文档库 最新最全的文档下载
当前位置:文档库 › 自定义坐标系(北京54、西安80、2000坐标系)

自定义坐标系(北京54、西安80、2000坐标系)

自定义坐标系(北京54、西安80、2000坐标系)
自定义坐标系(北京54、西安80、2000坐标系)

我国三大常用坐标系区别(北京54、西安80和WGS-84)

我国三大常用坐标系区别(北京54、西安80和WGS-84) 北京, 西安, 坐标系 我国三大常用坐标系区别(北京54、西安80和WGS-84) Gis应用 2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。

坐标转换及方里网的相关问题(椭球体、投影、坐标系统、转换、北京54、西安80等)

坐标转换及方里网的相关问题(椭球体、投影、坐标系统、转换、北京54、西安80等) 最近需要将一些数据进行转换,用到了一点坐标转换的知识,发现还来这么复杂^_^,觉得自己真是愧对了武汉大学以及中科院这么多年培养我,让我上了好多课却从来没有好好听,今天才知道其实很有用!不多废话,给您分享下我的坐标转换之路。 Part one: Background 地理坐标系与投影坐标系的区别 (cite from:https://www.wendangku.net/doc/5713923351.html,/f?kz=354009166) 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate system是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短 半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954 表示,大地基准面是D_Beijing_1954。 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954 Spheroid(参考椭球体): Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000 2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。 Projection: Gauss_Kruger Parameters:

如何将北京54坐标转换成西安80坐标教程

MAPGIS“北京54 坐标系”转“西安80坐标系”详细教程 北京54坐标系和西安80坐标系其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为他们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若求得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),如果区域范围不大,最远点间的距离不大于30km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。 方法: 第一步:向地方测绘局(或其他地方)找本区域三个公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z); 第二步:讲三个点的坐标对全部转换以弧度为单位。(菜单:投影转换——输入单点投影转换,计算出这三个点的弧度值并记录下来); 第三步:求公共点操作系数(菜单:投影转换——坐标系转换)。如果求出转换系数后,记录下来; 第四步:编辑坐标转换系数(菜单:投影转换——编辑坐标转换系数),最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 详细步骤如下: 首先将MAPGIS平台的工作路径设置为“…..\北京54转西安80”文件夹下。 下面我们来讲解“北京54 坐标系”转“西安80坐标系”的转换方法和步骤。 一、数据说明 北京54 坐标系和西安80 坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3 个以上的公共点坐标对(即北京54 坐标下x、y、z 和西安80 坐标系下x、y、z),可以向地方测绘局获取。 二、“北京54 坐标系”转“西安80 坐标系”的操作步骤 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1 所示:

北京54坐标系与西安80坐标系及常用坐标系参数(精)

北京54坐标系与西安80坐标系及常用坐标系参数西安80坐标系与北京54坐标系其实是一种椭球参数的转换,作为这种转,在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移, Y平移,Z平移,X旋转(WX,Y 旋转(WY,Z旋转(WZ,尺度变化(DM。要求得七参数就需要在一个地区需要3个以上的已知点。如果区域范围不大,最远点间的距离不大于30Km(经验值,这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转, Z旋转,尺度变化面DM视为0。 方法如下: 第一步:向地方测绘局(或其它地方找本区域三个公共点坐标对; 第二步:求公共点的操作系数。 第三步:利用相关软件进行投影变换。 54国家坐标系: 建国初期,为了迅速开展我国的测绘事业,鉴于当时的实际情况,将我国一等锁与原苏联远东一等锁相连接,然后以连接处呼玛、吉拉宁、东宁基线网扩大边端点的原苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部区一等锁,这样传算过来的坐标系就定名为1954年北京坐标系。因此,P54可归结为: a.属参心大地坐标系; b.采用克拉索夫斯基椭球的两个几何参数; c.大地原点在原苏联的普尔科沃; d.采用多点定位法进行椭球定位; e.高程基准为1956年青岛验潮站求出的黄海平均海水面;

