文档库 最新最全的文档下载
当前位置:文档库 › 2010高考物理总复习学案:力和物体的平衡

2010高考物理总复习学案:力和物体的平衡

2010高考物理总复习学案:力和物体的平衡
2010高考物理总复习学案:力和物体的平衡

2010高考物理总复习名师学案--力和物体的平衡(36页WORD)

●考点指要

知识点要求程度

1.力是物体间的相互作用,是物体发生形变和物体运动状态变化的原

因.力是矢量.力的合成与分解.

2.重力是物体在地球表面附近所受到的地球对它的引力.重心. Ⅱ

3.形变和弹力.胡克定律. Ⅱ

4.静摩擦,最大静摩擦力. Ⅰ

5.滑动摩擦.滑动摩擦定律. Ⅱ

6.共点力作用下的物体的平衡. Ⅱ

【说明】(1)关于力的合成与分解,在计算方面只要求会应用直角三角形知识求解.

(2)不要求知道静摩擦因数.

●复习导航

本章内容是力学的基础知识.力是贯穿于整个物理学的重要概念,对物体进行受力分析是解决力学问题的基础和关键.力在合成与分解时所遵守的平行四边形定则,也是所有的矢量都遵守的普遍法则.平衡条件(F 合=0)更是广泛应用于力、热、电等各部分内容的题目求解当中.

近几年的高考针对本章内容单独命题的情况较少,主要是与其他内容(牛顿定律、动量、功和能、电磁学等)结合起来进行考查.摩擦力、力的合成与分解都是高考热点内容.

本章知识内容可分成两个单元组织复习:(Ⅰ)力学中的三种常见力;物体受力分析.(Ⅱ)力的合成与分解;共点力作用下的物体的平衡.

第Ⅰ单元力学中的三种常见力·物体受力分析

●知识聚焦

一、力的概念

1.(1)力是物体对物体的作用,力不能脱离物体而独立存在.(2)力的作用效果:使物体发生形变或使物体运动状态发生变化.(3)力是矢量.大小、方向、作用点是力的三要素.(4)力的单位:牛顿(N).

2.力的分类:(1)按力的性质分,可分为重力、弹力、摩擦力、分子力、电磁力、核力等.(2)按力的效果分,可分为压力、支持力、动力、阻力、向心力、回复力等.

二、力学中的三种常见力

1.重力

产生:地球的吸引.

大小:G=mg,在地球上不同位置,同一物体的重力大小略有不同.

方向:竖直向下.

重心:重力的“等效作用点”,物体的重心不一定在物体上.重心相对物体的位置由物体的形状和质量分布决定.质量分布均匀、形状规则的物体的重心在物体的几何中心.

2.弹力:直接接触的物体间由于发生弹性形变而产生的力.

产生条件:(1)两物体直接接触;(2)物体发生弹性形变.

物体所受的弹力必定是由于施力物体发生形变产生的.

弹力方向的确定:(1)压力、支持力的方向总是垂直于接触面,指向被压或被支持的物体.

(2)绳的拉力方向总是沿着绳指向绳收缩的方向.

弹力大小的确定:(1)弹簧在弹性限度内遵守胡克定律F=kx.(2)一般情况下应根据物体的运动状态,利用牛顿定律或平衡条件来计算.

3.摩擦力:相互接触的物体间发生相对运动或有相对运动趋势时,在接触面处产生的阻碍物体间相对运

动的力.

(1)静摩擦力

产生条件:两物体①直接接触;②相互挤压;③接触面不光滑;④有相对滑动的趋势.

方向:静摩擦力的方向沿着接触面的切线,与相对滑动趋势的方向相反.

大小:静摩擦力的大小可在0与最大静摩擦力F m之间变化,即0<F≤F m.静摩擦力的大小与压力大小无关,由物体的运动状态和物体所受的其他力决定,可根据牛顿第二定律或平衡条件求静摩擦力的大小.

(2)滑动摩擦力

产生条件:两物体①直接接触;②相互挤压;③接触面不光滑;④有相对滑动.

方向:沿着接触面的切线与相对滑动的方向相反(不一定与物体的运动方向相反)

大小:F f=μF N

三、物体受力分析

对物体进行受力分析是解决力学问题的基础,是研究力学问题的重要方法.受力分析的程序是:

1.根据题意选取研究的对象.选取研究对象的原则是要使对问题的研究尽量简便.研究对象可以是单个物体或物体的某一部分,也可以是由几个物体组成的系统.

2.把研究对象从周围的物体中隔离出来.为防止漏掉某个力,要养成按一般步骤分析的好习惯.一般应先分析重力;然后环绕物体一周,找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力;最后再分析其他场力(电场力、磁场力等).

3.每分析一个力,都要想一想它的施力物体是谁,这样可以避免分析出某些不存在的力.如竖直上抛的物体并不受向上的推力,而刹车后靠惯性滑行的汽车也不受向前的“冲力”.

4.画完受力图后要进行定性检验,看一看根据你画的受力图,物体能否处于题目中所给的运动状态.

5.对物体受力分析时应注意以下几点:(1)不要把研究对象所受的力与它对其他物体的作用力相混淆.(2)对于作用在物体上的每一个力,都必须明确它的来源,不能无中生有.(3)分析的是物体受到哪些“性质力”(按性质分类的力),不要把“效果力”与“性质力”混淆重复分析.例如,有人认为在竖直面内做圆周运动的物体运动至最高点时(图1—1—1)受三个力的作用:重力、绳的拉力和向心力.实际上这个向心力是重力与绳拉力的合力,是“效果力”,不属于单独某一性质的力,不能重复分析.

图1—1—1

●疑难辨析

1.重力是由于地面附近的物体受到地球的万有引力而产生的,但并不等同于该引力.因为此引力除产生重力外,还要提供物体随地球自转所需的向心力.因物体在地球上不同纬度处随地球自转所需向心力大小不同,故同一物体在地球上不同纬度处重力大小不同.不过由于此原因引起的重力变化不大,一般情况下,可不考虑地球的自转效应.

2.弹力产生的条件是“接触且有形变”.若物体间虽然接触但无拉伸或挤压,则并无弹力产生.但由于形变一般很小,难于观察,因而判断弹力是否存在常需采用“反证法”,由已知运动状态和其他条件,利用平衡条件或牛顿运动定律分析推理.例如,要判断图1—1—2中静止在水平面上的球是否受到斜面对它的弹力作用,可先假设有弹力F N2存在,则此球在水平方向所受合力不为零,必加速运动,与所给静止状态矛盾,说明此球与斜面间虽接触,但并不挤压,并不存在弹力F N2.

图1—1—2

3.静摩擦力大小、方向的确定既是本单元的重点,也是难点.判断物体间有无静摩擦力及确定静摩擦力方向时常用的方法是:

(1)假设法.即假设接触面光滑,看物体是否会发生相对运动;若发生相对运动,则说明物体原来的静止是有运动趋势的静止.且假设接触面光滑后物体发生的相对运动方向即为原来相对运动趋势的方向,从而确定静摩擦力的方向.

(2)根据物体所处的运动状态,应用力学规律判定.如图1—1—3中物块A和B在外力F作用下一起沿水平面向右以加速度a做匀加速直线运动时,若A的质量为m,则很容易确定A受的静摩擦力大小为ma,方向水平向右.

图1—1—3

4.深刻领会“相对”二字的含义,正确理解摩擦力的概念.

(1)静摩擦力产生在相对静止(有相对滑动趋势)的两物体间,但这两个物体不一定静止,它们可能一起运动,所以,受静摩擦力作用的物体不一定静止.

滑动摩擦力产生在相对滑动的两物体之间,但受到滑动摩擦力作用的物体可能是静止的.

(2)摩擦力的方向一定与相对滑动的方向相反,或与相对滑动趋势的方向相反,但摩擦力的方向不一定与物体的运动方向相反.摩擦力的方向与物体的运动方向可能相同,充当动力,对物体做正功,例如,在运行的传送带上放一初速为零的工件A(如图1—1—4),则在工件A未达到与传送带速度相等前,A相对传送带向左滑动,但相对地仍为向右运动.所以工件所受滑动摩擦力的方向与工件的运动方向是一致的.此滑动摩擦力是动力,对工件做正功.摩擦力的方向可能与物体的运动方向相反,充当阻力,对物体做负功.摩擦力的方向还可能与运动方向垂直(例如静摩擦力提供向心力),等等,总之摩擦力的方向与物体的运动方向没有确定关系.

图1—1—4

5.摩擦力与弹力的关系

(1)产生摩擦力的条件是在产生弹力的条件基础上,增加了接触面不光滑和物体间有相对滑动或相对滑动趋势.因此,若两物体间有弹力产生,不一定产生摩擦力,但若两物体间有摩擦力产生,必有弹力产生.

(2)在同一接触面上产生的弹力和摩擦力的方向相互垂直.

(3)滑动摩擦力大小与同一接触面上的弹力(压力)大小成正比:F f=μF N.而静摩擦力(除最大静摩擦力外)与压力无关.

●典例剖析

[例1]均匀长棒一端搁在地面上,另一端用细线系在天花板上,如图1—1—5所示,若细线竖直,试分析棒的受力情况.

图1—1—5 图1—1—6

【解析】取棒为研究对象,它只受三个力的作用,其中重力G竖直向下,支持力F N垂直于地面竖直向上,绳子拉力F T沿绳竖直向上.如图1—1—6所示.

虽然地面不光滑,棒并不受静摩擦力的作用.因为重力G、支持力F N和拉力F T均沿竖直方向,所以棒在水平方向上没有运动趋势,也就不受静摩擦力了.

【思考】(1)若悬线不竖直,棒的受力情况可能如何?

(2)若水平面光滑,悬线可能不竖直吗?

【思考提示】(1)若悬线不竖直,棒受四个力作用:重力、支持力、线的拉力和摩擦力.

(2)若水平光滑,悬线一定竖直.

【说明】对此类题目的分析,多数同学从想当然出发,只要没告诉地面是否光滑,不考虑题目所告诉的物理状态,就认为有摩擦.希望同学们在画受力图时要养成这样的好习惯;不管题目难易,都要遵循前面讲的受力分析的程序.

【设计意图】(1)练习受力分析的方法.(2)巩固静摩擦力的概念.

