文档库 最新最全的文档下载
当前位置:文档库 › 植物多糖的功能..提取及纯化

植物多糖的功能..提取及纯化

植物多糖的功能..提取及纯化
植物多糖的功能..提取及纯化

植物多糖的功能

多糖与蛋白质一样,具有生物大分子的复杂结构,具有一定的生理和生物学活性,概括起来多糖的生物活性包括:免疫调节性、抗肿瘤活性、降血糖活性、降血脂活性、抗病毒活性、抗衰老活性(抗氧化活性)、抗疲劳、抗突变活性,除此之外,还具有其他生物活性,包括抗凝血、抗炎、抗菌、抗惊厥、镇静、止喘及降血压等作用。

植物多糖的提取

一、植物多糖的提取

1 溶剂提取法

1.1 水提法

水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。

1.2酸碱提法

有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。

有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅

速透析,浓缩与醇析而获得多糖沉淀。

1.4 生物酶提取法

酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。

1.5 超声提取法

超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。另外,超声波的热效应使水温基本在57℃,对原料有水浴作用。超声波提取与传统的提取方法相比,有提取效率高、

时间短、耗能低等优点。超声提取的影响因素有:超声时间、超声频率(一般低频中提取效率高,但也有例外)、料液比和温度等。

1.6 微波提取

微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射

于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。微波技术应用于植物细胞破壁,有效地提高了收率。具有穿透力强、选择性高、加热效率高等特点。影响微波浸提的主要因素为浸提时间、样品和提取溶剂的含水量,溶剂的介电常数和电导率(介电常数和电导率的溶剂对微波的吸收较好)、微波功率等。但是由于微波泄漏对操作者影响很大,因而对设备的要求较高,这对微波的研究及应用带来了一定的困难。

二、植物多糖的分离纯化

在多糖提取物中,常会有无机盐、蛋白质、色素及小分子物质等杂质,必须分别除去.一般是先脱除非多糖组分,再对多糖组分进行分级.

2.1 除蛋白:除蛋白质时一般选择能使蛋白质沉淀而不使多糖沉淀的试剂来处理,如酚、三氯乙酸、鞣酸等。但必须处理时间短,温度低,避免多糖降解。Sevage法(氯仿:戊醇/丁醇=4:1)和三氟三氯乙烷法在避免降解上有较好效果但要达到除尽游离蛋白质的目的仍需反复处理。如能加入蛋白质水解酶,使蛋白质大分子进行一定程度的降解,再用Sevage

法处理,一般效果更好。

为了避免使用有机溶剂也可采用反复冻融的方法除蛋白,将多糖液浓缩后,一20℃室温反复冻融7~8次,离心除去蛋白质。另外,蛋白质在等电点时溶解度最小,用氢氧化钙饱和液调pH10~pH11可除去偏碱性的蛋白质,然后再用硫酸调pH5~pH6,可除去偏酸性的蛋白质。冻融和等电点沉淀除蛋白质操作简单,但多糖液里往往有低浓度的蛋白质残留,应与其它方法结合使用。

2.2 脱色:植物多糖提取物中含有酚类化合物而使其颜色较深,可用吸附剂(纤维素、硅藻土、活性炭等)、离子交换柱(DEAE一纤维素)、氧化剂(H2O2)等脱除。活性炭比表面积大,吸附能力强,在进行当归多糖的提取时只向多糖液中加入了0.1%左右的活性炭,煮沸后滤过即完成了脱色操作。此法成本低廉,适合工业化生产。

2.3 除小分子杂质

小分子杂质如低聚寡糖的残留往往影响多糖的生物活性,需要进一步脱除,提高纯度。传统的方法是透析法,该法操作简单、技术成熟,但周期长,往往需要2一3天,常温下操作有可能造成多糖的霉变,必要时需加入少量防腐剂或需在低温条件下进行。随着膜分离技术的发展,纤维滤器透析法已经发展起来了,它利用不同孔径的膜使大小不同的分子分级,这种方式可缩短生产周期,而且条件温和,无疑是多糖脱除杂质的一条新途径。

2.4

多糖的分级纯化

采用一般方法提取的多糖通常是多糖的混合物,分级的方法可达到纯化的目的.可按溶解性不同进行分级、按分子大小和形状分级(如分级沉淀、超滤、分子筛、层析等),也可按分子所带基团的性质分级.

2.4.1按溶解性不同分离

2.4.1.1分步沉淀法

分步沉淀法是根据不同多糖在不同浓度低级醇、酮中具有不同溶解度的性质,从小到大按比例加入甲醇或乙醇或丙酮进行分步沉淀.

2.4.1.2 盐析法

盐析法是根据不同多糖在不同盐浓度中溶解度不同而将其分离的一种方法。常用的盐析剂有氯化钠、氯化钾、硫酸铵等,其中以硫酸铵最佳。

2.4.2

按电离性质不同分离

2.4.2.1季胺盐沉淀法

季胺氢氧化物是一类乳化剂,能与酸性多糖形成不溶性化合物季铵络合物,此络合物在低离子强度的水溶液中不溶解而产生沉淀。若提高多糖液pH值或加入硼砂缓冲液,也可使中性多糖沉淀分离。常用季铵盐有十六烷基三甲基季铵盐的溴化物及其氢氧化物和十六烷基吡啶。2.4.3

柱层析法

2.4.

3.1凝胶柱层析法

凝胶柱层析法常用的凝胶有葡聚糖凝胶(Sephadex)和琼脂糖凝胶(Sepharose),以不同浓度的盐溶液和缓冲溶液作为洗脱剂,从而使不同大小的多糖分子得到分离纯化,但不适宜粘多糖的分离。

2.4.

3.2纤维素阴离子交换剂柱层析法

纤维素阴离子交换剂柱层析法常用的交换剂为DEAE一纤维素和ECTEOLA一纤维素,分

类硼砂型和碱型两种,洗脱剂可用不同浓度碱溶液、硼砂溶液、盐溶液,其优点可吸附杂质、纯化多糖,并适用于分离各种酸性、中性多糖和粘多糖。如百合多糖、北沙参多糖、太子参多糖等。

2.4.