f.高程异常以原苏联1955年大地水准面重新平差结果为起算数据。按我国天 文水准路线推算而得。 自P54建立以来,在该坐标系内进行了许多地区的局部平差,其成果得到了广泛的应用。 1954北京坐标系参考椭球基本几何参数 长半轴a=6378245m 短半轴b=6356863.0188m 扁率α=1/298.3 第一偏心率平方=0.006693421622966 第二偏心率平方=0.006738525414683 80国家坐标系:采用国际地理联合会(IGU第十六届大会推荐的椭球参数,大地 坐标原点在陕西省泾和县永乐镇的大地坐标系,又称西安坐标系。 C80是为了进行全国天文大地网整体平差而建立的。根据椭球定位的基本原理,在建立C80坐标系时有以下先决条件: (1大地原点在我国中部,具体地点是陕西省径阳县永乐镇; (2C80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面; X轴在大地起始子午面内与Z轴垂直指向经度0方向; Y轴与Z、X轴成右手坐标系; (3椭球参数采用IUG1975年大会推荐的参数因而可得C80椭球两个最常用的几何参数为:

北京54测绘成果转西安80坐标系计算方法的研究

北京54测绘成果转西安80坐标系计算方法的研究 本文介绍了1954年北京坐标系、1980西安坐标系及其相互关系、转换原理及利用软件进行数据转换的方法。 标签:测绘坐标系转换方法 1概述 近几年来,在测绘行政主管部门的推动下,我国西安80坐标系正在逐步得到使用,第二次全国土地调查已明确要求平面控制使用80西安坐标系统,省级基础测绘成果1:10000地形图也采用了1980西安坐标系,现有1954年北京坐标系将逐渐向1980西安坐标系过渡,但是,五十年来,我国在1954年北京坐标系下完成的大地控制及基本系列地形图数量巨大,价值巨大,必须充分利用。在当前测绘生产中既存在将54系转成80系的问题,也有相反的情况。 2北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而来,采用克拉索夫斯基椭球体,其参数为:长半轴为6378245米,扁率为1/298.3。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用,但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合,在中国东部地区大地水准面差距自西向东增加最大达+68米;其椭球的长半轴与现代测定的精确值相比109米的缺陷;定向不明确,椭球短轴未指向国际协议原点CIO,也不是中国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIH所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的,由于施测年代不同、承担单位不同,不同锁段算出的成果相矛盾,给用户使用带来困难。1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建立中国新的国家大地坐标系,有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80),该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性,这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球)。其主要参数为:长半轴为6378140 米,扁率为1/298.257。IAG-1975椭球参数精度较高,能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面,以我国范围内高程异常平方和最小为原则,做到了与我国大地水准面较好的吻合。此外,1982年我国已完成了全国天文大地网的整体平差,消除了以前局部平差和逐级控制产生的不合理影响,提高了大地网的精度,在上述基础上建立的1980西安坐标系比1954年北京坐标系更科学、更严密、更能满足科研和经济建设的需要。由于北京54坐标系和西安80坐标系是两种不同的大地基准面,这两个椭球参数不同,参心所在位置不同,指向不同,在高斯平面上其纵横坐标轴不重合,因而同一点的坐标是不同的,无论是三度带六度带还是经纬度坐标都是不同的,其平面位置最大相差80米。

CGJ02、BD09、西安80、北京54、CGCS2000常用坐标系详解

CGJ02、BD09、西安80、北京54、CGCS2000常用坐标系详解 一、万能地图下载器中的常用坐标系 水经注万能地图下载器中的常用的坐标系主要包括WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02经纬度投影、GCJ02 Web 墨卡托投影、BD09 经纬度投影和BD09 Web 墨卡托投影等。 其中,WGS84、WGS84 Web 墨卡托、GCJ02和BD09是近年来GIS系统(尤其是WebGIS)中的常用坐标系,而西安80、北京54和CGCS2000坐标是测绘中常用的坐标系。 本软件除了支持常用的坐标系外,还支持其它各种地理坐标系和投影坐标系,当在坐标投影转换时,选择“更多”可以选择其它坐标系。