[例2]如图1—1—7所示,C是水平地面,A、B是两个长方形物块,F是作用在物块B上沿水平方向的力,物块A和B以相同的速度做匀速直线运动,由此可知,A、B间的动摩擦因数μ1和B、C间的动摩擦因数μ2有可能是

图1—1—7

①μ1=0,μ2=0 ②μ1=0,μ2≠0

③μ1≠0,μ2=0 ④μ1≠0,μ2≠0

A.只有②

B.只有④

C.①③

D.②④

【解析】由于A、B一起做匀速直线运动,所以,B一定受到水平地面的摩擦力,故μ2≠0;A、B间没有相互作用的摩擦力,故可能是μ1=0,也可能μ1≠0,正确选项为D.

【思考】(1)若A、B一起向右做加速运动,A、B间是否有摩擦力?若有,方向如何?

(2)若A、B一起向右做减速运动,A、B间是否有摩擦力?若有,方向如何?

【思考提示】(1)有摩擦力,A所受静摩擦力的方向向右,A对B的摩擦力向左.

(2)有摩擦力,A所受静摩擦力向左,A对B的摩擦力向右.

【说明】在两物体的接触面上若有摩擦力产生,则物体间的动摩擦因数必定不为零;若在两物体的接触面没有摩擦力产生,则该接触面上的动摩擦因数可能为零,也可能不为零.

【设计意图】深化对摩擦力产生条件的理解,巩固摩擦力的分析方法.

[例3]如图1—1—8所示.小车上固定着一根弯成θ角的曲杆,杆的另一端固定一个质量为m的球.试分析下列情况下杆对球的弹力的大小和方向:(1)小车静止;(2)小车以加速度a水平向右运动.

图1—1—8

【解析】 (1)小车静止时,球受到两个力的作用.重力和杆的弹力,

根据平衡条件知,杆对球的弹力大小等于球的重力,方向竖直向上.

(2)选小球为研究对象.小车以加速度a 向右运动时,小球所受重力和

杆的弹力的合力一定水平向右,此时,弹力F 的方向一定指向右上方,只有这样,

才能保证小球在竖直方向上保持平衡,水平方向上具有向右的加速度.假设小球所

受弹力方向与竖直方向的夹角为θ(如图1—1—9),根据牛顿第二定律有F sin θ

=ma ,F cos θ=mg .

解得 F =m g

a a g =+θtan ,22. 【思考】 (1)小车如何运动时,弹力的方向才沿杆的方向?

(2)试比较一下绳、杆、弹簧的弹力方向,它们各有何特点?

【思考提示】 (1)当小车水平向右的加速度为a =gtan θ时,弹力的方向沿杆.

(2)绳只能发生拉伸形变,故绳只能产生沿伸长方向的拉力;弹簧可以发生拉伸形变,也可以发生压缩形变,故弹簧可以产生沿弹簧方向的拉力,也可以产生沿弹簧方向的支持力;杆既可以发生拉伸形变,也可以发生压缩形变,还可以发生弯曲形变,故杆可产生沿杆方向的拉力和支持力,也可以产生不沿杆方向的弹力.

【说明】 杆可以发生拉伸形变、压缩形变、弯曲形变,所以,杆产生的弹力方向可能沿杆,也可能不沿杆.

【设计意图】 说明不同模型发生形变的不同,产生弹力的不同.

[例4]把一重为G 的物体,用一个水平的推力F =kt (k 为恒量,t 为时间)压在竖直的足够高的平整的墙上(图1—1—10),从t =0开始物体所受的摩擦力F f 随t 的变化关系是图1—1—11中的哪一个

图1—1—11

【解析】 选物体为研究对象,按重力、弹力、摩擦力等顺序画出

物体的受力情况示意图如图1—1—12所示,在确认无误后分析摩擦力随时间的变

化情况:物体在竖直方向上只受重力G 和摩擦力F f 的作用.由于F 从零开始均匀增

大,所以物体整个过程的大体运动情况应该是:先加速下滑,再减速下滑、最后静

止不动.在解题过程中,要掌握“先粗后细”的原则.开始一段时间F f <G ,物体加

速下滑.

图1—1—

9 图1—1—

10

F f=G时,物体速度达到最大值.之后F f>G,物体向下做减速运动,直至速度减为零.

在整个运动过程中,摩擦力为动摩擦力,其大小为F f=μF N=μF=μkt,即F f与t成正比,是一段过原点的直线.

当物体速度减为零之后,动摩擦变为静摩擦,其大小由平衡条件可知F f=G.所以物体静止后的图线为平行于t轴的线段.故本题正确答案为B.

【说明】要注意静摩擦力和滑动摩擦力跟压力关系的不同:滑动摩擦力跟压力成正比,静摩擦力(除最大静摩擦力外)大小跟压力无关.

【设计意图】加深对静摩擦力和滑动摩擦力区别的理解.

●反馈练习

★夯实基础

1.关于力的概念,下列哪些说法是正确的

A.力是使物体产生形变和速度的原因

B.一个力必定联系着两个物体,其中每个物体既是受力物体又是施力物体

C.只要两个力的大小相同,它们产生的效果一定相同

D.两个物体相互作用,其相互作用力可以是不同性质的力

【解析】力是产生加速度的原因,而不是产生速度的原因,故A错,任何一个力都有施力物体和受力物体,由于力的作用是相互的,所以,施力物体必定也是受力物体,B对.力的作用效果由其大小、方向、作用点决定,不仅仅由大小决定,故C错.一对相互作用力必定是同种性质的力,故D错.

【答案】B

2.关于物体的重心,下列说法中正确的是

A.重心就是物体上最重的一点

B.形状规则的物体的重心,一定在它的几何中心

C.重心是物体所受重力的作用点,故重心一定在物体上

D.用细软线将物体悬挂起来,静止时重心一定在悬线所在直线上

【解析】重心是物体上各点所受重力的合力的作用点,是一种等效作用点,故重心不一定在物体上,更不是物体最重的一点,A、C均错.物体重心的位置由物体的形状和质量分布决定,形状规则且质量分布均匀的物体的重心,才一定在物体的几何中心,B错.用细线悬挂物体静止时,重力和线的拉力是一对平衡力,必定共线,所以,重心一定在悬线所在的直线上.D对.

【答案】D

3.关于相互接触的两物体之间的弹力和摩擦力,下列说法正确的是

A.有摩擦力一定有弹力

B.摩擦力的大小与弹力成正比

C.有弹力一定有摩擦力

D.弹力是动力,摩擦力是阻力

【解析】根据弹力和摩擦力产生的条件知,有摩擦力必定有弹力,但有弹力不一定有摩擦力,A对,C错.滑动摩擦力与弹力(压力)成正比,静摩擦力大小与弹力(压力)大小无关,B错.弹力和摩擦力都可以是动力,也可以是阻力,还可能既不是动力也不是阻力,D错.

【答案】A

4.卡车上装着一只始终与它相对静止的集装箱,不计空气阻力,下列说法正确的是

①当卡车开始运动时,卡车对集装箱的静摩擦力使集装箱随卡车一起运动

②当卡车匀速运动时,卡车对集装箱的静摩擦力使集装箱随卡车一起运动

③当卡车匀速运动时,卡车对集装箱的静摩擦力等于零

④当卡车制动时,卡车对集装箱的静摩擦力等于零

A.①②

B.只有③

C.只有④

D.①③

【解析】集装箱随汽车一起由静止加速运动时,假设二者的接触面是光滑的,则汽车

加速时,集装箱由于惯性要保持原有静止状态.因此它将相对于汽车向后滑动,而实际集装

箱没有滑动,说明只有相对汽车向后滑的趋势,所以集装箱受到向前的静摩擦力.故①对.

集装箱随汽车一起匀速运动时,二者无相对滑动,假设集装箱受水平向右的摩擦力,则其

受力如图所示,跟木箱接触的物体只有汽车,汽车最多对它施加两个力(支持力F1和摩擦力

F2),由二力平衡条件知:F1与G抵消,但没有力与F2抵消,力是改变物体运动状态的原

因,木箱在F2的作用下,速度将发生变化,不能做匀速直线运动,这与题意矛盾,故②错③对.汽车刹车时,速度减小,假设木箱与汽车的接触面是光滑的,则集装箱相对汽车向前滑动,而实际没动,说明集装箱受到向后的摩擦力.故④错.

【答案】D

5.下列关于物体受静摩擦力作用的叙述中,正确的是

A.静摩擦力的方向一定与物体的运动方向相反

B.静摩擦力的方向不可能与物体的运动方向相同

C.静摩擦力的方向可能与物体的运动方向垂直

D.静止物体所受静摩擦力一定为零

【解析】静摩擦力的方向一定与相对滑动趋势的方向相反,跟物体的运动方向没有确定关系,它们可能相同、可能相反、可能垂直,等等,故A、B错,C对.静止的物体所受的合力一定为零,摩擦力不一定为零,D错.

【答案】C

6.如图1—1—13所示,重50 N物体,在水平路面上向左运动,它与路面间的动摩擦因数为0.2,同时受到水平向右F=10 N的拉力作用,则它所受摩擦力的大小和方向应是

图1—1—13

A.10 N,向左

B.10 N,向右

C.0 N

D.20 N,向右

【解析】物体所受的滑动摩擦力大小为F f =μF N =μG=10 N.其方向与相对地面的运动方向相反——向右.

【答案】B

7.运动员用双手握住竖直的竹竿匀速攀上和匀速下滑时,他所受到的摩擦力分别为F上和F下,那么它们的关系是

A.F上向上,F下向下,F上=F下

B.F上向下,F下向上,F上>F下

C.F上向上,F下向上,F上=F下

D.F上向上,F下向下,F上>F下

【解析】匀速攀上,匀速滑下时,所受摩擦力方向均向上,且大小等于重力.

【答案】C

8.如图1—1—14所示,A、B两物体叠放在一起,用手托住,让它们静靠在墙边,然后释放,它们同时沿竖直墙面向下滑,已知m A>m B,则物体B

图1—1—14

A.只有一个重力

B.受到重力和一个摩擦力

C.受到重力、一个弹力和一个摩擦力

D.受到重力、一个摩擦力、两个弹力

【解析】由于A、B与墙之间没有弹力,故A、B一起下滑时不受摩擦力作用,它们做自由落体运动,A、B之间的相互作用力也为零,所以,A、B都是只受重力作用.

【答案】A

9.用一水平力F将两铁块A和B紧压在竖直墙上而静止,如图1—1—15所示,对此,下列说法中正确的是

图1—1—15

A.铁块B受A给它的摩擦力方向可能向上,也可能向下

B.铁块B肯定受墙给它的竖直向上的摩擦力

C.铁块A肯定对B施加竖直向上的摩擦力

D.B受墙的摩擦力方向可能向上,也可能向下

【解析】A在竖直方向上受两个力:重力、摩擦力,摩擦力只能是B对它施加的.对B,在竖直方向上,受重力和两个摩擦力,且墙对B的摩擦力大小等于AB重力之和.