3.3 活性炭柱层析法

活性炭吸附量大、效率高,是分离水溶性物质的常用吸附剂。柱层析时活性炭中常拌入等量的硅藻土作稀释剂,以增加溶液的流速。糖溶液上柱后先用水洗脱无机盐、单糖等再依次增加乙醇浓度进行洗脱。

2.4.

3.4

离子交换柱层析和普通凝胶柱层析联用法

有些植物的多糖成分复杂,除中性多糖外,还含有糖醛酸等,因此往往两种不同性质的色谱柱联用才能得到单一多糖组分。

2.4.

3.5 三种层析柱联用

采用离子交换葡聚糖凝胶柱、丙烯葡聚糖凝胶柱和葡聚糖凝胶柱三者联用,即先进行DEA E—SephadexA柱层析,用蒸馏水洗脱。水洗组分进一步用SephacrylS柱层析,得到主要组分再用SephadexG一100柱层析,有时会有较高的得率。

三、多糖的纯度鉴定

经过分级纯化的多糖在测定结构前须进行纯度鉴定.而且多糖的纯度不能用通常化合物的纯度标准来衡量,因为即便是多糖纯品,其微观也并不均一,仅代表相似链长的多糖分子的平均分布,通常所谓的多糖纯品也只是一定相对分子质量范围的多糖的均一组分.目前常用于多糖纯度的鉴定方法有:高效液相、凝胶层析法、电泳法、色谱法、旋光度法等.

四、常见问题

多糖制备过程中蛋白质的脱除是目前分离纯化多糖的难点。Sevag法需要消耗大量的有机溶剂,且操作烦琐;三氟三氯乙烷的沸点较低(bp56℃,)易挥发,不宜大量应用;三氯乙酸可引起多糖的降解,从而影响其生理活性;酶价格昂贵,不适合工业化生产。可以借鉴其它蛋白质脱除的方法,例如用天然澄清剂能简化提取工艺,提高多糖纯度。

脱色也是多糖提取纯化过程中面临的一个难题。活性炭会吸附多糖而造成多糖的损失;H2 O2氧化脱色容易引起有些多糖的降解,因此,可探索将粗多糖反复溶解与醇析,这可能是多糖脱色的可行方法。从总多糖中分离单一多糖组分时,各种色谱介质价格昂贵,样品制备量极小,仅限于实验室研究,尚不能规模化生产;而且单一多糖组分生理活性的研究鲜见报道。

酶在植物多糖的提取方面的应用现状

酶在植物多糖的提取方面的应用现状 植物的有效成分大多包裹在细胞壁中,对这些有效成分的提取,传统的热水、酸、碱、有机溶剂浸提法,受细胞壁主要成分纤维素的阻碍,往往提取效率较低,恰当地利用植物精提复合酶处理这些中药材,可改变植物细胞壁的通透性,降解杂质(如蛋白,果胶,鞣质,灰分和粘性物质等)对中药有效成分提取的干扰,沉清提取液,易于滤过,提高药效成分的提取率。本文就植物精提复合酶的作用机理,影响酶促反应的因素及目前用于中药有效成分的提取的研究情况作一概述。 1. 植物精提复合酶水解作用机理 1.1纤维素分子是由许多吡喃型的D-葡萄糖残基通过β-1,4葡萄糖苷键连接而成的多糖链,天然纤维素为直链式结构,链与链之间有晶状结构和排列次序较差的无定形结构;纤维素分子以结晶或非结晶方式组合成微原纤维,微原纤维集束形成微纤维,以微纤维为基本构造构成纤维素。 纤维素酶由三类组成:(1)内切葡聚糖酶(endo-1,4-β-D-glucanase,也称EG酶或Cx酶);(2)外切葡聚糖酶(exo-1,4-β-D-glucanase),又称纤维二糖水解酶(cellobiohydrolase,CBH)或C1酶;(3) β-葡萄糖苷酶(β-glucosidase,EC3-2-1-21),简称BG。 纤维素酶解是一个复杂的过程,其最大特点是协同作用。内切葡聚糖酶首先作用于微纤维素的无定型区,随机水解β-1,4-糖苷键,产生大量带非还原性末端的小分子纤维素,外切葡聚糖酶从这些非还原性末端上依次水解β-1,4糖苷键,生成纤维二糖及其它低分子纤维糊精。 1.2果胶酶可分为作用于甲酯键的果胶脂酶(PE)和分解α-1.4-半乳糖醛键的解聚酶,解聚酶中的内切果胶酶(endo-pl)和内切聚半乳糖醛酸酶(cndo-pl)对中药提取液有极好的澄清效果,彻底分解果胶,降低提取液粘度。 1.3半纤维素酶能裂解植物细胞壁,释放出更多的有效成分,可快速分解果胶和其它阿拉伯糖长键分子,降低果汁粘度。 1.4木聚糖酶作用于戊聚糖链,降解葡聚糖及戊聚糖等高分子粘性物质,其降解产物为糊精,纤维二糖及昆布二糖等。 1.5中温α-淀粉酶能够水解淀粉分子的β-1,4-葡萄糖苷键,任意切割成长短不一的短链糊精及少量的低分子糖类、直链淀粉和支链淀粉,均以无规则形式进行分解,从而使淀粉糊的粘度迅速下降。 夏盛集团技术中心专门开发出植物提取专用复合酶,有SPE-001、SPE-002、SPE-005、SPE-006、SPE-007A、SPE-007B、SPE-008等复合酶以及食品级的纤维素酶、木聚糖酶、β-葡聚糖酶、蛋白酶、淀粉酶等一系列植物提取用单酶。经本研发中心试验及国内大的植提厂家中试及大试表明,植物精提复合酶各酶系之间有极强的协同作用,相互促进,一方面破坏植物细胞壁,使有效成分最大限度溶出,降解植物提取液

