测试规范》中提出的测试方法,测试持续时间为5s,充电测试电流为3C,放电测试电流为9C。 JEVS法、HPPC法两种测试方法各有特点,JEVS法采用0~10C“系列”电流可以避免采用单一电流产生的结果偏差,其假定电池的内阻主要成分是近似恒定的欧姆阻抗,因此

磷酸铁锂电池简介

磷酸铁锂电池简介 1.磷酸铁锂电池定义 磷酸铁锂电池是指用磷酸铁锂作为正极材料的锂离子电池。 2.磷酸铁锂正极材料 磷酸铁锂作为锂离子电池用正极材料具有良好的电化学性能,充放电平台十分平稳,充放电过程中结构稳定。同时,该材料无毒、无污染、安全性能好、可在高温环境下使用、原材料来源广泛等优点,是目前电池界竞相开发研究的热点。该材料具有发上图所示的晶体结构。工作电压范围:2.5~3.6V,平台约3.3V,比钴酸锂电池3.7V低一些。由于该材料导电性差,需往磷酸铁锂颗粒内部掺入导电碳材料或导电金属微粒,或者往磷酸铁锂颗粒表面包覆导电碳材料,提高材料的电子电导率;或掺杂金属离子来提高导电性。这样材料的密度低,做成电池的体积比容量低,只有180Wh/L(钴酸锂可做到400Wh/L 以上),在小电池领域,同样尺寸电池只有现有电池容量的一半不到。 3.磷酸铁锂的优点: (1)安全。磷酸铁锂的安全性能是目前所有的材料中最好的。绝不用担心爆炸。 (2)稳定性高。包括高温充电的容量稳定性,储存性能等。这是最大的优点。 (3)环保。整个生产过程清洁无毒。所有原料都无毒。不像钴是有

毒的物质。 (4)价格便宜。 4.磷酸铁锂的缺点: (1)导电性差,目前可通过添加C或其它导电剂得到解决。即:LiFePO4/C正极。 (2)振实密度较低。一般只能达到1.3-1.5,电池极片的面密度低,所以同样型号的电池容量更低。从消费便携电子产品上看,磷酸铁锂没有前途,在特定的电池领域使用较有优势,如动力电池。 (3)制造成本偏高,在电池生产上加工困难、倍率放电不稳定(需要特定的电池工艺配合,受工艺影响很大)。 (4)技术还未成熟。由于振实密度低,比表面积大,需要改变电池先行工艺。而且电解液也需重新开发适用的电解液体系,用现有的成熟电解液难发挥其性能。没有批量配套的保护线路和充电器,较难在现有的电子设备上发挥出其特性,需要一个整体的行业整合。 5.磷酸铁锂电池产业:优势分析 (1)磷酸铁锂产业符合政府产业政策的导向,各国都把储能电池和动力电池的发展放在国家战略层面高度,配套资金和政策支持的力度很大,中国在这方面有过之而不及,过去关注镍氢电池,现在则把目光更多的集中到磷酸铁锂电池上。 (2)LFP代表了电池未来发展的方向,随着技术成熟,甚至可能成为

通信用磷酸铁锂电池及系统的原理与应用

通信用磷酸铁锂电池及系统的原理与应用 传统的阀控式密封铅酸电池以其成本低廉、技术成熟、维护方便得到广泛应用,然而,随着无线通信技术的不断发展和移动基站应用场景的复杂化,传统的蓄电池逐步显现出体积大、对环境温度要求苛刻等劣势。磷酸铁锂电池系统由于具有体积小、重量轻,高温性能突出,循环性能优异,可高倍率充、放电,绿色环保等众多优点,更适用于环境温度高、机房面积及承重小等恶劣的基站环境。同时,在末端供电磷酸铁锂电池也可作为铅酸蓄电池的有效补充。 一、目前通信后备电源面临的问题 1、传统铅酸蓄电池对环境温度要求比较高 目前市内宏基站的站址选择越来越难,室外一体化基站开始大规模建设。传统的铅酸蓄电池对环境温度要求比较高的特点造成传统的铅酸蓄电池很难适应室外高温等恶劣天气。另外,除了铅酸蓄电池外,室内宏基站的其他设备对环境温度的适应范围都比较宽。机房空调就是为了给铅酸蓄电池提供适当的环境温度。为了节能减排,目前已开发出蓄电池保温箱等蓄电池专用的小型空调设备。如果能找到一种对环境温度要求不高的电池作为后备电源,不仅能解决室外一体化基站后备电源的问题,而且还能省掉机房专用空调,这样既节省了工程初期购买空调的投资,也节省了基站运行时的大量电费开销。 2、传统铅酸蓄电池对机房面积和承重要求高 室内宏基站设备中,电源设备占比最大,而电源设备中提及和占地面积最大的就是蓄电池。室内宏基站的机房大多采用民房,根据结构专业的统计计算,民房的承重设计一般为150~200kg/m,而铅酸蓄电池对机房的承重要求不低于 400kg/m,所以在现有的民房内摆放铅酸蓄电池都需要经过加固处理。这样一方面加大了工程量,另一方面也加大了选址难度。另外,目前通信设备逐步向小型化、分散化的方向发展,末端设备的功耗越来越小,要求后备电池的体积更小,重量更轻。 3、传统铅酸蓄电池的高倍率放电性能较差 目前电网质量越来越完善,很少出现市电大面积长时间停电的状况,而基站的停电往往是由于市政项目的频繁建设所造成的短时间频繁停电,这需要蓄电池短时间大电流高倍率放电,而传统铅酸蓄电池的高倍率放电性能较差。