对于不同的功能,本软件所支持的常用坐标系略有不同,本文将会对矢量导入导出、影像导出大图、影像导出瓦片和高程导出所支持的坐标系分别作出说明。 二、矢量导入导出坐标系 矢量导入主要包括导入下载范围和导入矢量数据叠加,这两中导入方式均支持WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80高斯投影、CGCS2000高斯投影、GCJ02经纬度投影、GCJ02 Web 墨卡托投影、BD09 经纬度投影和BD09 Web 墨卡托投影等。 下图为导入沿线路径时,可选择的坐标投影。

下图为导入矢量数据时,可选择的坐标投影。 与导入数据相同,在将矢量数据导出时也可以进行WGS84经纬度投影、WGS84 Web 墨卡托投影、WGS84 UTM 投影、北京54高斯投影、西安80

北京坐标与西安坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法 一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而 来采用克拉索夫斯基椭球体其参数为长半轴为 6378245米扁率为 1 。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用但 该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合在中 国东部地区大地水准面差距自西向东增加最大达+68米其椭球的长半轴与现代 测定的精确值相比109米的缺陷定向不明确椭球短轴未指向国际协议原点 CIO也不是中国地极原点起始大地子午面也不是国际时间局BIH 所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局 部平差逐级控制求得的由于施测年代不同、承担单位不同不同锁段算出的成 果相矛盾给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建 立中国新的国家大地坐标系有关部门根据会议纪要,开展并进行了多方面的工 作,建成了1980西安国家大地坐标系(GDZ80)该坐标系全面描述了椭球的4个 基本参数,同时反映了椭球的几何特性和物理特性这4个参数的数值采用的是 1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭 球 ) 。其主要参数为长半轴为6378140 米扁率为 1/。IAG-1975 椭球参数精度较高能更好地代表和描述地球的几何形状和物理特征。在其椭体 定位方面以我国范围内高程异常平方和最小为原则做到了与我国大地水准面 较好的吻合。 此外,1982年我国已完成了全国天文大地网的整体平差,消除了以前局部平 差和逐级控制产生的不合理影响提高了大地网的精度在上述基础上建立的 1980西安坐标系比1954年北京坐标系更科学、更严密、更能满足科研和经济建 设的需要。 由于北京54坐标系和西安80坐标系是两种不同的大地基准面这两个椭球 参数不同参心所在位置不同指向不同在高斯平面上其纵横坐标轴不重合 因而同一点的坐标是不同的无论是三度带六度带还是经纬度坐标都是不同的其平面位置最大相差80米。 二、转换原理 北京54坐标与西安坐标之间的转换其实是一种椭球参数的转换作为这种 转换在同一个椭球里的转换都是严密的而在不同的椭球之间的转换是不严密 的因此不存在一套转换参数可以全国通用也没有现成的公式来完成转换因此 必须利用具有两套坐标值的公共点实现转换。 以下作者结合工作实际分别给出利用南方测绘公司的地形地籍软件 CASS2008和工具软件把1954年北京坐标转换为1980西安坐标的方法。 三、转换方法 ㈠、利用南方CASS2008进行坐标转换 1、输入公共点坐标数据 首先准备好2至3个公共点即同时拥有54和80两套坐标这些点要覆盖 要转换数据所在在地区。然后打开CASS2008选择“地物编辑”菜单下的“坐 标转换”进入坐标转换界面,在“公共点”下面“转换前”后面的三个输入框中

北京54坐标系与西安80坐标系坐标转换公式与算法

北京54坐标系与西安80坐标系坐标转换公式与算法 地形图由北京54坐标系转换到西安80坐标系应在高斯平面上进行。由于新旧椭球参数不同,参心所在位置也不同,在高斯平面上其纵横坐标轴不重合,因此地形图上各点在两坐标系统下x,y均有一差值。将北京54坐标地形图转换到西安80坐标地形图,就是对每幅旧地图上求出测图控制点的新旧坐标系统之高斯平面坐标的差值,即改正量,通过这些改正量,在旧图上建立新系统的公里网线确定新的图廓点,使之成为一幅新图。通过对我国1∶10万地形图内数千个一二等大地点的计算统计证明,每幅图只要计算一个控制点的高斯平面坐标改正量作为整幅图的公共改正量。而我国的大部分GIS工程均采用大于1∶10万比例尺建库,因此每幅均可用选一点计算高斯平面的改正量作为该图幅公共改正量进行新的地形图转换。新旧地形图转换方法分为两步: 第一步:坐标系统转换,其方法如下: 1.1.1大地坐标转换