植物多糖分离纯化

食品分离技术作业 姓名_______________ 院系_______________ 专业班级_______________ 学号_______________ 时间___年___月___日

摘要 本文简要地介绍了植物多糖提取的两种方法:溶液提取法和部分沉淀法,对于影响多糖提取的不同因子选取不同方法;从多个方面介绍了多糖提取后的分离、纯化方法,及其分离纯化原理和主要步骤,并在最后对分离方法的可行性做出评价。 关键词:植物多糖分离纯化溶剂提取法部分沉淀法 植物多糖的分离纯化 一、多糖的物化性质 A.分子结构:多糖在溶液状态下有着高级结构,代表活性状态。不同植物提取的多糖, 一级结构上有很太差异,采用酸解、色谱、质谱、红外光谱、核磁共振等手段,可以确定单糖的组成及取代基团。 B.溶解性:难溶于冷水,在热水或碱液中可溶。不溶于丙酮、乙醇、正丁酵、乙醚、醋 酸乙酯等有机溶剂 C.热稳定性:热不稳定,当温度大于4O℃时,分解加快。 D.酸碱稳定性:pH小于5时开始降解,小于3时有20%降解;大于7时氧化加快。 E.化学性质:与硫酸蒽酮、硫酸苯酚反应阳性,常用于定量分析;可与部分有机、无机 离子络合,如与十六烷基三溴化铵(CTAB)、氢氧化钡等结合沉淀 F. 二、植物多糖的提取 多糖不同的植物中,有着不同的含量和贮存位置,因此针对不同的植物有着不同的分离方法。 图1:不同植物中多糖的提取方法

A.溶剂提取法 a)水提法 水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。 图2:加水比对多糖提取的影响[1] b)酸碱提法[2] 有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。 有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅速透析,浓缩与醇析而获得多糖沉淀。 图3:热碱提取多糖结果[3] c)生物酶提取法[4] 酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。 B.部分沉淀法 a)金属盐沉淀法

多糖的提取分离方法

1.多糖的提取方法 生物活性多糖主要有真菌多糖、植物多糖、动物多糖3 大类。多糖的提取首先要根据多糖的存在形式及提取部位,决定在提取之前是否做预处理。动物多糖和微生物多糖多有脂质包围,一般需要先加入丙酮、乙醚、乙醇或乙醇乙醚的混合液进行回流脱脂,释放多糖。植物多糖提取时需注意一些含脂较高的根、茎、叶、花、果及种子类,在提取前,应先用低极性的有机溶剂对原料进行脱脂预处理,目前多糖的提取方法主要有溶剂提取法、生物提取法、强化提取法等。1.1溶剂法 1.1.1水提醇沉法 水提醇沉法是提取多糖最常用的一种方法。多糖是极性大分子化合物,提取时应选择 水、醇等极性强的溶剂。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提渗滤,然后将提取液浓缩后,在浓缩液中加乙醇,使其最终体积分数达到70 %左右,利用多糖不溶于乙醇的性质,使多糖从提取液中沉淀出来,室温静置 5 h,多糖的质量分数和得率均较高。影响多糖提取率的因素有:水的用量、提取温度、浸提固液比、提取时间以及提取次数等。 水提醇沉法提取多糖不需特殊设备,生产工艺成本低,安全,适合工业化大生产,是一种可取的提取方法。但由于水的极性大,容易把蛋白质、苷类等水溶性的成分浸提出来,从而使提取液存放时腐败变质,为后续的分离带来困难,且该法提取比较耗时,提取率也不高。 1.1.2酸提法 为了提高多糖的提取率,在水提醇沉法的基础上发展了酸提取法。如某些含葡萄糖醛酸等酸性基团的多糖在较低pH 值下难以溶解,可用乙酸或盐酸使提取液成酸性,再加乙醇使多糖沉淀析出,也可加入铜盐等生成不溶性络合物或盐类沉淀而析出。 由于H+的存在抑制了酸性杂质的溶出,稀酸提取法提取得到的多糖产品纯度相对较高,但在酸性条件下可能引起多糖中糖苷键的断裂,且酸会对容器造成腐蚀,除弱酸外,一般不宜采用。因此酸提法也存在一定的不足之处。 1.1.3碱提法 多糖在碱性溶液中稳定,碱有利于酸性多糖的浸出,可提高多糖的收率,缩短提取时间,但提取液中含有其它杂质,使粘度过大,过滤困难,且浸提液有较浓的碱味,溶液颜色呈黄色,这样会影响成品的风味和色泽。 1.1.4超临界流体萃取法 超临界流体萃取技术是近年来发展起来的一种新的提取分离技术。超临界流 体是指物质处于临界温度和临界压力以上时的状态,这种流体兼有液体和气体的特点,密度大,粘稠度小,有极高的溶解,渗透到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而增大,提取结束后,再通过减压将其释放出来,具有保持有效成分的活性和无溶剂残留等优点。由于CO2的超临界条件(TC=304.6 ℃,Tp=7.38 MPa)容易达到,常用于超临界萃取的溶剂,在压力为8~40 MPa 时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极性化物。 该法的缺点是设备复杂,运行成本高,提取范围有限。 1.2酶解法 1.2.1单一酶解法 单一酶解法指的是使用一种酶来提取多糖,从而提高提取率的生物技术。其中经常使 用的酶有蛋白酶、纤维素酶等。蛋白酶对植物细胞中游离的蛋白质具有分解作用,使其结构变得松散;蛋白酶还会使糖蛋白和蛋白聚糖中游离的蛋白质水解,降低它们对原料的结合力,有利于多糖的浸出。