浅谈磷酸铁锂电池的性能与应用

龙源期刊网 https://www.wendangku.net/doc/5b6904451.html, 浅谈磷酸铁锂电池的性能与应用 作者:张志伟 来源:《中国科技博览》2015年第30期 [摘要]随着科学技术发展速度不断加快,锂离子电池技术也得到了相应的发展,磷酸铁锂带电池应运而生,这种类型的电池所具优势明显,如安全性好、没有记忆效应、工作电压高、循环寿命长以及能量密度大等。下面笔者就磷酸铁锂电池的性能以及应用进行研究和分析。 [关键词]滇池;性能;磷酸铁锂;储能 中图分类号:TG113.22 文献标识码:A 文章编号:1009-914X(2015)30-0368-01 一、前言 目前在锂电池的研究中,所研究的主要正极材料包含有LMin2O4、LiCoO和LiNiO2等,但因钴资源有限,再加上其有毒,在制备钼酸锂上难度较大。自从磷酸铁锂所具的可逆嵌脱锂特性被报道以后,该材料也受到了广泛关注,关于该材料方面的研究和文献报道也随之增多,和传统锂电池比较,磷酸铁锂电池所具安全性能较好,原材料来源比较广泛,循环寿命长且成本较低等,目前在通信、电网建设中已得到广泛应用。 二、磷酸铁锂电池性能分析 磷酸铁锂电池正极由LiFePO4材料所构成,由铝箔连接正极;电池负极为碳石墨构成,由铜箔和负极连接;电池中间为聚合物隔膜,借助于此隔开电池正负极,其中锂电子能经过隔膜,而电子不可经过隔膜,在电池内存在电解质。于LiFePO4和FePO4间完成电池充放电反应,充电期间,LiFePO4缓慢脱离出锂离子成为FePO4;放电期间,锂离子嵌入FePO4逐渐形成为LiFePO4。当电池在充电时,自磷酸铁锂晶体电池中锂离子迁移至晶体的表面,于电场力不断作用下开始进入电解液,接着穿过隔膜,而后通过电解液迁移至石墨晶体表面,继而嵌入到石墨晶格。在此时,电子通过导电体逐渐流向电池正极铝箔集电极,通过极耳—电池正极柱—外电路—负极极柱—负极极耳逐步流向至铜箔集流体,最后再通过导电体流至石墨负极,从而使负极电荷可达到平衡。电池在放电期间,锂离子脱嵌于石墨晶体,进入电解液,接着穿过隔膜,通过电解液迁移至磷酸铁锂晶体表面,而后重新嵌入至磷酸铁锂晶格中,此时,电子通过导电体逐渐流向至铜箔集电极,通过极耳—电池负极柱—外电路—正极极柱—正极极耳而流向至铝箔集流体,并再通过导电体流至电池正极,以便正极电荷达到平衡。 磷酸铁锂电池借助于自身所具独特优势,如高工作电压、绿色环保、能量密度大、支持无极扩展以及循环寿命长等,将其组成为储能系统以后能够大规模储存电能。由磷酸铁锂电池构成的储能系统,除磷酸铁锂电池组外,还包含有电池管理系统、中央监控系统、换流装置以及变压器,其中换流装置中又包括整流器以及逆变器。该系统能量转换机理主要如下:在充电