式中△e2为第一偏心率平方之差;a,e2分别为克氏椭球的长半径和第一偏心率的平方;L,B为这个点的大地经纬度;△x,△y,△z为两椭球参心的差值。 则这个点在1980西安坐标系中的大地坐标为: 1.1.2根据B80,L80采用高斯投影正算公式计算X80,Y80高斯投影正算公式为: 式中x0=C0B-cosB(c1sinB+c2sin3B+c3sin5B);m0=lcosB;l=L -中央子午线经度值(弧度);L,B为该点的经纬度值

上列二式中: 1.1.3 求取转换改正量 平差改正量的计算1954年北京坐标系所提供的大地点成果没有经过整体平差,而1980西安坐标系提供的大地成果是经过整体平差的数据,所以新旧系统转换还要考虑平差改正量的问题。计算平差改正量比较麻烦,没有一定的数学模式,不同地区,平差改正量差别很大,在我国中部某些地区,平差改正量在1m以下,而在东北地区的某些图幅则在10m以上。在实际计算中,根据这些差值和它们的大地坐标在全国分幅图上分别绘制两张平差改正量分布图(即dx,dy分布图),在分布图上可以直接内播出任何图幅内所求点的平差改正量,即DX2,DY2。 根据转换改正量和平差改正量按下列公式计算总改正量: 式中DX1,DY1为新旧坐标系的转换改正量,DX2,DY2为控制点经整体平差后的平差改正量。

北京54坐标转换为地理坐标的简易方法

北京54坐标转换为地理坐标的简易方法 1. 椭球体、基准面及地图投影 GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。

上述3个椭球体参数如下: 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。 地图投影是将地图从球面转换到平面的数学变换,如果有人说:该点北京54坐标值为X=4231898,Y=21655933,实际上指的是北京54基准面下的投影坐标,也就是北京54基准面下的经纬度坐标在直角平面坐标上的投影结果。 2. GIS中基准面的定义与转换 虽然现有GIS平台中都预定义有上百个基准面供用户选用,但均没有我们国家的基准面定义。假如精度要求不高,可利用前苏联的Pulkovo 1942基准面(Mapinfo中代号为1001)代替北京54坐标系;假如精度要求较高,如土地利用、海域使用、城市基建等GIS系统,则需要自定义基准面。 GIS系统中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出

北京54西安80与WGS84坐标相互转换设置ENVI参数

1.椭球体、基准面及地图投影 GI S中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。 WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数据多以WGS1984为基准。上述3个椭球体参数如下: 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。 地图投影是将地图从球面转换到平面的数学变换,如果有人说:该点北京54坐标值为X=4231898,Y=21655933,实际上指的是北京54基准面下的投影坐标,也就是北京54基准面下的经纬度坐标在直角平面坐标上的投影结果。 2. GIS中基准面的定义与转换 虽然现有GIS平台中都预定义有上百个基准面供用户选用,但均没有我们国家的基准面定义。假如精度要求不高,可利用前苏联的Pulkovo 1942基准面(Mapinfo中代号为1001)代替北京54坐标系;假如精度要求较高,如土地利用、海域使用、城市基建等GIS系统,则需要自定义基准面。 GIS系统中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出版的《城市地理信息系统标准化指南》第76至86页。假设Xg、Yg、Zg表示WGS84地心坐标系