植物多糖提取分离检测

植物多糖提取、分离及检测 实验目的 学习并掌握植物多糖提取、分离及检测的原理和方法 实验原理 植物多糖(polysaccharide)是由糖苷键结合的糖链,至少要超过10个以上的单糖组成的聚合糖高分子碳水化合物,可用通式(c6h10o5)n表示。由相同的单糖组成的多糖称为多糖,如淀粉、纤维素和糖原;以没的单糖组成的多糖称为杂多糖,如阿拉伯胶是由戊糖和半乳糖等组成。多糖不是一种纯粹的化学物质,而是聚合程度不同的物质的混合物。多糖类一般不溶于水,无甜味,不能形成结晶,无还原性和变旋现象。多糖也是糖苷,所以可以水解,在水解过程中,往往产生一系列的中间产物,最终完全水解得到单糖。多糖普遍存在于自然界植物体中,其分子量一般为数万甚至数百万,是构成生命活动的四大基本物质之一,同维持生命功能密切相关。 多糖的提取分离,含色素较高的根、茎、叶、果实类需进行脱色处理,然用水、盐或稀碱水在不同温度下提取,应避免在酸性条件下提取,以防引起糖苷键的断裂。一般植物多糖提取多采用热水浸提法,所得多糖提取液可直接或离心除去不溶物。在多糖的检测方面采用单糖衍生物的GC/ MS 分析可以对多糖中的具体结构进行定性分析。 实验材料 材料山茶叶片 仪器组织粉碎机、烘箱、超声波提取机、恒温水浴锅、索氏提取器、旋转蒸发仪、冰箱、离心机、分液漏斗、GC/ MS 分析仪 试剂活性炭、95%乙醇、Sevag 试剂、无水乙醇、丙酮、无水乙醚、2mol·L - 1的硫酸、BaCO3 粉末、盐酸羟胺、吡啶、乙酸酐、氯仿 实验步骤 1、多糖提取分离称取粉碎、干燥好的山茶叶150g ,加入1500mL 蒸馏水,超声波提取20min ,于90 ℃恒温浸泡2h ,提取两次;得棕色滤液, 用活性炭对其脱色,活性炭量为活性炭:溶液=0.5%。过滤脱色后的滤液用旋转蒸发仪浓缩至50mL ,抽滤,加入200mL 95 %乙醇沉淀多糖,于冰箱醇析24h ,得棕色絮状物,离心,收集沉淀。 Sevag 法去蛋白Sevag 试剂的配制:用氯仿与正丁醇以4∶1 混合。取上述粗多糖加水溶解,于溶液中加入溶液1/ 3 倍体积的Sevage 试剂,剧烈震荡至无白色絮状物析出,离心15min ,除去水相与有机相交界处的变性蛋白,Sevage 法脱蛋白重复3 次。剩余液体加入200mL 无水乙醇,充分振荡摇匀,于冰箱静置24h ,得棕色絮状物,离心收集沉淀。沉淀经无水乙醇、丙酮、无水乙醚洗涤两次,干燥,得棕色多糖211g。 2 、多糖的检测 (1)、多糖水解称取50mg 山茶叶多糖,加入浓度为2mol·L - 1的硫酸10mL ,封管,超声振荡3~5min 至多糖完全溶解后,在100 ℃恒温水浴振荡水解2h ,然后将试管置于烘箱中于110 ℃反应6h。反应完成后冷却至室温,加BaCO3 粉末中和至中性, 离心, 过滤, 真空干燥, 得到水解后的单糖混合物10.5mg。 (2)糖腈乙酸酯衍生物的制备称取10mg 单糖样品和10mg 盐酸羟胺,用20mL 吡啶溶解,封管,95 ℃恒温水浴振荡30min 后冷却至室温;加入016mL 乙酸酐,封管,95 ℃恒温水浴振荡30min ,反应完成后冷却至室温,得糖腈乙酸酯衍生物。加入2mL 蒸馏水破坏乙酸酐,氯仿萃取,待测。 (3)单糖衍生物的GC/ MS 分析色谱条件:RTX25 石英毛细管柱(30m ×0125mm ×0125μm) ;载气为高纯氦气。柱箱初始温度100 ℃,进样口温度240 ℃,流速0166mL·min - 1 ,分流比30∶1 ,进样量1μL 。程序升温:初始温度为100 ℃,以10 ℃·min - 1升至250 ℃,保持1min。 (4)质谱条件:离子源为EI 源,灯丝电流016mA ,离子源温度200 ℃,电离能量70eV ,接口温度250 ℃,电子倍增管电压1120kV ,扫描周期015s ,扫描范围30100~400100m/ z ,溶剂延迟3min。

多糖的提取和纯化

多糖的提取和纯化→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥首先除去表面脂肪。原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或0.1-1M氢氧化钠作为提取溶剂)提取多糖。温度控制在90-100℃,搅拌4-6小时,反复提取2 -3次。得到的多糖提取液大多较粘稠,可进行吸滤。也可用离心法将不溶性杂质除去,将滤液或上清液混合(得到的多糖若为碱性则需要中和)。然后浓缩,再加入2-5倍低级醇(甲醇或乙醇)沉淀多糖;也可加入费林氏溶液或硫酸铵或溴化十六烷基三甲基铵等,与多糖物质结合生成不溶性络合物或盐类沉淀。然后依次用乙醇、丙酮和乙醚洗涤。将洗干后疏松的多糖迅速转入装有五氧化二磷和氢氧化钠的真空干燥器中减压干燥(若沉淀的多糖为胶状或具粘着性时,可直接冷冻干燥)。干燥后可得粉末状的粗多糖。1.2 微波辅助提取法:其原理为利用不同极性的介质对微波能的不同吸收程度,使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使萃取物质从基体或体系中分离出来,进入到介电常数小,微波吸收能力较差的萃取剂中[14]。由于微波能极大加速细胞壁的破裂,因而应用于中草药中有效成分的提取能极大加快提取速度,增加提取产率。而且由于其选择性好,提取后基体能保持良好的性状,提取液也较一般的提取方法澄清[15]。聂金源等在柴胡多