磷酸铁锂电池组装测试流程

LiFePO4组装扣式电池的流程 (1)扣式电池的规格:CR2025,CR20级别的规格都可以用,仅仅是电池壳的厚度有所区别,CR2025电池壳的厚度为2.5mm,该类电池的适用温度是-20℃—70℃。 (2)CR2025各部件的规格: 正极电池壳隔膜正极极片锂片 直径/mm20181214 (3)扣电组装过程如下: 混料:质量比—活性材料(LiFePO4):乙炔黑:PVDF=80:10:10 将称量好的活性材料和乙炔黑在研钵中研磨10min左右,同时将以质量比PVDF:NMP=1:20(如若发现NMP的量不够,可以少量滴加点)的量将PVDF溶解在NMP中进行磁力搅拌至PVDF完全溶解,然后将溶液倒入先前研磨好的活性材料和乙炔黑的粉料中继续研磨20min左右,制备得到正极浆料。 涂料:首先将Al箔平整放置在撒有酒精的光滑的桌面上,用玻璃棒将研钵中的浆料倒入Al箔上,随后用80um的涂膜器进行涂覆。随后将涂覆完的Al箔放置在真空干燥箱中先80℃干燥2h,然后110℃干燥12h。自然冷却后取出。 注:涂覆用的Al箔规格一定要小于辊压机的尺寸便于辊压。 LiFePO4极片制备:用12mm模具的压片机将干燥后的Al箔压成12mm的极片,分别称量每个极片的重量,并对应相应的电池编号,待用。 极片中活性物质质量=【极片的质量-空白Al箔的质量(5.4mg)】*80% 手套箱组装电池的过程: 先在手套箱的托盘中放置一张纸—CR2025的正极电池壳平整放于上面—用塑料镊子夹起正极极片居中放入正极壳中—将18mm的隔膜居中放置在极片上面(滴加3滴左右的电解液)—将锂片居中放置在隔膜上面(一定要居中放置,锂片的放置很重要)—放置垫片和弹片,滴加7-8滴左右的电解液—盖上负极壳,将电池壳稍微压紧,然后放入塑料袋中取出—70MPa左右的压力进行封装—放置24h 左右进行电化学性能测试。

磷酸铁锂概况

磷酸铁锂概况 1.1 磷酸铁锂的基本概况 磷酸铁锂英文名:LITHIUM IRON PHOSPHATE CARBON COATED;简称LFP; 分子式:LiFePO4; 分子量:157.76; CAS:15365-14-7; 磷酸铁锂(分子式LiFePO4,简称LFP),是锂离子电池的一种正极材料,其特点是原料价格低廉丰富,工作电压适中、电容量大、高放电功率、可快速充电且循环寿命长、稳定性高,自90年代被发现后,成为了引发了锂电池革命的新材料,是当前电池发展领域的前沿。 磷酸铁锂电极材料主要用于各种锂离子电池。采用磷酸铁锂作为锂离子电池正极材料的电池被称为磷酸铁锂电池,由于磷酸铁锂电池的众多优点,被广泛使用于各个领域。 目前全球已经有很多厂家开始了工业化生产磷酸铁锂,国外加拿大Phostech Lithium公司、美国Valence(威能)公司和A123(高博),国内天津斯特兰,北大先行等。世界各国正竞相实现产业化生产。 目前,国内的磷酸铁锂产业投资热正在兴起,其势头超过了其他任何国家。 1.2 磷酸铁锂性能特点 锂离子电池的性能主要取决于正负极材料,磷酸铁锂作为锂电池正极材料其安全性能与循环寿命是其它材料所无法相比的,这些也正是动力电池最重要的技术指标。1C充放循环寿命达2000次。单节电池过充电压30V不燃烧,穿刺不爆炸。磷酸铁锂正极材料做出大容量锂离子电池更易串联使用。以满足电动车频繁充放电的需要。具有无毒、无污染、安全性能好、原材料来源广泛、价格便宜,