【答案】B

★提升能力

10.如图1—1—16是皮带传动装置示意图,A为主动轮,B为从动轮,关于A轮上P点和B轮上Q点所受摩擦力的方向,下列说法正确的是

图1—1—16

A. P、Q点所受摩擦力的方向均沿轮的切线向上

B.P、Q点所受摩擦力的方向均沿轮的切线向下

C.P、Q点所受摩擦力的方向沿轮的切线,Q向上,P点向下

D.P、Q点所受摩擦力的方向沿轮的切线,P点向上,Q点向下

【解析】A轮靠静摩擦力带动皮带,故A轮上P点所受的静摩擦力沿轮的切线向下;皮带靠静摩擦力带动B轮,故B轮上Q点所受的静摩擦力的方向沿轮的切线向下,选项B正确.

【答案】B

11.某人推着自行车前进时,地面对前轮的摩擦力为F 1,对后轮的摩擦力为F 2;该人骑着自行车前进时,地面对前轮的摩擦力为F 3,对后轮的摩擦力为F 4.下列说法正确的是

A.F 1与车前进方向相同

B.F 2与车前进方向相同

C.F 3与车前进方向相同

D.F 4与车前进方向相同

【解析】 推车前进时,两轮在推力作用下与地面接触处都有相对地面向前滑的趋势,故均受向后的摩擦力;骑车前进时,后轮是主动轮,在它与地面接触处有相对地面向后滑的趋势,故受向前的摩擦力,前轮是从动轮,它在与地面接触处有相对于地面向前滑的趋势,故受向后的摩擦力.选项D 正确.

【答案】 D

12.如图1—1—17所示,在水平桌面上放一木块,用从零开始逐渐增大的水平拉力F 拉着木块沿桌面运动,则木块所受到的摩擦力F f 随拉力F 变化的图象(图1—1—18)正确的是(最大静摩擦力大于滑动摩擦力)

图1—1—18

【解析】 当木块不受拉力时(F =0),桌面对木块没有摩擦力(F f =0).

当木块受到的水平拉力F 较小时,木块仍保持静止,但有向右运动的趋势,桌面对木块产生静摩擦力,其大小与F 相等,方向相反.

随着水平拉力F 不断增大,木块向右运动的趋势增强,桌面对木块的静摩擦力也相应增大,直到水平拉力F 足够大时,木块开始滑动.桌面对木块的静摩擦力达最大值F m ,在这个过程中,由木块水平方向二力平衡条件知,桌面对木块的静摩擦力F f 始终与拉力F 等值反向,即随着F 的增大而增大.

木块滑动后,桌面对它的阻碍作用是滑动摩擦力,F f =μF N =μ G ,它小于最大静摩擦力,并且,在木块继续滑动的过程中保持不变.

【答案】 D

※13.如图1—1—19所示,物体M 静止于倾斜放置的木板上,当倾角θ由很小缓慢增大到90°的过程中,木块对物体的支持力F N 和摩擦力F f ′的变化情况是

图1—1—19

A.F N 、F f 都增大

B.F N 、F f 都减小

C.F N 增大,F f 减小

D.F N 减小,F f 先增大后减小

【解析】 木板倾角较小时,物体相对木板静止且处于平衡状态,由平衡条件得

图1—1—17

F N=mg cosθ

F f=Mg sinθ

所以,在θ逐渐增大过程中,F N减小,F f增大.

当倾角θ增大到一下程度,物体开始相对木板滑动,则

F N=Mg cosθ

F f=μF N=μMg cosθ

所以,在θ继续增大的过程中,F N继续减小,F f也逐渐减小.故D选项正确.

【答案】D

※14.用劲度系数k=490 N/m的轻弹簧,沿水平桌面水平拉一木板使它做匀速直线运动,弹簧的长度l1=12 cm.若在木板上加上一个质量m=5 kg的铁块,仍用原弹簧拉住它沿水平桌面做匀速运动,弹簧的长度l2=14 cm,则木板与水平桌面间的动摩擦因数μ为多少?

【解析】根据胡克定律和平衡条件得

k(l1-l0)=μMg

k(l2-l0)=μ(M+m)g

联立解得μ=0.2

【答案】0.2

※15.如图1—1—20所示,在两块木板中间夹着一个50 N重的木块A,左右两边对木板的压力F均为150 N,木板和木块间的动摩擦因数为0.2,如果想从下面把这木块拉出来,需要多大的力?如果想从上面把它拉出来,需要多大的力?

图1—1—20

【解析】用最小的力拉动物体,使物体匀速运动,此时物体处于平衡状态,故可用力的平衡条件解决问题.

(1)从下面把木块拉出来,这时摩擦力F f向上,左右两侧各等于F f=0.2×150 N=30 N,G+F1=2F f,F1=2F f-G=2×30 N-50 N=10 N.

(2)从上面把木块拉出来,这时摩擦力向下,左右两侧各等于F f=30 N.

F2=G+2F f

=50 N+2×30 N=110 N

【答案】10 N;110 N

第Ⅱ单元力的合成与分解·共点力作用下的物体的平衡

●知识聚焦

一、力的合成与分解

1.合力与分力的关系是等效替代

....关系.

2.力的合成与分解都遵循平行四边形定则.计算时首先要根据题目要求按照力的平行四边形定则作出力的合成或分解的图示,再根据数学知识解三角形求解合力与分力.主要要求解直角三角形问题,对于较简单的斜三角形问题,也应能利用正弦定理、余弦定理或相似三角形的知识求解,但不作为重点.

3.二力(F 1、F 2)合成的合力(F )的取值范围为:|F 1-F 2|≤F ≤(F 1+F 2).

在两个分力大小一定的情况下,随着两分力夹角的增大,合力逐渐减小.当两分力夹角为零时,合力最大:F max =F 1+F 2;当两分力夹角为180°,合力最小:F min =|F 1-F 2|.

4.把一个已知力分解为两个互成角度的分力,如果没有条件限制,可以分解为无数对分力.要得到确定的答案,必须给出一些附加条件.如已知两个分力的方向,已知一个分力的大小及方向等.在实际问题中,要根据力产生的实际作用效果或处理问题的方便来决定如何分解.

5.力的正交分解:在很多问题中,常把一个力分解为互相垂直的两个分力.特别在物体受多个力作用时,把物体受到的各力都分解到互相垂直的两个方向上去,然后分别求每个方向上的力的代数和.这样就可把复杂的矢量运算转化为互相垂直方向上的简单的代数运算.

二、共点力作用下的物体的平衡

1.平衡状态:物体处于静止或匀速直线运动状态,叫做平衡状态.

物体处于平衡状态的本质特征是加速度为零.

2.平衡条件:物体所受的合外力为零:F 合=0.

平衡条件常用的表达形式:

(1)在正交分解法中???==00y

x F F (2)物体在多个共点力的作用下处于平衡状态,其中某一个力跟其余力的合力大小相等、方向相反、作用在一条直线上.

3.二力平衡时,二力等值反向共线;三力(非平行)平衡时,三力共面共点.

●疑难辨析

1.力的分解的几种情况

(1)已知合力和两个分力的方向求两个分力的大小,有惟一解.

(2)已知合力和一个分力(大小、方向)求另一个分力(大小、方向),有惟一解.

(3)已知合力和两分力的大小求两分力的方向:①F >F 1+F 2,无解;②F =F 1+F 2,有惟一解,F 1和F 2跟F 同向;③F =F 1-F 2,有惟一解;F 1与F 同向,F 2与F 反向;④F 1-F 2<F <F 1+F 2,有无数组解(若限定在某一平面内,有两组解).

(4)已知合力F 和F 1的大小、F 2的方向(F 2与合力的夹角为θ):①F 1<F sin θ,无解;②F 1=F sin θ,有惟一解;③F sin θ<F 1<F ,有两组解;④F 1≥F ,有惟一解.

2.求解平衡问题常用的方法

(1)有不少三力平衡问题,既可从平衡的观点(根据平衡条件建立方程)求解——平衡法,也可从力的分解的观点(将某力按其作用效果分解)求解——分解法.两种方法可视具体问题灵活选用.但平衡法是求解平衡问题的基本方法.特别对三个以上力的平衡问题,分解法失效,平衡法照样使用.

(2)相似三角形法:通过力三角形与几何三角形相似求未知力.对解斜三角形的情况更显优越.

(3)力三角形图解法:当物体所受的力变化时,通过对几个特殊状态画出力图(在同一图上)对比分析,使动态问题静态化,抽象问题形象化,问题将变得易于分析处理(如典例剖析中例2).

●典例剖析

[例1]刀、斧、凿、刨等切削工具的刃都叫做劈,劈的截面是一个三角形,如图1—2—1所示,使用劈的时候,在劈背上加力F ,这个力产生的作用效果是使劈的两侧面推压物体,把物体劈开.设劈的纵截面是一个等腰三角形,劈背的宽度是d ,劈的侧面的长度是L .试证明劈的两个侧面对物体的压力F 1、F 2满足:

F 1=F 2=d

L F .

图1—2—1

【解析】 根据力F 产生的作用效果,可以把力F 分解为两个垂直于侧面的力F 1′、F 2′,如图1—2—2所示,由对称性可知,F 1′=F 2′.根据力三角形△OF 1′F 与几何三角形△ACB 相似可得

图1—2—2

d

F L F ='1 所以F 1′=F 2′=d

L F 由于F 1=F 1′,F 2=F 2′,

故F 1=F 2=d

L F 【思考】 试根据F 1=F 2=d

L F 说明,在F 一定时,劈的夹角越小,即劈越锋利,切削工具越容易劈开物体. 【思考提示】 劈越锋利,

d L 越大,在F 一定时分力F 1、F 2就越大,所以越容易劈开物体. 【说明】 分解力时常常根据力的实际作用效果分析其分力的方向,然后再根据平行四边形定则画出平行四边形.

【设计意图】 (1)说明力的分解的方法;(2)使学生体会物理知识与生活实际的联系,养成用所学物理知识分析解决实际问题的习惯并提高能力.