糖和黄酮化合物的提取[18]中对微波辅助提取法、超声辅助法和索氏提取法进行比较,发现微波辅助提取法所需时间最短(10min),多糖的提取率最高(28.46%)。1.3 超声辅助法:其原理是利用超声波的空化作用加速植物有效成分的浸出提取,另外超声波的次级效应,如机械振动、乳化、扩散、击碎、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取[16]。超声波辅助法与常规提取法相比,具有提取时间短、产率高、无需加热等优点[17]。1.4 索氏提取法:将植物粉末置于索氏提取器中,加入石油醚,60℃-90℃条件下提取至无色(一般为6小时)。过滤,滤渣挥发干燥完溶媒后加入80%乙醇,再提取6小时,过滤,滤渣乙醇挥发干燥后加蒸馏水。回流提取2次,趁热过滤,滤液减压浓缩,再除蛋白,醇沉,除色素。60℃干燥,称重。1.5 醇提法:先后将90%和50%乙醇加入植物粉末中,振荡充分再抽滤。滤液中加入足量无水乙醇,至于4℃冰箱中过夜。减压抽滤,再除去色素,得多糖粗品,在60℃℃℃

多糖分离纯化的基本原则和方法

多糖分离纯化的基本原则和方法 多聚糖(polysaccharide),简称多糖,常由一百个以上甚至几千个单糖基通过糖苷键连接而成的,其性质已大不同于单糖,如甜味和强的还原性已经消失,广泛存在于动物细胞膜和植物、微生物的细胞壁中,是构成生命的四大基本物质之一,与生命功能的维持密切相关。近年来,大量研究表明多糖除了有增强免疫功能、抗肿瘤作用、抗氧化、抗衰老、消化系统保护作用的生物学效应外,还有抗菌、抗病毒、降血糖、降血脂、抗辐射、抗凝血等作用。 1、基本原则 在不破坏多糖活性的前提下进行多糖的分离纯化。尽量不引入新的杂质,或引入的新杂志易于除去,如小分子盐类可经过透析作用除去,铵根离子可通过加热挥发除去等[1]。 2、分离纯化方法 多糖的生物活性倍受关注,但不少多糖的提取方法和工艺尚未成熟,基于效率、成本多方面的考虑,各种方法的开发、比较、分析是研究工作的焦点之一。目前多糖提取方法主要有溶剂提取法、酸提法、碱提法、酶解法、超滤法、超声法、微波法、超临界流体萃取法。首先要根据多糖的存在形式及提取部位不同,决定在提取之前是否做预处理:提取时需注意对一些含脂较高的根、茎、叶、花、果及种子类,在用水提取前,应先加入甲醇或l:l的乙醇乙醚混合溶液或石油醚进行脱脂,而对含色素较高的根、茎、叶、果实类,需进行脱色处理。 2.1多糖的提取与分离方法 由于各类多糖的性质及来源不同,所以提取方法也各有所异,主要归纳为以下几类: 第一类难溶于水,可溶于稀碱液的主要是胶类,如木聚糖及半乳糖等。原料粉碎后用0.5mol/L NaOH水溶液提取,提取液经中和及浓缩等步骤,最后加入乙醇,即得粗糖沉淀物。 第二类易溶于温水,难溶于冷水的多糖,可用70~80℃热水提取,提取液用氯仿:正丁醇(4:1)混合除去蛋白质,经透析、浓缩后再加入乙醇即得粗多糖产物[2]。 第三类粘多糖的提取。在组织中,粘多糖与蛋白质以共价键结合,故提取

植物多糖及其提取方法

植物多糖及其提取方法 1 前言 多糖是自然界和生物体中广泛存在的物质,它是生物体内除蛋白质和核酸以外的又一类重要的信息分子。它具有多种生物活性,与生物机能的维持密切相关,与蛋白质、脂类形成的糖蛋白、脂多糖在细胞的识别、分泌以及在蛋白质的加工、转移方面起着不容忽视的作用。近年来,植物、海洋生物及菌类等来源的多糖已作为有生物活性的天然产物中的一个重要类型出现,各种多糖所具有的抗肿瘤、免疫、抗凝血、降血糖和抗病毒活性已相继被发现。我国对多糖研究始于20世纪70年代,植物多糖由于它们独特的功能和低毒性,作为新药发展的方向具有广阔的应用前景,越来越多的研究人员将目光投向植物多糖。 2 植物多糖的结构 植物多糖是由许多相同或不同的单糖以a或p一糖苷键所组成的化合物,普遍存在于自然界植物体中,包括淀粉、纤维素、多聚糖、果胶等。多糖有复杂的四级结构,一级结构指糖基的组成、排列顺序、相邻糖基的连接方式、异头碳构型及糖链有无分支、分支的位置与长短等;二级结构指多糖主链以氢键为主要次级键而形成的有规则构象;三、四级结构是指以二级结构为基础,糖单位之间的非共价相互作用,导致二级结构在有序地空间产生规则构象。植物多糖的

主链与支链形成了特殊的构型一凹形槽。凹形槽是一级结构与构象的体现。凹形槽的支链与活性关系为:支链度越大,凹形槽越多,生物活性越大。近年来,人们对多糖的结构和活性的研究不断深入,进一步阐明了多糖作用机制与结构的关系,其多样性的生理活性更加受到重视。 3 植物多糖的功能 多糖与蛋白质一样,具有生物大分子的复杂结构,具有一定的生理和生物学活性,概括起来多糖的生物活性包括:免疫调节性、抗肿瘤活性、降血糖活性、降血脂活性、抗病毒活性、抗衰老活性(抗氧化活性)、抗疲劳、抗突变活性,除此之外,还具有其他生物活性,包括抗凝血、抗炎、抗菌、抗惊厥、镇静、止喘及降血压等作用。 (1)免疫调节功能。由于现代医学、细胞生物学及分子生物学快速发展,人们对免疫系统的认识越来越深入。免疫系统紊乱,会导致人体衰老和多种疾病的发生。植物多糖是一种免疫调节剂。多糖对肌体的免疫调节作用,包括激活巨噬细胞,激活网状内皮系统,激活T和B细胞,激活补体,进干扰素的生成,促进白细胞介素的生成,诱生肿瘤坏死因子等。 2)抗肿瘤活性植物多糖主要是通过增强机体的免疫功能来达到杀伤肿瘤细胞的目的,许多高等植物中都含有抗肿瘤活性的多糖,如芦荟多糖、香菇多糖提取物、人参多糖具有