寿命长等优点,是新一代锂离子电池的理想正极材料。 磷酸铁锂优势性能主要有: 1、比容量大,高效率输出,高能量密度。磷酸铁锂标准放电为2~5C、连续高电流放电可达10C,瞬间脉冲放电(10S)可达20C;理论比容量为170mAh/g,产品实际比容量可超过140 mAh/g(0.2C,25℃); 2、结构稳定、安全性能好。磷酸铁锂是目前最安全的锂离子电池正极材料;不含任何对人体有害的重金属元素;即使电池内部或外部受到伤害,电池不燃烧、不爆炸、安全性最好。 3、循环寿命长。经500次循环,其放电容量仍大于95%;实验室制备的磷酸铁锂单体电池在进行IC的循环测试时,循环寿命高达2000次。在100%DOD 条件下,可以充放电2000次以上;(原因:磷酸铁锂晶格稳定性好,锂离子的嵌入和脱出对晶格的影响不大,故而具有良好的可逆性。存在的不足是电子离子传到率差,不适宜大电流的充放电,在应用方面受阻。解决方法:在电极表面包覆导电材料、掺杂进行电极改性。) 4、资源丰富、成本低廉。磷酸铁锂原材料来源广泛、价格便宜。 5、充电性能好。磷酸铁锂正极材料的锂电池,可以使用大倍率充电,最快可在1小时内将电池充满。可快速充电,自放电少,无记忆效应。可大电流2C 快速充放电,在专用充电器下,1.5C充电40分钟内即可使电池充满,起动电流可达2C。过放电到零伏也无损坏,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 6、工作温度范围宽广(-20℃~+75℃)。高温时性能良好:外部温度65℃时内部温度则高达95℃,电池放电结束时温度可达160℃,电池内部结构安全、完好。 磷酸铁锂性能缺点主要有: 1、导电性能差。目前在实际生产过程中通过在前驱体添加有机碳源和高价金属离子联合掺杂的办法来改善材料的导电性(A123、烟台卓能正采用这种方法),研究表明,磷酸铁锂的电导率提高了7个数量级,使磷酸铁锂具备了和钴

磷酸铁锂与锰酸锂的对比

10Ah磷酸铁锂电池与錳酸锂电池对照分析 1.电器特性 磷酸铁磷錳酸锂 电池最高电压(V) 3.9 电池最高电压(V) 4.2 电池最低电压(V) 2.5 电池最低电压(V) 2.75 额定电压(V) 3.2 额定电压(V) 3.7 电池容量(AH) 10 电池容量(AH) 10 最大充电电流(A) 5 最大充电电流(A) 5 最大放电电流(A) 18 最大放电电流(A) 18 过充保护电压(V) 3.95 过充保护电压(V) 4.25 过放保护电压(V) 2.2 过放保护电压(V) 2.45 放电保护电流(A) 20 放电保护电流(A) 20 2.曲线分析 10AH錳酸锂电池0.2C充电曲线 分析: 1.充电第一阶段(0—30 min),充电电流较大,充电快,电池内阻较小。充电平均速率 v=0.025V/min 2.充电第二阶段(30—250 min),电池进入充电稳定状态,内阻增大。充电平均速率 v=6.82*10-4V/min 3.充电第三阶段 (250—370 min ),充电幅度比第二阶段略快,内阻增大。v=0.0025V/min 4.充电过程中,电池容量减小。 5.电池电容C=△Q/△U=10*3600/1.2=30000F 10AH磷酸铁锂电池0.2C充电曲线 分析: 1. 充电第一阶段(0—30 min), 电池内阻有增大的趋势,充电平均速率 v=0.01166V/min 2. 充电第二阶段(30—260 min), 总体处于充电平稳状态,内阻增大, v=4.3478*10-4V/min 3. 充电第三阶段(260—310 min),充电电压上升幅度较大,内阻增大,v=0.01V/min 4. 充电过程中,电池容量减小。 5. 电池电容C=△Q/△U=10*3600/1=36000F 两种电池的比较分析: 1. 10AH磷酸铁锂电池比10AH錳酸锂电池容量小。 2. 充电的第一、二阶段,錳酸锂电池比磷酸铁锂电池要快,第三阶段相反。 两种电池的内阻在充电过程中都趋于增大,电池容量减小。