西安80坐标系与北京54坐标系转换

西安80坐标系与北京54坐标系转换 西安80坐标系与北京54坐标系其实是一种椭球参数的转换,这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密的,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X 平移,Y 平移,Z 平移,而将X 旋转,Y 旋转,Z 旋转,尺度变化面DM视为0 。 方法如下(MAPGIS平台中): 第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对(即54坐标x,y,z和80坐标x,y,z); 第二步:将三个点的坐标对全部转换以弧度为单位。(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来) 第三步:求公共点求操作系数(菜单:投影转换/坐标系转换)。如果求出转换系数后,记录下来。 第四步:编辑坐标转换系数。(菜单:投影转换/编辑坐标转换系数。)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 北京54坐标到西安80坐标转换小结:

1、北京54和西安80是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。 2、数字化后的得到的坐标其实不是WGS84的经纬度坐标,因为54和80的转换参数至今没有公布,一般的软件中都没有54或80投影系的选项,往往会选择WGS84投影。 3、WGS8 4、北京54、西安80之间,没有现成的公式来完成转换。 4、对于54或80坐标,从经纬度到平面坐标(三度带或六度带)的相互转换可以借助软件完成。(54和80也有经纬度,只不过我们都用其投影的直角坐标值罢了,不能看到经纬度就以为是wgs84的) 5、54和80间的转换,必须借助现有的点和两种坐标,推算出变换参数,再对待转换坐标进行转换。(均靠软件实现) 6、在选择参考点时,注意不能选取河流、等高线、地名、高程点,公路尽量不选。这些在两幅地图上变化很大,不能用作参考。而应该选择固定物,如电站,桥梁等。 3.高斯投影平面直角坐标XY计算大地坐标纬度B,经度L(反算) A=(54,80)?输入54或80(54为北京坐标系,80为西安坐标系) JX=(1,2,3)? 输入正反换带三项信息(1为正算,2为反算,3为换带计算),选择2 X(0)m? 输入该点高斯投影平面直角坐标X值

4北京54坐标系和西安80坐标系其实是一种椭球参数的转换

北京54坐标系和西安80坐标系其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为他们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若求得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),如果区域范围不大,最远点间的距离不大于30km(经验值),这可以用三参数,即X平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。 方法: 第一步:向地方测绘局(或其他地方)找本区域三个公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z); 第二步:讲三个点的坐标对全部转换以弧度为单位。(菜单:投影转换——输入单点投影转换,计算出这三个点的弧度值并记录下来);第三步:求公共点操作系数(菜单:投影转换——坐标系转换)。如果求出转换系数后,记录下来; 第四步:编辑坐标转换系数(菜单:投影转换——编辑坐标转换系数),最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 详细步骤如下: 首先将MAPGIS平台的工作路径设置为“…..\北京54转西安80”文件夹下。 下面我们来讲解“北京54坐标系”转“西安80坐标系”的转换方法和步骤。 一、数据说明 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),可以向地方测绘局获取。 二、“北京54坐标系”转“西安80坐标系”的操作步骤 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1所示: 图1 1、单击“投影转换”“单下“S坐标系转换”“令,系统弹出“转换坐标值”“话框,如图2所示:

什么是北京54坐标系

什么是北京54坐标系 1.概述 北京54坐标系(BJZ54)是指北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 2.坐标历史 新中国成立以后,全国范围内开展了正规的、全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时政治环境是“一边倒”地亲近苏联,所以采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系。于1954年完成测定工作,故命名为“1954年北京坐标系”。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的大地原点不在北京,而是在前苏联的普尔科沃(Pulkovo)。

普尔科沃天文台 3.椭球参数 椭球坐标参数如下: 长半轴a=6378245m; 短半轴=6356863.0188m; 扁率α=1/298.3; 第一偏心率平方 =0.006693421622。 北京54椭球 4.坐标特点 ①属于参心大地坐标系; ②采用克拉索夫斯基椭球的两个几何参数; ③大地原点在原苏联的普尔科沃; ④采用多点定位法进行椭球定位; ⑤高程基准为1954年青岛验潮站求出的黄海平均海水面; ⑥高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。按我国天文水准路线推算而得。