[例2]如图1—2—3所示,把球夹在竖直墙AC 和木板BC 之间,不计摩擦,球对墙的压力为F N 1,球对板的压力为F N 2.在将板BC 逐渐放至水平的过程中,下列说法中,正确的是

图1—2—3

A.F N 1和F N 2都增大

B.F N 1和F N 2都减小

C.F N 1增大,F N 2减小

D.F N 1减小,F N 2增大

【解析】 虽然题目中的F N 1和F N 2涉及的是墙和木板的受力情况,但研究对象还只能取球.由于球处于一个动态平衡过程,F N 1和F N 2都是变力,画受力图可以先画开始时刻的,然后再根据各力的关系定性或定量地讨论某力的变化规律.

图1—2—4

方法1:

球所受的重力G 产生的效果有两个:对墙的压力F N 1和对板的压力F N 2.根据G 产生的效果将其分解.如图1—2—4所示,则F 1=F N 1,F 2=F N 2.从图中不难看出,当板BC 逐渐被放平的过程中,F N 1的方向保持不变而大小逐渐减小,F N 2与G 的夹角逐渐变小,其大小也逐渐减小.因此本题的正确答案为B.

图1—2—5 图1—2—6

方法2:由于球处于平衡状态,所以弹力F N 1、F N 2的合力F 跟重力是一对平衡力,大小、方向均不变,如图1—2—5所示,画出力的矢量三角形如图1—2—6所示,在板BC 逐渐放至水平的过程中,除合力F 恒定外,墙对球的弹力F N 1的方向也不改变,而F N 2绕O 点为轴顺时转动,α角逐渐减小到0,不难看出,F N 1、F N 2都逐渐减小,当木板水平时,

F N 1=0,

F N 2=G

方法3:由图1—2—6得

F N 1=F tan α=

G tan α

F N 2=α

αcos cos G F = 由这个表达式不难看出,在BC 木板逐渐转成水平的过程中,α角减小,F N 1、F N 2都逐渐减小.

【说明】 利用图解法分析动态平衡问题,具有直观、简便等优点,但在使用中有两点需要注意:

1.本方法所适用的基本上都是“三力平衡”问题,且物体所受的三力中,有一个恒力(如G),还有一个是方向不变仅大小变的力(如F N1),另一个则是大小和方向都变的力(如F N2).否则,用图解法分析不一定简便.

2.作图时要规范,也可仅讨论其中的一个三角形,要特别注意方向变化的那个力,要切实搞清其方向变化的范围.

【设计意图】通过本例说明动态分析的方法.

[例3]用轻质细线把两个质量未知的小球悬挂起来,如图1—2—7所示,今对小球a持续施加一个向左偏下30°的恒力,对小球b持续施加一个向右偏上30°的同样大的恒力,最后达到平衡,表示平衡状态的图1—2—8中的

图1—2—7 图1—2—8

【解析】方法1:分别以小球a、b为研究对象.小球b受到重力m2g、外加恒力F2.线中张力F T2,平衡时,F2与F T2的合力必与m2g等值反向.小球a受到重力m1g、外加恒力F1、线中张力F T1、以及上面悬线张力F T(方向未定).由于F T1与F T2、F1与F2等值反向,因此,F T1与F1的合力R1也必定与R2等值反向,即为竖直向下,与m1g同向.由此可见,小球a平衡时上面悬线的张力F T也应在竖直方向(图1—2—9).

图1—2—9

方法2:以小球a、b和它们之间的连线组成的整体为研究对象.这一整体受到的外力有:重力m1g、m2g,外加恒力F1、F2,上面悬线弹力F T(方向未定).由于F1、F2等值反向,互相抵消.平衡时,悬线弹力F T必与两重力(m1+m2)g等值反向,即悬线应在竖直位置(图1—2—10).选项A正确.

图1—2—10

【说明】 使用整体法时,可以不考虑小球a 、b 通过其间细线的相互作用,仅需从整体所受外力出发,请读者结合本题,仔细体会隔离法和整体法的应用.

【设计意图】 通过本例说明用整体法和隔离法分析问题的方法及各自的特点.

※[例4]如图1—2—11所示,小球质量为m ,用两根轻绳BO 、CO 系好后,将绳固定在竖直墙上,在小球上加一个与水平方向夹角60°的力F ,使小球平衡时,两绳均伸直且夹角60°.则力F 的大小应满足什么条件?

图1—2—11 图1—2—12

【解析】 本题为静力学类问题,并有临界条件需分析,当F 力太小时,CO 线会松驰,当F CD =0时物体受力如图1—2—12有

F min sin60°×2=mg

所以F min =3

3mg 当F 力太大时,OB 线会松弛,当F OB =0时

受力如图1—2—13所示

所以F max =3

3230cos =?mg mg 综上所述F 应满足的条件为:

33mg ≤F ≤332mg

图1—2—13

【说明】静力学类问题,首要任务应认真画出各状态物体的受力图,再据受力图用正交分解等方法进行运算.临界点的正确判定是解题的关键.

【设计意图】通过本例说明如何判断临界条件并根据临界条件解决临界问题.

●反馈练习

★夯实基础

1.将一个力F分解为两个不为零的分力,下列哪些分解方法是不可能的

A.一个分力垂直于F

B.两个分力都与F在一条直线上

C.一个分力的大小与F的大小相等

D.一个分力与F相同

【解析】若一个分力与F相同(大小、方向均相同),则另一分力必为零,不符合题目要求.

【答案】D

2.物体受共点力F1、F2、F3作用而做匀速直线运动,则这三个力可能选取的数值为

A.15 N、5 N、6 N

B.3 N、6 N、4 N

C.1 N、2 N、10 N

D.1 N、6 N、N

【解析】物体在F1、F2、F3作用下而做匀速直线运动,则三个力的合力必定为零,只有B选项中的三个力的合力可能为零,故选B.

【答案】B

3.一组力作用于一个物体,其合力为零.现把其中的一个大小为20 N的力的作用方向改变90°而大小不变,那么这个物体所受力的合力大小是______.

【解析】由于物体所受的合力为零,则除20 N以外的其他力的合力大小为20 N,方向与20 N的力方向相反,若把20 N的力的方向改变90°,则它与其余力的合力垂直,由平行四边形定则知物体所受力的合

力大小为202N.

【答案】202N

4.如图1—2—14所示,物块在力F作用下向右沿水平方向匀速运动,则物块受的摩擦力F f与拉力F的合力方向应该是

图1—2—14

A.水平向右

B.竖直向上

C.向右偏上

D.向左偏上

【解析】对物块进行受力分析如图所示:除F与F f外,它还受竖直向下的

重力G及竖直向上的支持力F N,物块匀速运动,处于平衡状态,合力为零.由于

重力G和支持力F N在竖直方向上,为使这四个力的合力为零,F与F f的合力必

须沿竖直方向.由平行四边形定则可知,F与F f的合力只能竖直向上.故B正确.

【答案】B

5.如图1—2—15所示,物体静止于光滑水平面M上,力F作用于物体O点,现要使物体沿着OO′方向做加速运动(F和OO′都在M水平面内).那么,必须同时再加一个力F′,这个力的最小值是

图1—2—15

A.F cosθ

B.F sinθ

C.F tanθ

D.F cotθ

【解析】为使物体在水平面内沿着OO′做加速运动,则F与F′的合力方向应沿着OO′,为使F′最小,F′应与OO′垂直,如图所示,故F′的最小值为F′=F sinθ,B选项正确.

【答案】B

6.某运动员在单杠上做引体向上的动作,使身体匀速上升.第一次两手距离与肩同宽,第二次两手间的距离是肩宽的2倍,比较运动员两次对单杠向下的作用力的大小;其结果为______.

【解析】运动员两次对单杠向下的作用力都是mg.

【答案】mg

7.一根轻质细绳能承受的最大拉力是G,现把一重为G的物体系在绳的中点,两手先并拢分别握住绳的两端,然后缓慢地左右对称分开,若想绳不断,两绳间的夹角不能超过

A.45°

B.60°

C.120°

D.135°

【解析】当两绳间的夹角为120°时,两绳的拉力等于G;若两绳的夹角大于120°,两绳的拉力大于G;若两绳间的夹角小于120°,两绳的拉力小于G,故选C.

【答案】C

8.如图1—2—16所示,一个重为G的木箱放在水平地面上,木箱与水平面间的动摩擦因数为μ,用一个与水平方向成θ角的推力F推动木箱沿地面做匀速直线运动,则推力的水平分力等于

图1—2—16

①F cosθ ②μG/(cosθ-μsinθ)

③μG/(1-μtanθ) ④F sinθ

其中正确的是

A.只有①

B.只有④

C.①③

D.②④

【解析】F产生两个效果:使物体水平向前,同时使物体压紧水平面;如图,可

将F分解为沿水平方向的分力F1和沿竖直方向的分力F2.因为木箱匀速运动,所以水平

方向、竖直方向上的合力均为零.

故F cosθ=μ(G+F sinθ)①

解得F=μG/(cosθ-μsinθ)②

由①②得C对.

【答案】C

9.如图1—2—17所示,保持θ不变,将B点向上移,则BO绳的拉力将

图1—2—17

A.逐渐减小

B.逐渐增大

C.先减小后增大

D.先增大后减小

【解析】对结点O受力分析如图甲所示.由于结点O始终处于平衡状态,合力为零,故F1、F B、F A 经过平移可构成一个矢量三角形,其中F1=mg,其大小和方向始终不变;F A方向也不变,大小可变;F B的大小、方向都在变.在绳向上偏移的过程中,可能作出一系列矢量三角形如图乙所示,显而易见在F B变化到与F A垂直前,F B是逐渐变小的,然后F B又逐渐变大.同时看出F A是逐渐变小的,故C正确.应用此方法可解决许多相关动态平衡问题.

甲乙

【答案】 C

10.(2003年新课程理科综合)如图1—2—18所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球,当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°.两小球的质量比1

2m m 为

A.3

3 B.32 C.23 D.

22

【解析】 由F N 与F T 水平方向合力为零,可知F N =F T ;竖直方向有2F T cos30°=m 1g .

又F T =m 2g .从而得2m 2g ×2

3=m 1g .解得3312=m m . 【答案】 A

★提升能力

11.如图1—2—19所示,重为G 的均匀链条,两端用等长的轻绳连接,接在等高的地方,绳与水平方向成θ角,试求:

图1—2—19

(1)绳子的张力;

(2)链条最低点的张力.