多糖提取与纯化技术应用进展

作者简介:朱晓霞(1982-),女(汉),硕士研究生,从事天然生物大分子研究。 糖类物质是地球上数量最多的一类有机化合物,是生命物质的组成成分之一。糖类物质广泛地存在于生物界,特别是植物界。糖类物质按干重计占植物的83%~90%,占细菌的10%~30%,动物的小于2%。大量药理及临床研究证实:多糖有调节免疫、抗癌、抗肥胖、控制血糖、降胆固醇、降血脂等生理功能,可广泛应用于医药、保健品及功能食品,作为绿色生物医药产品具有广阔的市场前景。 目前多糖产品开发相当热门,也卓有成效。多糖的生理功能与其纯度和化学结构有着重要的关系,多糖的提取纯化是其研究的基础。因此科学高效地从动植物及微生物中提取、纯化其中的多糖成分是目前的核心问题。本文对多糖制备常用提取与纯化方法,特别是一些新技术的应用进展进行了综述。 1 多糖的提取纯化 1.1常规方法提取 1.1.1原料预处理提取前,必须破坏或抑制共存的水解酶,可采用丙酮、乙醚、乙醇等低极性溶剂,以破坏水解酶并分离脂溶性杂质。1.1.2 浸提一般采用不同温度的水或稀碱溶液提 取。浸提参数中,温度是影响多糖提取的主要因素,另外浸提固液比、浸提时间均影响提取率,可根据需要选取最佳工艺参数。1.1.3 过滤或离心分离提取液有的可以直接过滤,有的因提取液较黏稠不易过滤,往往用离心法除去不溶物。1.1.4 有机溶剂沉淀提取所得的滤液或上清液浓 缩,加2~5倍量的有机溶剂,得粗多糖沉淀。常用有机溶剂为甲醇、乙醇、异丙醇及丙酮。 现有很多植物多糖的提取研究都是采取的常规 水提法:大麦[1]中活性多糖提取、大枣[2]多糖提取、老头草[3]中多糖的含量测定、乌龙茶[4]多糖提取等。 朱晓霞,罗学刚 (西南科技大学材料科学与工程学院,四川绵阳621010) 多糖提取与纯化技术应用进展 摘 要:多糖由于它们独特的功能和低毒性,在保健食品和药品发展方面具有广阔的应用前景。提取和纯化是制备多 糖的关键。目前用的提取方法有:常规水提法、超声波、微波辅助提取、超临界流体萃取;分离纯化技术有:色谱、膜分离。综述了多糖制备常用的提取与纯化工艺与新技术的应用进展,分析了它们的原理及优缺点并探讨了发展前景。关键词:多糖;提取;分离;纯化 PROGRESSINEXTRACTIONANDPURIFICATIONOFPOLYSACCHARIDES ZHUXiao-xia,LUOXue-gang (SchoolofMaterialScienceandEngineering,SouthwestUniversityofScienceandTechnology, Mianyang621010,Sichuan,China) Abstract: Highvaluehasbeenfoundforthebioactivepolysaccharides.Plantpolysaccharideshavewidelyandpromisingforegroundinthefieldofhealth-carefoodstuffandmedicationbecauseofitslowtoxicityanditspartic-ularfunctions.Theextractionandpurificationtechnologyisthekeyissueinpreparation.Atpresent, thecommon-lyusedextractiontechnologyincludesusual-water,ultrasound,microwave,supercriticalfluidextraction.Thepu-rificationtechnologyincludeschromatographyandmembraneseparation.Themethodsandtheapplicationofnewtechnologiesinextractingandpurifyingpolysaccharidesarereviewed.Moreovertheprospectofpolysaccharidespreparationisdiscussed. Keywords: polysaccharides;extraction;abruption;purification

植物多糖分离纯化工艺研究进展

植物多糖分离纯化工艺研究进展 贵州省药物质量控制及评价技术工程实验室,天然药物质量控制中心,贵州贵阳550001 植物多糖因具有抗肿瘤、抗病毒、抗氧化等生物活性和多种药用价值,近年已广泛应用于生命科学等研究领域。由于植物多糖相关研究受其油脂、蛋白质、色素等杂质影响较大,故除杂质、分离纯化技术是该领域研究开展的重要前提。本文对近年来植物多糖的脱脂、除蛋白、除色素等分离纯化方法技术的研究现状进行总结,为植物多糖的深入研究与开发提供参考。 Abstract:In recent years,because plant polysaccharides are with anti-tumor,anti-virus,anti-ulcer,anti-oxidation and other unique biological activity,a variety of medicinal values have been frequently applied in the field of life sciences research. However,because plant polysaccharides research is limited by its fat,protein,pigment and other impurities,technology of impurities and separation and purification are important premise of research development in this field. This article mainly summarized the recent research on the methods of impurities,separation and purification of plant polysaccharides,which provided a reference for the further research and development of plant polysaccharides. Keywords:plant polysaccharide;impurity removal;separation and purification;review 多糖廣泛存在于动植物中,它通过超过10个糖苷键连接不同或相同的单糖而形成,具有抗肿瘤[1]、抗病毒[2]、抗氧化[3]、抗溃疡[4]等活性,近年已广泛应用于生命科学等研究领域。由于植物多糖相关研究受其油脂、蛋白质、色素等杂质影响较大,故除杂质、分离纯化技术是该领域研究开展的重要前提。如何高效低损失地除杂质,获得均一的多糖,越来越受到关注。本文对近年来植物多糖的除杂质、分离纯化方法的研究现状进行综述,为植物多糖的相关研究及进一步开发利用提供参考。 1 多糖除杂质 提取后的多糖属粗多糖,常含有油脂、蛋白质、色素、盐等杂质,极大地影响植物多糖结构表征和生物活性分析的后续工作[5-6],故除杂质对植物多糖研究具有关键作用。 1.1 脱脂 植物中含有的少量油脂包裹着多糖使提取液难以渗入原料,阻碍多糖的提取,故在多糖提取之前需要脱脂。目前主要采用一定量的有机溶剂采用索氏回流提取脱脂,常用的有机溶剂为石油醚、乙醚、乙醇。张斌等[7]研究了甘蔗渣多