1957年鄂尔多斯航测像片判读 5.坐标局限性 在当时,北京54坐标系满足了我国测绘事业发展的急需,此后很长一段时间内,也为国家经济建设做出了应有的贡献。但是随着测绘新理论、新技术的不断发展,北京54坐标系的缺点也愈加明显。最大的问题就是精度不够、误差较大。原因是北京54坐标系所采用的克拉索夫斯基椭球参数误差较大,与现代精确值相比长半轴大了约109m。并且,参考椭球面与我国似大地水准面符合较差,存在着自西向东明显的系统倾斜,东部地区最大差值达60余米。

北京54坐标系与西安80坐标系的区别

北京54坐标系与西安80坐标系的区别 北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系,其坐标详细定义可参见参考文献[朱华统1990]。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。 那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即X 平移,Y 平移,Z 平移,而将X 旋转,Y 旋转,Z 旋转,尺度变化面DM视为0 。 方法如下(MAPGIS平台中): 第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对(即54坐标x,y,z 和80坐标x,y,z); 第二步:将三个点的坐标对全部转换以弧度为单位。(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来) 第三步:求公共点求操作系数(菜单:投影转换/坐标系转换)。如果求出转换系数后,记录下来。 第四步:编辑坐标转换系数。(菜单:投影转换/编辑坐标转换系数。)最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

54坐标系、80坐标系、84坐标系之间的转换关系

工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。如x=3250212m,y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。 另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。 2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。 其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。详细方法见第三类。 3,任意两空间坐标系的转换 由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式: 对该公式进行变换等价得到: 解算这七个参数,至少要用到三个已知点(2个坐标系统的坐标都知道),采用间接平差模型进行解算: 其中:V 为残差矩阵; X 为未知七参数; A 为系数矩阵; 解之:L 为闭合差 解得七参数后,利用布尔莎公式就可以进行未知点的坐标转换了,每输入一组坐标值,就能求出它在新坐标系中的坐标。但是要想GPS观测成果用于工程或者测绘,还需要将地方直

WGS84坐标与北京54坐标转换

WGS84坐标与北京54坐标转换 1. 椭球体、基准面及地图投影 GIS中的坐标系定义是GIS系统的基础,正确定义GIS系统的坐标系非常重要。GIS中的坐标系定义由基准面和地图投影两组参数确定,而基准面的定义则由特定椭球体及其对应的转换参数确定,因此欲正确定义GIS系统坐标系,首先必须弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影 (Projection)三者的基本概念及它们之间的关系。 基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的1975地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前大地测量基本上仍以北京54坐标系作为参照,北京54与西安80坐标之间的转换可查阅国家测绘局公布的对照表。WGS1984基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心,目前GPS测量数 据多以WGS1984为基准。 上述3个椭球体参数如下: 椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo 1942、非洲索马里的Afgooye 基准面都采用了Krassovsky椭球体,但它们的基准面显然是不同的。 地图投影是将地图从球面转换到平面的数学变换,如果有人说:该点北京54坐标值为 X=4231898,Y=21655933,实际上指的是北京54基准面下的投影坐标,也就是北京54基准面下的经纬 度坐标在直角平面坐标上的投影结果。 2. GIS中基准面的定义与转换 虽然现有GIS平台中都预定义有上百个基准面供用户选用,但均没有我们国家的基准面定义。假如精度要求不高,可利用前苏联的Pulkovo 1942基准面(Mapinfo中代号为1001)代替北京54坐标系;假如精度要求较高,如土地利用、海域使用、城市基建等GIS系统,则需要自定义基准面。 GIS系统中的基准面通过当地基准面向WGS1984的转换7参数来定义,转换通过相似变换方法实现,具体算法可参考科学出版社1999年出版的《城市地理信息系统标准化指南》第76至86页。假设Xg、Yg、Zg表示WGS84地心坐标系的三坐标轴,Xt、Yt、Zt表示当地坐标系的三坐标轴,那么自定义基准面的7参数分别为:三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值;三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角;最后是比例校 正因子,用于调整椭球大小。 美国国家测绘局(National Imagery and Mapping Agency)公布了世界大多数国家的当地基准面至

相关文档
相关文档 最新文档