【解析】 (1)如图所示,设两端绳的拉力均为F 1,则有

2F 1sin θ=G

F 1=θ

sin 2G (2)设链条最低点的张力为F 2,则有 F 2=F 1cos θ=

2

1G cot θ 【答案】 (1)θsin 2G ;(2) 21G cot θ 12.1999年,中国首次北极科学考察队乘坐我国自行研制的“雪龙”号科学考察船对北极地区海域进行了全方位的卓有成效的科学考察.这次考察获得了圆满的成功,并取得一大批极为珍贵的资料.“雪龙”号科学考察船不仅采用特殊的材料,而且船体的结构也应满足一定的条件,以对付北极地区的冰块与冰层,它是靠本身的重力压碎周围的冰块,同时又将碎冰块挤向船底.如果碎冰块仍挤在冰层与船体之间,船体由于

受巨大的侧压力而可能解体.为此,如图1—2—20所示,船体与铅垂面之间必须有一倾斜角θ.设船体与冰块间的动摩擦因数为μ,试问使压碎的冰块能被挤向船底,θ角应满足什么条件?

图1—2—20

【解析】将要被挤向船底的碎冰块受冰层对它的水平弹力F,船壁对它的垂直于

船壁的弹力F N,沿船向上的滑动摩擦力F f,由于碎冰块所受的重力与浮力的合力很小,

可以忽略.冰块受力如图所示,为使冰块被挤向船底,应使F N与F的合力F合大于或等

于F f,即F N tanθ≥F f

又由于F f=μF N

所以tanθ≥μθ≥arctanμ

【答案】θ>a rctanμ

※13.水平横梁的一端A插在墙壁内,另一端装有一小滑轮B.一轻绳的一端C固定在墙壁上,另一端跨过滑轮后悬挂一质量m=10 kg的重物,∠CBA=30°,如图1—2—21所示.则滑轮受到绳子的作用力(g取10 m/s2)

图1—2—21

A.50 N

B.503N

C.100 N

D.200 N

【解析】滑轮所受绳子的作用力是滑轮两侧绳子拉力的合力.根据定滑轮的特点,两侧绳的拉力均为F=mg=100 N.由于两侧绳的夹角为120°,所以,它们的合力也等于100 N,C选项正确.

【答案】C

※14.如图1—2—22所示,用光滑的粗铁丝做成一直角三角形,BC水平,AC边竖直,

∠A BC=α,AB及AC两边上分别套有细线套着的铜环,当它们静止时,细线跟AB所成的角θ的大小为(细线长度小于BC)

《7.3 力的平衡》导学案

第三节力的平衡 学习目标 1、认识到在平衡力作用下,物体保持静止或匀速直线运动状态。 2、对处于平衡状态的物体进行受力分析,认识平衡力的概念。 3、在探究实验中要求自己处理实验数据,并从对数据的分析处理中认识二力平衡的条件。 4、应用二力平衡的知识分析、解决简单的问题。 5、在讨论与交流中感受在力的平衡状态下物体的运动状态。 学习要点 1、在物理学中人们把静止状态和匀速直线运动状态叫做____________状态。 2、物体如果在两个力的作用下,处于平衡状态,这两个力就称为_______________,也叫二力平衡。 3、当一个物体受到两个力作用时,二力平衡的条件是:两个力大小___________、方向__________、作用在_______________上。 导学过程 一、二力平衡 观察课本P135图7-18、P136图7-19及图7-20。 想一想:当物体受到外力作用时, ___________(填“能”或“不能”)保持静止或匀速直线运动? 物体如果在两个力的作用下,能保持 ___________或 ___________,我们就说该物体处于平衡状态。这两个力就互称为___________。 图7-18、图7-19中的绳、跳伞运动员,都处于___________状态,都受到___________力的作用。 (1)观察图7-20,杯子在托盘上静止不动,处于平衡状态,作用在杯子上的______力和________力是一对平衡力。 (2)观察图7-19,跳伞运动员能匀速下降,处于平衡状态,运动员和降落伞作为整体受到的___________和___________是一对平衡力。 试一试请在图中画出静止在水平桌面上的饮料瓶的受力示意图。

2018高中物理学史(归纳整理版)

2018年高考物理学史总结 物理学史这部分内容在高考卷上通常以选择题形式出现(实验题中也会小概率出现),分值在6分以下,一般情况下不会出偏难怪的,毕竟这不是考纲里的重点。复习建议:以现有的生活经验常识为主,稍加了解就可以。现总结如下:1、伽利略 (1)通过理想实验推翻了亚里士多德“力是维持运动的原因”的观点 (2)推翻了亚里士多德“重的物体比轻物体下落得快”的观点 2、开普勒:提出开普勒行星运动三定律; 3、牛顿 (1)提出了三条运动定律。 (2)发现表万有引力定律; 4、卡文迪许:利用扭秤装置比较准确地测出了引力常量G 5、爱因斯坦 (1)提出的狭义相对论(经典力学不适用于微观粒子和高速运动物体) (2)提出光子说,成功地解释了光电效应规律,并因此获得诺贝尔物理学奖(3)提出质能方程2 E ,为核能利用提出理论基础 MC 6、库仑:利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。 7、焦耳和楞次 先后独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律(这个很冷门!以教材为主!) 8、奥斯特 发现南北放置的通电直导线可以使周围的磁针偏转,称为电流的磁效应。 9、安培:研究电流在磁场中受力的规律(安培定则),分子电流假说,磁场能对电流产生作用 10、洛仑兹:提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。 11、法拉第 (1)发现了由磁场产生电流的条件和规律——电磁感应现象(教材上是这样的,实际不是有一定历史原因,以教材为主!) (2)提出电荷周围有电场,提出可用电场描述电场,提出电磁场、磁感线、电场线的概念 12、楞次:确定感应电流方向的定律,愣次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 13、亨利:发现自感现象(这个也比较冷门)。 14、麦克斯韦:预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。 15、赫兹: (1)用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。 (2)证实了电磁理的存在。 16、普朗克 提出“能量量子假说”——解释物体热辐射(黑体辐射)规律电磁波的发射和吸收不是连续的,而是一份一份的,即量子理论

高中物理一轮复习学案

高中物理必修2(新人教版)全册复习教学案(强烈推荐) 内容简介:包括第五章曲线运动、第六章万有引力与航天和第七章机械能守恒定律,具体可以分为,知识网络、高考常考点的分析和指导和常考模型规律示例总结,是高一高三复习比较好的资料。 一、 第五章 曲线运动 (一)、知识网络 (二)重点内容讲解 1、物体的运动轨迹不是直线的运动称为曲线运动,曲线运动的条件可从两个角度来理解:(1)从运动学角度来理解;物体的加速度方向不在同一条直线上;(2)从动力学角度来理解:物体所受合力的方向与物体的速度方向不在一条直线上。曲线运动的速度方向沿曲线的切线方向,曲线运动是一种变速运动。 曲线运动是一种复杂的运动,为了简化解题过程引入了运动的合成与分解。一个复杂的运动可根据运动的实际效果按正交分解或按平行四边形定则进行分解。合运动与分运动是等效替代关系,它们具有独立性和等时性的特点。运动的合成是运动分解的逆运算,同样遵循曲线运动

平等四边形定则。 2、平抛运动 平抛运动具有水平初速度且只受重力作用,是匀变速曲线运动。研究平抛运动的方法是利用运动的合成与分解,将复杂运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动。其运动规律为:(1)水平方向:a x =0,v x =v 0,x= v 0t 。 (2)竖直方向:a y =g ,v y =gt ,y= gt 2 /2。 (3)合运动:a=g ,2 2y x t v v v += ,22y x s +=。v t 与v 0方向夹角为θ,tan θ= gt/ v 0,s 与x 方向夹角为α,tan α= gt/ 2v 0。 平抛运动中飞行时间仅由抛出点与落地点的竖直高度来决定,即g h t 2= ,与v 0无关。水平射程s= v 0 g h 2。 3、匀速圆周运动、描述匀速圆周运动的几个物理量、匀速圆周运动的实例分析。 正确理解并掌握匀速圆周运动、线速度、角速度、周期和频率、向心加速度、向心力的概念及物理意义,并掌握相关公式。 圆周运动与其他知识相结合时,关键找出向心力,再利用向心力公式F=mv 2/r=mr ω2 列式求解。向心力可以由某一个力来提供,也可以由某个力的分力提供,还可以由合外力来提供,在匀速圆周运动中,合外力即为向心力,始终指向圆心,其大小不变,作用是改变线速度的方向,不改变线速度的大小,在非匀速圆周运动中,物体所受的合外力一般不指向圆心,各力沿半径方向的分量的合力指向圆心,此合力提供向心力,大小和方向均发生变化;与半径垂直的各分力的合力改变速度大小,在中学阶段不做研究。 对匀速圆周运动的实例分析应结合受力分析,找准圆心的位置,结合牛顿第二定律和向心力公式列方程求解,要注意绳类的约束条件为v 临=gR ,杆类的约束条件为v 临=0。 (三)常考模型规律示例总结 1.渡河问题分析 小船过河的问题,可以 小船渡河运动分解为他同时参与的两个运动,一是小船相对水的运动(设水不流时船的运动,即在静水中的运动),一是随水流的运动(水冲船的运动,等于水流的运动),船的实际运动为合运动. 例1:设河宽为d,船在静水中的速度为v 1,河水流速为v 2 ①船头正对河岸行驶,渡河时间最短,t 短= 1 v d ②当 v 1> v 2时,且合速度垂直于河岸,航程最短x 1=d 当 v 1< v 2时,合速度不可能垂直河岸,确定方法如下: 如图所示,以 v 2矢量末端为圆心;以 v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则 合速度沿此切线航程最短, 由图知: sin θ=21 v v

力的平衡-教学案

惠安一中2019~2020学年第二学期八年级物理学科教学案 班级:座号:姓名: 课题:力的平衡(第7章第3节) 【学习目标】知道平衡状态,知道二力平衡条件,能用二力平衡的知识解决简单的平衡问题。【学习重点、难点】二力平衡的条件,用二力平衡的知识解决简单的平衡问题。 【课前预习】 阅读课本第7章第3节“力的平衡”完成下列填空。并在课本对应位置划线。 1.物体如果在两个力的作用下,能保持或状态,我们就说该物体处于平衡状态。这两个力就互称为。 2.分析下列现象在中的平衡力分别是: ①静止放在水平桌面上的物理课本,力和力是一对平衡力; ②一根电线下吊着一盏灯,力和力是一对平衡力; ③起重机将一物体匀速向上吊起,力和力是一对平衡力; ④在水平公路上匀速直线行驶的汽车,受到竖直方向的力和力及水平方向的 力和力两对平衡力; ⑤如图1用力握住水杯静止不动,在竖直方向上水杯受到的力和力是一对平衡力。【课堂探究】 一、二力平衡的条件 1.实验探究:按照课本进行实验探究。 2.结论:二力平衡的条件是: 。 3.拓展:平衡力的合力为。 二、二力平衡的条件的应用:通过“受力情况”,判断“运动状态”;通过“运动状态”,判断“受力情况”。 例1:[]如图2所示,是利用每秒闪光10次的照相装置拍摄到的四个物体运动的闪光照片(友情情提示:图中的黑点表示物体),其中可能受到平衡力作用的物体是: 例2:吊车吊着质量2t的集装箱以0.2m/s速度匀速上升,吊车要给集装箱的拉力为N;如果集装箱变为以0.1m/s速度匀速下降,吊车要给集装箱的拉力为N。(g=10N/kg)【课堂练习】