多糖的分离纯化及生理作用

多糖的分离纯化及生理作用 多糖包括植物多糖、动物多糖和微生物多糖。人们已发现多糖不仅是机体的能量来源和骨架成分,而月还具有多糖具有抗感染、抗放射、抗凝血、降血糖、降血脂、促进核酸与蛋白质的生物合成作用等多种生物活性。 多糖的提取和纯化 1. 多糖的提取 1.1 热水浸提法:其步骤为:原料→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥 首先除去表面脂肪。原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或0.1-1M氢氧化钠作为提取溶剂)提取多糖。温度控制在90-100℃,搅拌4-6小时,反复提取2-3次。得到的多糖提取液大多较粘稠,可进行吸滤。也可用离心法将不溶性杂质除去,将滤液或上清液混合(得到的多糖若为碱性则需要中和)。然后浓缩,再加入2-5倍低级醇(甲醇或乙醇)沉淀多糖;也可加入费林氏溶液或硫酸铵或溴化十六烷基三甲基铵等,与多糖物质结合生成不溶性络合物或盐类沉淀。然后依次用乙醇、丙酮和乙醚洗涤。将洗干后疏松的多糖迅速转入装有五氧化二磷和氢氧化钠的真空干燥器中减压干燥(若沉淀的多糖为胶状或具粘着性时,可直接冷冻干燥),干燥后可得粉末状的粗多糖。 1.2 微波辅助提取法: 其原理为利用不同极性的介质对微波能的不同吸收程度,使基体物质中的某些区域和萃取体系中的某些组分被选择性加热,从而使萃取物质从基体或体系中分离出来,进入到介电常数小,微波吸收能力较差的萃取剂中。由于微波能极大加速细胞壁的破裂,因而应用于中草药中有效成分的提取能极大加快提取速度,增加提取产率。而且由于其选择性好,提取后基体能保持良好的性状,提取液也较一般的提取方法澄清。聂金源等在柴胡多糖和黄酮化合物的提取[18]中对微波辅助提取法、超声辅助法和索氏提取法进行比较,发现微波辅助提取法所需时间最短(10min),多糖的提取率最高(28.46%)。 1.3 超声辅助法: 其原理是利用超声波的空化作用加速植物有效成分的浸出提取,另外超声波的次级效应,如机械振动、乳化、扩散、击碎、化学效应等也能加速欲提取成分的扩散释放并充分与溶剂混合,利于提取[16]。超声波辅助法与常规提取法相比,具有提取时间短、产率高、无需加热等优点[17]。 1.4 索氏提取法: 将植物粉末置于索氏提取器中,加入石油醚,60℃-90℃条件下提取至无色(一般为6小时)。过滤,滤渣挥发干燥完溶媒后加入80%乙醇,再提取6小时,过滤,滤渣乙醇挥发干燥后加蒸馏水。回流提取2次,趁热过滤,滤液减压浓缩,再除蛋白,醇沉,除色素。60℃干燥,称重。 1.5 醇提法: 先后将90%和50%乙醇加入植物粉末中,振荡充分再抽滤。滤液中加入足量无水乙醇,至于4℃冰箱中过夜。减压抽滤,再除去色素,得多糖粗品,在60℃通风干燥箱中干燥,再置干燥皿中恒重保存。 醇提法方法简单,易于操作,但提取率较低,乙醇使用量大,不宜大规模提取使用。 2.多糖的纯化方法纯化是将多糖混合物分离为单一多糖的过程,纯化的方法主要有以下几种: 2.1 分部沉淀法根据各种多糖在不同浓度的低级醇或丙酮中具有不同溶解度的性质,逐次按比例由小到大加入甲醇或乙醇或丙酮,收集不同浓度下析出的沉淀,经反复溶解与沉淀后,直到测得的物理常数恒定(最常用的是比旋光度测定或电泳检查)。这种方法适合于分离各种溶解度相差较大的多糖。为

植物多糖的提取、分离和含量测定的研究

论文题目:植物多糖的提取、分离和含量测定的研究 姓名:刘通 班级:08级药学1班 学号:200810720071 1、利用百度搜索引擎查找相关资料 2、利用中国知网的期刊全文数据库查期刊中发表的论文的相关结果

3、利用中国知网学位论文全文数据库查找论文相关资料

4、利用读秀查图书馆收藏的与论文有关资料 5、利用图书馆OPAC查我馆收藏的印刷型图书

植物多糖的提取、分离和含量测定的研究文献综述 对多糖的研究, 最早是在20 世纪40 年代, 但其作为广谱免疫促进剂而引起人们的极大重视则是在60 年代, 经过40 余年的不断发展, 人们对多糖这一类重要生命物质产生了新的认识, 使这一学科成为目前生命科学中研究最活跃的领域之一[ 1 ]。越来越多的研究发现多糖对人体具有极大的利用价值, 按其来源可分为三类: 动物多糖、植物多糖和微生物多糖L 其中植物多糖如人参、黄芩、刺五加、红花、芦荟等所含多糖均具有显著的药用功效, 如免疫增强作用, 抗肿瘤作用, 抗辐射作用等L据文献[ 2 ]报道, 已有近100 种植物的多糖被分离提取出来L 这类多糖来源广泛且没有细胞毒性, 应用于生物体毒副作用小,因此对植物多糖的研究已成为医药界的热门领域。 1 植物多糖的提取分离纯化 多糖的提取分离纯化是指多糖研究中获取研究对象的过程L一般这一过程包括提取分离、纯化和纯度鉴定3 步L其中纯化是多糖研究的关键, 其成 功与否、效果的好坏都会直接影响后续研究的可行性与可信度[ 3 ]。