磷酸铁锂电池地放电特性及寿命

磷酸铁锂电池(以下简称锂铁电池)作为铁电池的一种,一直受到业界朋友的广泛关注(也有人说锂铁电池其实就是锂离子电池的一种)。就铁电池而言,它可以分为高铁电池和锂铁电池,今天我们以型号为STL18650的锂铁电池为例,来具体说明一下锂铁的电池的放电特性及寿命。 STL18650的锂铁电池(容量为1100mAh)在不同的放电率时其放电特性如图2所示。最小的放电率为0.5C,最大的放电率为10C,五种不同的放电率形成一组放电曲线。由图1中可看出,不管哪一种放电率,其放电过程中电压是很平坦的(即放电电压平稳,基本保持不变),只有快到终止放电电压时,曲线才向下弯曲(放电量达到800mAh以后才出现向下弯曲)。在0.5~10C的放电率范围内,输出电压大部分在2.7~3.2V范围内变化。这说明该电池有很好的放电特性。 图1 STL18650的放电特性 容量为1000mAh的STL18650在不同的温度条件下(从-20~+40℃)的放电曲线如图2所示。如果在23℃时放电容量为100%,则在0℃时的放电容量降为78%,而在-20℃时降到65%,在+40℃放电时其放电容量略大于100%。 从图3中可看出,STL18650锂铁电池可以在-20℃下工作,但输出能量要降低35%左右。 图2 STL18650在多温度条件下的放电曲线 STL18650的充放电循环寿命曲线如图4所示。其充放电循环的条件是:以1C充电率充电,以2C放电率放电,历经570次充放电循环。从图3的特性曲线可看出,在经过570次充放电循环,其放电容量未变,说明该电池有很高的寿命。

图3 STL18650的充放电循环寿命曲线 过放电到零电压试验 采用STL18650(1100mAh)的锂铁动力电池做过放电到零电压试验。试验条件:用0.5C充电率将1100mAh的STL18650电池充满,然后用1.0C放电率放电到电池电压为0C。再将放到0V的电池分两组:一组存放7天,另一组存放30天;存放到期后再用0.5C充电率充满,然后用1.0C放电。最后比较两种零电压存放期不同的差别。 试验的结果是,零电压存放7天后电池无泄漏,性能良好,容量为100%;存放30天后,无泄漏、性能良好,容量为98%;存放30天后的电池再做3次充放电循环,容量又恢复到100%。 这试验说明该电池即使出现过放电(甚至到0V),并存放一定时间,电池也不泄漏、损坏。这是其他种类锂离子电池不具有的特性。

BMS储能系统用户手册(V1.0)-磷酸铁锂要点

储能电站电池管理系统 (BMS) 用户手册V1.0 (磷酸铁锂电池) 深圳市光辉电器实业有限公司

目录 1、概述?错误!未定义书签。 2、系统特点.............................................................................................................. 错误!未定义书签。 3、储能电站系统组成?错误!未定义书签。 4、电池管理系统主要组成 (4) 4.1 储能电池管理模块ESBMM ......................................................................... 错误!未定义书签。 4.1.1 ESBMM-12版本?错误!未定义书签。 4.1.2 ESBMM-24版本........................................................................... 错误!未定义书签。 4.2 电池组控制模块ESGU................................................................................ 错误!未定义书签。 4.3 储能系统管理单元ESMU ............................................................................... 错误!未定义书签。 5、安装及操作注意事项?错误!未定义书签。 19 附录A:产品操作使用界面?

磷酸铁锂电池产品测试项目及检测要求V1

附件8 磷酸铁锂电池产品抽样(送样)测试要求 中国移动通信集团河南有限公司(以下简称招标人)将按照本文要求对报名供应商的磷酸铁锂电池设备进行现场抽样(送样)并委托第三方检测机构进行产品检测,具体测试项目和要求见下: 一.铁锂电池技术要求 1.铁锂电池配组方式:48V直流供电系统16只一组 2.标准环境温度:25℃±5℃ 3.充电: a.恒压限流方式 b.充电电压恒压值(补充充电):3.55V~3.6V c.浮充充电: 3.40V~3.45V d.充电电流恒流值:0.1C、0.2C、0.25C、0.55C、1C、3C可选 e.充电终止方式:恒压限流充电24h、或充电电流小于 0.005C(A)~0.05C(A) 4.放电 a.恒流方式(恒功率方式) b. 放电电流值::0.1C、0.2C、0.25C、0.55C、1C、3C可选 c.终止电压值:2.60V~2.75V 二.磷酸铁锂电池测试项目及测试要求 表1 磷酸铁锂电池测试项目及测试要求表 序 号 测试项目行标要求指标类别 1 外观(不污渍、不变形、不裂纹、不漏液) B 2 结构蓄电池的正负极端子应有明显标志。 标志应清晰 C 3 重量(kg) 蓄电池(单只)的重量。 C 4 外形尺寸(mm)长×宽×高 C 5 0.1C(A) 电流放电容量电池完全充电后,以0.1C(A)电流放电 B