1.一个物体受到的重力是500N,静止在水平桌面上,桌面对物体的支持力大小是N,方向是,重力和支持力的施力物体分别是和。 2.一起重机以3m/s的速度匀速将重2000N的物体吊起,钢丝绳上的拉力是N,在空中又以2m/s的速度沿水平方向匀速移动5m,在此过程中钢丝的拉力是N,最后以5m/s 的速度匀速下降,钢丝绳的拉力是N。 3.[]在图3中,两个力的大小都是3N,则二力可以相互平衡的图是: 4.[]一辆重1000N的小车,在200N的牵引力作用下沿水平地面匀速直线运动,小车受到的摩擦力是: A.1000N; B.200N; C.800N; D.1200N。 5.[]下列物体中不是受到平衡力作用的是: A.在平直公路上做匀速行使的汽车; B.静止于斜面上的木块; C.在空中匀速盘旋的直升机; D.匀速从斜面上滑下的物体。 【课后检测】 1.用40N的力把重20N的物体压在竖直的墙上,当物体沿墙面匀速下降时,物体受到的滑动摩擦力大小是,方向是。 2.某人站在匀速上升的电梯中,他受到的重力与是一对平衡力,他对电梯的压力与是一对相互作用力。 3.[]如图4所示,人沿水平方向拉牛,但没有拉动。其中说法正确的是: A.绳拉牛的力与牛拉绳的力是一对平衡力; B.绳拉牛的力与地面对牛的摩擦力是一对平衡力; C.绳拉牛的力小于牛拉绳的力; D.绳拉牛的力小于地面对牛的摩擦力。 4.[]一个物体受到两个力的作用,这两个力的三个要素完全相同,那么这两个力: A.一定不是平衡力; B.一定是平衡力; C.可能是平衡力; D.条件不足,无法判断。 5.[]一个物体受到均为30N的一对平衡力作用而作匀速直线运动,如果这对平衡力同时突然减小到20N,则物体: A.速度减小; B.按减小后的速度作匀速直线运动; C.仍按原来速度作匀速直线运动; D.停止运动。

2020年高考物理二轮复习热点题型:共点力平衡的七大题型(附教师版)

2020年高考物理二轮复习热点题型 共点力平衡的七大题型 【题型归纳】 一、三类常考的“三力静态平衡”问题 热点题型一 三个力中,有两个力互相垂直,第三个力角度(方向)已知。 解决平衡问题常用的方法有以下五种 ①力的合成法 ②力的正交分解法 ③正弦定理(拉米定理)法 ④相似三角形法 ⑤矢量三角形图解法 【例1】如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块, 在水平力F 的作用下静止P 点。设滑块所受支持力为N F 。OF 与水平方向的夹角为θ。下 列关系正确的是( ) A .θtan mg F = B .θtan mg F = C . θ tan mg F N = D .θtan mg F N = 【变式1】(2019·新课标全国Ⅱ卷)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速 ,重力加速度取10m/s 2。若轻绳能承受的最大张力为1 500N ,则物块的质量最大为( ) A .150kg B . C .200 kg D .【变式2】(2019·新课标全国Ⅲ卷)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持 固定,将其置于两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。 重力加速度为g 。当卡车沿平直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2 则( )

A .12F F , B .12F F , C .121=2F mg F , D .121=2 F F mg , 热点题型二 三个力互相不垂直,但夹角(方向)已知 。 【例2】一光滑圆环固定在竖直平面内,环上套着两个小球A 和B (中央有孔),A 、B 间由细 绳连接,它们处于如图2-2-24所示位置时恰好都能保持静止状态。此情况下,B 球与环 中心O 处于同一水平面上,AB 间的细绳呈伸直状态,与水平线成30°夹角。已知B 球的质 量为m ,求细绳对B 球的拉力大小和A 球的质量。 【变式】如图所示,四分之一光滑圆弧面AB 与倾角为60°的光滑斜面AC 顶部相接,A 处有 一光滑的定滑轮,跨过定滑轮用轻质细绳连接质量分别为m 1、m 2的两小球,系统静止时连 接的绳子与水平方向的夹角为60°.两小球及滑轮大小可忽略,则两小球质量的比值m 1∶m 2 为( ) A .1∶2 B .3∶2 C .2∶3 D.3∶2

高中物理所有物理学史资料的汇总

高中物理所有物理学史资料的汇总 1、胡克:英国物理学家;发现了胡克定律(F弹=kx 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。

高三物理一轮复习导学案

2014届高三物理一轮复习导学案 第七章、恒定电流(1) 【课题】电流、电阻、电功及电功率 【目标】 1、理解电流、电阻概念,掌握欧姆定律和电阻定律; 2、了解电功及电功率的概念并会进行有关计算。 【导入】 一.电流、电阻、电阻定律 1、电流形成原因:电荷的定向移动形成电流. 2、电流强度:通过导体横截面的跟通过这些电量所用的的比值叫电流强度.I= 。由此可推出电流强度的微观表达式,即I=__________________。 3、电阻:导体对电流的阻碍作用叫电阻.电阻的定义式:__________________。 4、电阻定律:在温度不变的情况下导体的电阻跟它的长度成正比,跟它的横截面积成反比.电阻定律表达式__________________。【导疑】电阻率,由导体的导电性决定,电阻率与温度有关,纯金属的电阻率随温度的升高而增大;当温度降低到绝对零度附近时,某些材料的电阻率突然减小到零,这种现象叫超导现象.导电性能介于导体和绝缘体之间的称为半导体。 二.欧姆定律 1、部分电路欧姆定律:导体中的电流跟它两端的电压成正比,跟

它的电阻成反比.表达式:____________________________ 2、部分欧姆定律适用范围:电阻和电解液(纯电阻电路).非纯电阻电路不适用。 三、电功及电功率 1、电功:电路中电场力对定向移动的电荷所做的功,简称电功;W=qU=IUt。这就是电路中电场力做功即电功的表达式。(适用于任何电路) 2、电功率:单位时间内电流所做的功;表达式:P=W/t=UI(对任何电路都适用) 3、焦耳定律:内容:电流通过导体产生的热量,跟电流强度的平方、导体电阻和通电时间成正比。表达式:Q=I2Rt 【说明】(1)对纯电阻电路(只含白炽灯、电炉等电热器的电路)中电流做功完全用于产生热,电能转化为内能,故电功W等于电热Q;这时W= Q=UIt=I2Rt 4、热功率:单位时间内的发热量。即P=Q/t=I2R ④ 【注意】②和④都是电流的功率的表达式,但物理意义不同。②对所有的电路都适用,而④式只适用于纯电阻电路,对非纯电阻电路(含有电动机、电解槽的电路)不适用。 关于非纯电阻电路中的能量转化,电能除了转化为内能外,还转化为机械能、化学能等。这时W》Q。即W=Q+E其它或P =P热+ P其 它、UI = I2R + P其它 【导研】 [例1]一根粗线均匀的金属导线,两端加上恒定电压U时,通过金属导线的电流强度为I,金属导线中自由电子定向移动的平均速率为v,若将金属导线均匀拉长,使其长度变为原来的2倍,仍给它两端加上恒定电压U,则此时() A、通过金属导线的电流为I/2 B、通过金属导线的电流为I/4 C、自由电子定向移动的平均速率为v/2 D、自由电子定向移动

高考物理 专题四 共点力的平衡精准培优专练

培优点四 共点力的平衡 1. 从历年命题看,对共点力平衡的考查,常以选择题的形式出现,以物体的平衡状态为背景,考查整体与隔离法、受力分析、正交分解与共点力平衡,同时对平衡问题的分析在后面的计算题中往往也有所涉及。 2. 解决平衡问题常用方法: (1)静态平衡:三力平衡一般用合成法,合成后力的问题转换成三角形问题;多力平衡一般用正交分解法;遇到多个有相互作用的物体时一般先整体后隔离。 (2)动态平衡:三力动态平衡常用图解法、相似三角形法等,多力动态平衡问题常用解析法,涉及到摩擦力的时候要注意静摩擦力与滑动摩擦力的转换。 典例1. (2017·全国Ⅰ卷?21)如图,柔软轻绳ON 的一端O 固定,其中间某点M 拴一重物, 用手拉住绳的另一端N 。初始时,OM 竖直且MN 被拉直,OM 与MN 之间的夹角为α? ????α>π2。现将重物向右上方缓慢拉起,并保持夹角α不变。在OM 由竖直被拉到水平的过程中( ) A .MN 上的张力逐渐增大 B .MN 上的张力先增大后减小 C .OM 上的张力逐渐增大 D .OM 上的张力先增大后减小 【解析】方法一 设重物的质量为m ,绳OM 中的张力为T OM ,绳MN 中的张力为T MN 。开始时,T OM =mg ,T MN =0。由于缓慢拉起,则重物一直处于平衡状态,两绳张力的合力与重物的重力mg 等大、反向。 如图所示,已知角α不变,在绳MN 缓慢拉起的过程中,角β逐渐增 大,则角(α-β)逐渐减小,但角θ不变,在三角形中,利用正弦定 理得:T OM α-β=mg sin θ,(α-β)由钝角变为锐角,则T OM 先增 大后减小,选项D 正确;同理知T MN sin β=mg sin θ,在β由0变为π2的一、考点分析 二、考题再现

新课标高考高中物理学史归纳总结

新课标高考高中物理学史归纳总结 【新课标高考高中物理学史归纳总结(新人教版)】 必修部分:(必修 1、必修2) 一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。

5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 10、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 9、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同;但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比);俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先

高三物理一轮复习选修3-3全套学案

第1课时 分子动理论 内能 导学目标 1.掌握分子动理论的内容,并能应用分析有关问题.2.理解温度与温标概念,会换算摄氏温度与热力学温度.3.理解内能概念,掌握影响内能的因素. 一、分子动理论

1.请你通过一个日常生活中的扩散现象来说明:温度越高,分子运动越激烈. 2.请描述:当两个分子间的距离由小于r0逐渐增大,直至远大于r0时,分子间的引力如何变化?分子间的斥力如何变化?分子间引力与斥力的合力又如何变化? [知识梳理] 1.物体是由____________组成的 (1)多数分子大小的数量级为________ m. (2)一般分子质量的数量级为________ kg. 2.分子永不停息地做无规则热运动 (1)扩散现象:相互接触的物体彼此进入对方的现象.温度越______,扩散越快. (2)布朗运动:在显微镜下看到的悬浮在液体中的__________的永不停息地无规则运 动.布朗运动反映了________的无规则运动.颗粒越______,运动越明显;温度越______,运动越剧烈. 3.分子间存在着相互作用力 (1)分子间同时存在________和________,实际表现的分子力是它们的________. (2)引力和斥力都随着距离的增大而________,但斥力比引力变化得______. 思考:为什么微粒越小,布朗运动越明显? 二、温度和温标 [基础导引] 天气预报某地某日的最高气温是27°C,它是多少开尔文?进行低温物理的研究时,热力学温度是2.5 K,它是多少摄氏度? [知识梳理] 1.温度 温度在宏观上表示物体的________程度;在微观上是分子热运动的____________的标志. 2.两种温标 (1)比较摄氏温标和热力学温标:两种温标温度的零点不同,同一温度两种温标表示的数 值________,但它们表示的温度间隔是________的,即每一度的大小相同,Δt=ΔT. (2)关系:T=____________. 三、物体的内能 [基础导引] 1.有甲、乙两个分子,甲分子固定不动,乙分子由无穷远处逐渐向甲靠近,直到不再靠近为止,在这整个过程中,分子势能的变化情况是() A.不断增大B.不断减小 C.先增大后减小D.先减小后增大 2.氢气和氧气的质量、温度都相同,在不计分子势能的情况下,下列说法正确的是() A.氧气的内能较大B.氢气的内能较大 C.两者的内能相等D.氢气分子的平均速率较大

2021届高考物理一轮复习:力与平衡 重点内容复习

第二讲力与平衡 学习目标 1、理解弹力产生的条件,会确定弹力的方向,能熟练应用胡克定律求弹簧弹力的大小。 2、理解摩擦力产生的条件,会判断摩擦力的有无,能确定摩擦力的种类。 3、知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形 4、理解共点力作用下物体平衡的条件,并能用来解决平衡问题; 5、能结合受力分析,运用力的合成与分解、正交分解、物体的平衡条件等解决与实际相结合的力学平衡问题。 知识点一 一、重力 1、定义:由于地球的吸引而使物体受到的力. 2、重力的大小:可用公式G=mg计算得出,式中g是比例系数,g=9.8N/kg. 3、重力的方向:总是竖直向下. 二、弹力 1、定义:相互接触的物体发生弹性形变时,由于物体要恢复原状,物体会对与它接触的另一物体产生力的作用,这种力叫弹力. 2、方向:弹力的方向总是与物体形变的方向相反,以使物体恢复原状. 三、胡克定律 1、内容:在弹性限度内,弹簧弹力的大小与弹簧伸长(或压缩)的长度成正比. 2、公式:F=kx. 3、适用条件:在弹性体的弹性限度内. 4、劲度系数:是一个有单位的物理量,单位为N/m.弹簧的劲度系数为1 N/m的物理意义:弹簧伸长或缩短1 m时产生的弹力大小为1 N. 四、滑动摩擦力 1.定义:当两个物体彼此接触和挤压,并发生相对滑动时,在接触面上产生的阻碍相

对滑动的力. 2.滑动摩擦力的方向及效果:滑动摩擦力的方向总是与接触面相切,并与物体的相对运动方向相反.因此,滑动摩擦力的效果总是阻碍物体间的相对运动. 3.滑动摩擦力的大小 1、滑动摩擦力的大小:与压力成正比,还与接触面的性质有关. 2、公式:f=μN. 其中N表示压力,μ叫动摩擦因数,与接触面的材料及接触面的情况有关. 五、静摩擦力 1.定义:当两个彼此接触、挤压的物体之间没有发生相对运动,但具有相对运动的趋势时,接触面上会产生一种阻碍相对运动趋势的力,这种力称为静摩擦力.2.产生条件:物体直接接触,接触面粗糙,接触面间有压力,有相对滑动趋势. 3.方向:总是与接触面相切并且与相对滑动趋势的方向相反. 4.效果:阻碍物体间的相对滑动的趋势. 5.大小:由外部因素决定,随外力的变化而变化. 6.最大静摩擦力 (1)定义:物体与接触面之间的静摩擦力的最大值,也即在外力作用下物体将开始沿接触面滑动时的静摩擦力,用fmax表示. (2)相关因素 ①与两物体间的压力成正比. ①与接触面的性质有关. 知识点二 一、力的合成 1.共点力合成的常用方法 (1)作图法:从力的作用点起,按同一标度作出两个分力F1和F2的图示,再以F1和F2的图示为邻边作平行四边形,画出过作用点的对角线,量出对角线的长度,计算出合力的大小,量出对角线与某一力的夹角确定合力的方向(如图所示).

高考物理专题物理学史知识点全集汇编

高考物理专题物理学史知识点全集汇编 一、选择题 1.在物理学发展过程中,许多科学家做出了贡献,下列说法正确的是() A.伽利略利用“理想斜面”得出“力是维持物体运动的原因”的观点 B.牛顿提出了行星运动的三大定律 C.英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了万有引力常量 D.开普勒从理论和实验两个角度,证明了轻、重物体下落一样快,从而推翻了古希腊学者亚里士多德的“小球质量越大下落越快”的错误观点 2.伽利略是实验物理学的奠基人,下列关于伽利略在实验方法及实验成果的说法中不正确的是 A.开创了运用逻辑推理和实验相结合进行科学研究的方法 B.通过实验发现斜面倾角一定时,不同质量的小球从不同高度开始滚动,加速度相同C.通过实验和理想实验,提出了惯性的概念,从而奠定了牛顿力学的基础 D.为了说明力是维持物体运动的原因用了理想实验法 3.下列选项不符合历史事实的是() A.富兰克林命名了正、负电荷 B.库仑在前人工作的基础上通过库仑扭秤实验确定库仑定律 C.麦克斯韦提出电荷周围存在一种特殊的物质--电场 D.法拉第为了简洁形象描述电场,提出电场线这一辅助手段 4.2014年,我国在实验中发现量子反常霍尔效应,取得世界级成果。实验在物理学的研究中有着非常重要的作用,下列关于实验的说法中正确的是() A.在探究求合力的方法的实验中运用了控制变量法 B.密立根利用油滴实验发现电荷量都是某个最小值的整数倍 C.牛顿运用理想斜面实验归纳得出了牛顿第一定律 D.库仑做库仑扭秤实验时采用了归纳的方法 5.发明白炽灯的科学家是() A.伏打 B.法拉第 C.爱迪生 D.西门子 6.了解物理规律的发现过程,学会像科学家那样观察和思考,往往比掌握知识本身更重要。以下符合史实的是( ) A.焦耳发现了电流的磁效应 B.法拉第发现了电磁感应现象,并总结出了电磁感应定律 C.惠更斯总结出了折射定律 D.英国物理学家托马斯杨利用双缝干涉实验首先发现了光的干涉现象 7.下列描述中符合物理学史的是() A.开普勒发现了行星运动三定律,从而提出了日心说 B.牛顿发现了万有引力定律并测定出引力常量G C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流 D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场

高考物理一轮复习学案[学]

高考物理一轮复习学案:电磁场和电磁波 知识网络: 一、电磁振荡 1.振荡电路:大小和方向都随时间做周期性变儿的电流叫做振荡电流,能够产生振荡电流的电路叫振荡电路,LC 回路是一种简单的振荡电路。 2.LC 回路的电磁振荡过程:可以用图象来形象分析电容器充、放电过程中各物理量的变化规律,如图所示 3.LC 回路的振荡周期和频率 LC T π2= LC f π21 = 注意:(1)LC 回路的T 、f 只与电路本身性质L 、C 有关 (2)电磁振荡的周期很小,频率很高,这是振荡电流与普通交变 电流的区别。 分析电磁振荡要掌握以下三个要点(突出能量守恒的观点): ⑴理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。 ⑵回路中电流越大时,L 中的磁场能越大(磁通量越大)。 t

⑶极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。 LC 回路中的电流图象和电荷图象总是互为余函数(见右图)。 【例1】 某时刻LC 回路中电容器中的电场方向和线圈中的磁场方向如 右图所示。则这时电容器正在_____(充电还是放电),电流大小正在______ (增大还是减小)。 【例2】右边两图中电容器的电容都是C =4×10-6F ,电 感都是L =9×10-4H ,左图中电键K 先接a ,充电结束后将K 扳到b ;右图中电键K 先闭合,稳定后断开。两图中LC 回 路开始电磁振荡t =3.14×10-4s 时刻,C 1的上极板正在____电(充电还是放电),带_____电(正电还是负电);L 2中的 电流方向向____(左还是右),磁场能正在_____(增大还是减小)。 二、电磁场 1.麦克斯韦的电磁场理论。要深刻理解和应用麦克斯韦电磁场理论的两大支柱:变化的磁场产生电场,变化的电场产生磁场。 (1)变化的磁场(电场)能够在周围空间产生电场(磁场); (2)均匀变化的磁场(电场)能够在周围空间产生稳定的电场(磁场); (3)振荡的磁场(电场)能够在周围空间产生同频率的振荡电场(磁场); 可以证明:振荡电场产生同频率的振荡磁场;振荡磁场产生同频率的振荡电场。 点评:变化的磁场在周围空间激发的电场为涡旋电场,涡旋电场与静电场一样,对电荷有力的作用,但涡旋电场又于静电场不同,它不是静电荷产生的,它的电场线是闭合的,在涡旋电场中移动电荷时,电场力做的功与路径有关,因此不能引用“电势”、“电势能”等概念。另外要用联系的观点认识规律,变化的磁场产生电场是电磁感应现象的本质。 【例3】右图中,内壁光滑、水平放置的玻璃圆环内,有一直径略小于环口径的带正电的小球,正以速率v 0沿逆时针方向匀速转动。若在此空间突然加上竖直向上、磁感应强度B 随时间 成正比例增加的变化磁场,设小球运动过程中的电量不变,那么() A.小球对玻璃环的压力不断增大 B.小球受到的磁场力不断增大 C.小球先沿逆时针方向做减速运动,过一段时间后,沿顺时针方向做加速运动 D.磁场力一直对小球不做功 2.电磁场:按照麦克斯韦的电磁场理论,变化的电场和磁场总是相互联系的,形成一个不可分离的统一场,称为电磁场。电场和磁场只是这个统一的电磁场的两种具体表现。 理解电磁场是统一的整体: 根据麦克斯韦电磁场理论的两个要点:在变化的磁场的周围空间将产生涡漩电场,在变化的电场的周