至终止电压2.6V时,放出容量≥1.0C。(25℃) 6 0.25C(A) 电流放电容量电池完全充电后,以0.25C(A)电 流放电至终止电压2.6V时,放出容量 ≥0.95C。 (25℃) B 7 0.55C(A) 电流放电容量电池完全充电后,以0.55C(A)电 流放电至终止电压2.6V时,放出容量 ≥0.92C。 (25℃) B 8 1C(A)电流放电容量电池完全充电后,以1.00C(A)电 流放电至终止电压2.6V时,放出容量 ≥0.90C。 (25℃) B 9 3C(A) 电流放电容量电池完全充电后,以3.00C(A)电 流放电至终止电压2.6V时,放出容量 ≥0.85C。 (25℃) B 10 电池组各单体电池容量均衡性0.1C(A)放电时(25℃),最大容量与最小 容量差与容量平均值之比:≤3%。 B 11 电池静态开路电压均衡性完全充电后静电24h后 单体电池之间电压最大最小差应不大于 0.5V B 12 电池完全充电状态电压均衡性完全充电后再充电24h后 单体电池之间电压最大最小差应不大于 0. 5V B 13 电池静态内阻均衡性电池完全充电后,电池内阻最 高、最低值与平均值差再与平均值之 比不大于(±20%)。 C 14 电池静态电导均衡性电池完全充电后,电池电导最 高、最低值与平均值差再与平均值之 比不大于(±20%)。 C 15 电池间连接电压降 1.以0.55C(A)电流放电时,在电 池极柱根部测量两电池间的连接电 压降,应不大于5.5mV。 2. 以1C(A)电流放电时,在电池极柱根 部测量两电池间的连接电压降,应不大 于10mV。 B 16 安全高电压充电试验完全放电后电池以4.2V恒压,1C(A)限 流进行充电24h,蓄电池应无安全阀打 开、外观异常、爆炸现象,并以0.55C(A) 放电后放出正常容量 B 17 电压瞬变特性完全充电后,以3.0C(A)突然加载, 其电压跌落幅度。 C

磷酸铁锂公司企业名录

1、深圳市比克电池有限公司 成立于2001年8月,美国纳斯达克上市公司,注册资本8260万美元,是一家集锂电池研发、生产、销售为一体的国家高新技术企业。比克工业园区坐落于深圳东部大鹏湾占地26万平方米,员工6000余人。 2、湖南杉杉新材料有限公司 是由宁波杉杉股份有限公司(占75%的股份)和中南大学(占25%的股份)联合创办。成立于2003年11月,锂离子电池正极材料制造商,是湖南省高新技术企业,专业致力于生产锂离子电池正极材料,以钴酸锂为主要产品,应用于便携式资讯设备如手机、笔记本电脑、移动DVD、数码相机、电动工具等领域,同时于2004年3月正式推出了锰酸锂,应用于电动交通工具等大型动力电源领域。 目前产品有钴酸锂、锰酸锂、镍钴二元系、镍钴锰三元系、磷酸铁锂等。 中国锂电池正极材料行业重点企业简介 二、中国宝安集团股份有限公司 三、厦门钨业股份有限公司 四、中信国安盟固利电源技术有限公司 五、石家庄市中洲实业总公司 六、湖南瑞翔新材料有限公司 七、宁波金和新材料有限公司 八、北京当升材料科技有限公司 九、北大先行科技产业有限公司 十、深圳市振华新材料股份有限公司 3、深圳市山木电池科技有限公司 1997年10月在广东省珠海市成立,是中国第一家专业生产可充电锂电池的厂家,2006年初,山木公司将工厂搬迁至深圳市横岗深坑村第三工业区厂B公司现主要有以下 1.圆柱电池事业部. 2.数码电池事业部. 3.动力电池事业部. 异型圆柱电池系列有直径07系,08. 10 .12 铁锂动力电车系列有400mah到10000mah等不同容量近10个规格品牌mottcell型号IFR26650 基本参数 电池类型锂电池电压有效期1年 技术参数 标准容量3000mAh充放电次数2000电池容量3000mah 开路电压快速充电电流3000mA快速充电时间1h 适用范围机车型:电动自行车电动轿车电动工具标准电压 适用温度范围-20;+60 ℃直径26*65mmmm贮存温度20度 最大连续工作电流6000mah标准充电电流1500mA标准充电时间2h 品牌mottcell型号IFR42120 基本参数 使用期5年额定容量10AH 技术参数标准电压直径42 mm充放电次数1500 标准充电时间2h标准充电电流5000mA标准容量10000mAh

相关文档
相关文档 最新文档