八年级物理下册 82《力的平衡》学案2(新版)教科版

第八章第2节《二力平衡》 【学习目标】 1.能说出在平衡力作用下,物体保持静止或匀速直线运动状态。 2.说出二力平衡的条件,理解二力平衡的条件。(重点) 【学法指导】用红色笔将本节重点知识勾画出来,认真分析出二力平衡的条件 【自学检测】 1.在受力的情况下,物体有时保持和,即运动状态不变。 2.匀速运动的汽车和静止在桌上的花瓶说明他们受到的几个力是。 3.书中8.2-2探究实验中使两托盘中质量不相等是为了说明什么?。两托盘中质量相等又是为了说明什么?。把小车扭转一定角度是为了说明什么?。 4. 教室内的吊灯受到和力,吊灯保持静止. 5. 放在地上的水桶受力和地面对它的力,水桶静止. 6. 二力平衡的条件:当作用在上的两个力、、并且作用在。 【议一议】 一:平衡状态、力平衡 思考1:你见过的哪些物体受到力的作用并保持静止状态? 思考2:哪些物体受到力的作用并保持运动状态? 归纳:物体在受到几个力作用时,如果物体保持或状态,我们就说该物体处于平衡状态,使物体处于平衡状态的几个力称做;其实就是这几个力的作用效果相互抵消,相当于,我们也称此时物体所受合力为零。(合力:如果作用在物体上的几个力的共同作用效果和一个力作用时的效果相同,则称这个力为那几个力的合力)二:什么叫二力平衡? 三:探究二力平衡的条件 提出问题:二力平衡的条件是什么呢? 实验探究:课本图8.2-2二力平衡的条件实验 归纳总结:二力平衡的条件:当作用在上的两个力、、并且作用在。 【评一评】 我学到了什么? 【课堂小结】 1、二力平衡的条件是,作用在 _______物体上的两个力,、、,这两个力就平衡。即二力的合力为。

高中物理平衡问题经典

平衡问题 1.如图所示,光滑的金属球B放在纵截面为等腰三角形的物体A与竖直墙壁之间,恰好匀速下滑,已知物体 A的重力是B的重力的6倍,不计球跟斜面和墙壁之间摩擦,问:物体A与水平面之间的动摩擦因数μ是多少?(7/3) 2.如图所示,两块同样的条形磁场A、B,它们的质量均为m,将它们竖直叠放在水平桌面上,用弹簧秤通过 一根细线竖直向上拉磁铁A,若弹簧秤上的读数为m g,则B与A的弹力F1及桌面对B的弹力F2分别为()A.F1=0,F2=mg B.F1= mg,F2 =0 C.F1>0,F20,F2=mg 3.如图所示,人重600N,木板重400N,人与木板、木板与地面间的动摩擦因数皆为0.2,今人用水平力拉绳,使他与木板一起向右匀速运动,则() A.人拉绳的力是200N B.人拉绳的力是100N C.人的脚对木板的摩擦力向右 D.人的脚对木板的摩擦力向左 4.质量相同的四木块叠放在一起,如图所示,静止在水平地面上,现有大小相等、方向相反的力F分别作用的第2块和第4块木块上,四木块仍然静止,则从上到下各层接触面间的摩擦力多大?

5.如图所示,质量为m=2kg的物体,置于质量为M=10kg的斜面体上,现用一平行于斜面的力F=20N推物体,使物体向上匀速运动,斜面体的倾角α=37°,始终保持静止,求地面对斜面体的摩擦力和支持力(取g=10m/s2) 5.如图所示,在粗糙水平面上有一个三角形木块,在它的两个粗糙斜面上分别放两个质量为m1和m2的小木块,m1>m2,已知三角形木块和两个小木块均静止,则粗糙水平面对三角形木块() A.没有摩擦力作用 B.有摩擦力作用,摩擦力方向水平向右 C.有摩擦力作用,摩擦力方向水平向左 D.有摩擦力作用,但方向无法确定,因为m1、m2、θ1和θ2的数值并未给出 6.放在水平地面上的物体M上表面有一物体m,m与M之间有一处于压缩状态的弹簧,整个装置处于静止状 态,如图所示,则关于M和m受力情况的判断,正确的是() A.m受到向右的摩擦力 B.M受到m对它向左的摩擦力 C.地面对M的摩擦力方向右 D.地面对M不存在摩擦力作用 7.如图所示,在两块相同的竖直木板之间,有质量均为m的四块完全相同的砖, 用两个同样大小的水平力压木板,使砖静止不动。 ⑴木板对第1块砖和第4块砖的摩擦力为_______。 ⑵第2块砖和第3块砖之间的摩擦力为_________。 ⑶第3块砖和第4块砖之间的摩擦力为__________。 8.如图所示,质量均为m的两木块a与b叠放在水平面上,a受到斜向上与水平成θ角的力作用,b受到斜向下与水平成θ角的力作用,两力大小均为F,两木块保持静止状态,则()

高考物理物理学史知识点全集汇编含解析(5)

高考物理物理学史知识点全集汇编含解析(5) 一、选择题 1.第一个准确测量出万有引力常量的科学家是() A.B.C.D. 2.下面说法中正确的是() A.库仑定律是通过实验总结出来的关于点电荷相互作用力跟它们间的距离和电荷量关系的一条物理规律 B.库仑定律适用于点电荷,点电荷就是很小的带电体 C.库仑定律和万有引力定律很相似,它们都不是平方反比规律 D.当两个点电荷距离趋近于零时,库仑力则趋向无穷 3.在物理学发展过程中,许多科学家做出了贡献,下列说法正确的是() A.自然界的电荷只有两种,美国科学家密立根将其命名为正电荷和负电荷,美国物理学家富兰克林通过油滴实验比较精确地测定了电荷量e的数值 B.卡文迪许用扭秤实验测定了引力常量G和静电力常量k的数值 C.奥斯特发现了电流间的相互作用规律,同时找到了带电粒子在磁场中的受力规律D.开普勒提出了三大行星运动定律后,牛顿发现了万有引力定律 4.物理学中最早使用理想实验方法、发现万有引力定律、最早引入了电场概念并提出用电场线表示电场和发现电流磁效应分别由不同的物理学家完成,他们依次是() A.伽利略、牛顿、法拉第和奥斯特 B.牛顿、卡文迪许、洛伦兹和安培 C.伽利略、卡文迪许、库仑和奥斯特 D.伽利略、牛顿、库仑和洛伦兹. 5.以下说法符合历史事实的是() A.伽利略总结了导师第谷留下的大量天文观测数据,发现了行星三大定律 B.库仑采用放大法,利用扭秤装置测出了万有引力常量.因此被誉为第一个称量地球质量的人 C.法拉第首先提出了电场的概念,而且为了形象地描述电场,他又引入了电场线的概念D.牛顿对自由落体运动进行了深入仔细的研究,将理想斜面实验的结论合理外推,得出自由落体运动是匀变速运动 6.在物理学建立、发展的过程中,许多物理学家的科学发现推动了人类历史的进步,关于科学家和他们的贡献,下列说法正确的是() A.古希腊学者亚里士多德认为物体下落的快慢由它们的重量决定,伽利略在他的《两种新科学的对话》中利用逻辑推断,使亚里士多德的理论陷入了困境

2012届高考物理一轮复习学案:电磁感应现象__楞次定律(人教版)

电磁感应现象楞次定律 【高考目标导航】 【考纲知识梳理】 一、电磁感应现象 1、产生感应电流的条件:只要闭合回路中磁通量发生变化即△Φ≠0,闭合电路中就有感应电流产生. 2、磁通量变化的常见情况(Φ改变的方式): (1)线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S增大或减小 (2)线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 (3)磁感应强度B随t(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 3、产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 4、电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势,而不会形成持续的电流. 二、楞次定律和右手定则 1、楞次定律 (1)内容:感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (2)适用情况:所有电磁感应现象

2、右手定则 (1)伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即为感应电流方向(电源). (2)适用情况:导体做切割磁感线产生感应电流 【要点名师透析】 一、电磁感应现象是否发生的判断 1.判断流程 2.引起磁通量Φ变化的几种情况 (1)磁场变化 如:永磁铁与线圈的靠近或远离.电磁铁(螺线管)内电流的变化. (2)回路的有效面积变化 ①回路面积变化:如闭合线圈部分 导线切割磁感线.如图甲. ②回路平面与磁场夹角变化:如线圈在磁场中转动.如图乙.

高考物理 共点力的平衡复习学案

高考物理共点力的平衡复习学案 §3.4 共点力的平衡复习学案 【学习目标】 1、理解共点力作用下的物体平衡条件及其在解题中的应用。 2、掌握几种常见的平衡问题的解题方法。 【自主学习】 1.共点力 物体同时受几个力的作用,如果这几个力都作用于物体的或者它们的作用线交于,这几个力叫共点力。 2.平衡状态: 一个物体在共点力作用下,如果保持或运动,则该物体处于平衡状态. 3.平衡条件: 物体所受合外力.其数学表达式为:F合=或F x合= F y合= ,其中F x合为物体在x轴方向上所受的合外力,F y合为物体在y轴方向上所受的合外力.平衡条件的推论 (1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向. (2)物体在同一平面内的三个互不平行的力的作用下处于平衡状态时,这三个力必为共点力. (3)物体在三个共点力作用下处于平衡状态时,这三个力的有向线段必构成封闭三角形,即表示这三个力的矢量首尾相接,恰能组成一个封闭三角形. 4.力的平衡: 作用在物体上的几个力的合力为零,这种情形叫做。 若物体受到两个力的作用处于平衡状态,则这两个力. 若物体受到三个力的作用处于平衡状态,则其中任意两个力的合力与第三个力. 5.解题途径 当物体在两个共点力作用下平衡时,这两个力一定等值反向;当物体在三个共点力作用下平衡时,往往采用平行四边形定则或三角形定则;当物体在四个或四个以上共点力作用下平衡时,往往采用正交分解法. 【典型例题】 例1.一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动。探测器通过喷气而获得推动力。以下关于喷气方向的描述中正确的是 A.探测器加速运动时,沿直线向后喷气

相关文档
相关文档 最新文档