1.1 提取分离 一般植物细胞壁比较牢固, 需在提取前进行专门的破细胞操作, 包括 机械破碎(研磨法、组织捣碎法、超声波法、压榨法、冻融法)、溶胀和自胀、化学处理和生物酶降解L因此常用的提取方法有: 热水浸提法、酸浸提法、碱浸提法和酶法L 其中前3 种为化学方法, 酶法为生物方法。此外, 更有研究者[ 4, 5 ] 在细胞破壁方面进行研究, 利用超声波、微波等技术有效地提高多糖的提取率和产品质量, 并缩短了反应时间。 1.2 纯化 分离沉淀后获得的多糖提取物中, 常会有无机盐、蛋白质、色素及醇不溶的小分子有机物(如低聚糖) 等杂质, 必须分别除去L 多糖的纯化就是指将粗多糖中的杂质去除而获得单一多糖组分。一般是先脱除非多糖组分, 再对多糖组分进行分级L而脱除非多糖组分是先脱除蛋白质再去除小分子杂质。 1.2.1除蛋白天然植物中多糖与蛋白质 两种高分子成分共存, 且分子量相近, 另外糖常常与蛋白形成糖蛋白 复合物, 使蛋白质的脱除更加困难。但也许正是结合了这部分蛋白质, 多糖才具有众多独特的生理功能, 如各种蛋白质聚糖、糖蛋白具有生理功能一样L常用的除蛋白质的方法有Sevage 法、三氯乙酸法、三氟三氯乙烷法、酶法等。Sevage 法为实验室常用法, ,该法以正丁醇与氯仿混合再进行萃取; 蛋白酶法是目前认为较好的方法, 将蛋白质水解再透析去除。 1.2.2 脱色 对于植物多糖可能会有酚类化合物而颜色较深, 对其进行脱色可使其 应用范围更加广泛。常用的脱色方法有: 离子交换法、氧化法、金属络合物法、吸附法(纤维素、硅藻土、活性炭等) LDEA E- 纤维素是目前最常用的脱色剂, 通过离子交换柱不仅达到脱色的目的, 而且还可以分离多糖。 1.2.3 除小分子杂质 通过逆向流水透析除去低聚糖等小分子杂质,这样得到的就是多糖的半精品。

多糖各种提取方法

一、植物多糖的提取 1 溶剂提取法 1.1 水提法 水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。 1.2酸碱提法 有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。 有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与

酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅速透析,浓缩与醇析而获得多糖沉淀。

1.4 生物酶提取法 酶技术是近年来广泛应用到有效成份提取中的一项生物技术,在多糖的提取过程中,使用酶可降低提取条件,在比较温和的条件中分解植物组织,加速多糖的释放或提取。此外,使用酶还可分解提取液中淀粉、果胶、蛋白质等的产物,常用的酶有蛋白酶,纤维素酶,果胶酶等。 1.5 超声提取法 超声波是一种高频率的机械波,其主要原理是利用超声波产生的“空化作用”对细胞膜的破坏,有利用植物有效成分的释放,而且超声波能形成强大的冲击波或高速射流,有效地减小、消除与水相之间的阻滞层,加大了传质效率,有助于溶质的扩散。另外,超声波的热效应使水温基本在57℃,对原料有水浴作用。超声波提取与传统的提取方法相比,有提取效率高、时间短、耗能低等优点。超声提取的影响因素有:超声时间、超声频率(一般低频中提取效率高,但也有例外)、料液比和温度等。 1.6 微波提取 微波是频率介于300MHz和300GHz之间的非电离电磁波,微波提取的原理是微射线辐射于溶剂并透过细胞壁到达细胞内部,由于溶剂及细胞液吸收微波能细胞内部温度升高,压力增大,当压力超过细胞壁的承受能力时,细胞壁破裂,位于细胞内部的有效成份从细胞中释放出来,传递转移到溶剂周围被溶剂溶解。微波技术应用于植物细胞破壁,有效地提高了收率。具有穿透力强、选择性高、加

植物多糖的功能..提取及纯化

植物多糖的功能 多糖与蛋白质一样,具有生物大分子的复杂结构,具有一定的生理和生物学活性,概括起来多糖的生物活性包括:免疫调节性、抗肿瘤活性、降血糖活性、降血脂活性、抗病毒活性、抗衰老活性(抗氧化活性)、抗疲劳、抗突变活性,除此之外,还具有其他生物活性,包括抗凝血、抗炎、抗菌、抗惊厥、镇静、止喘及降血压等作用。 植物多糖的提取 一、植物多糖的提取 1 溶剂提取法 1.1 水提法 水对植物组织的穿透力强,提取效率高,在生产上使用安全、经济。用水作溶剂来提取多糖时,可以用热水浸煮提取,也可以用冷水浸提。一般植物多糖提取采用热水浸提法,该法所得多糖提取液可直接或离心除去小溶物;或者利用多糖不溶于高浓度乙醇的性质,沉淀提纯多糖;但由于不同性质或不同相对分子质量的多糖沉淀所需乙醇浓度不同,它也可以用于样品中不同多糖组分的分级分离;还可按多糖不同性质在粗分阶段利用混合溶剂提取法对植物中不同的多糖进行分离;其中,以乙醇沉淀最为普遍。但以根茎为主的植物体,细胞壁多糖含量高,热水直接提取率不高。此时为破坏细胞壁,增加多糖的溶出,有两种处理方法:一为酶解,二为弱碱溶解。 1.2酸碱提法 有些多糖适合用稀酸提取,并且能得到更高的提取率。但酸提法只在一些特定的植物多糖提取中占有优势,目前报道的并不多。而且即使有优势,在操作上还应严格控制酸度,因为酸性条件下可能引起多糖中糖苷键的断裂。 有些多糖在碱液中有更高的提取率,尤其是提取含有糖醛酸的多糖及酸性多糖。采用的稀碱多位为0.1mol/L氢氧化钠、氢氧化钾,为防止多糖降解,常通以氮气或加入硼氢化钠或硼氢化钾。同样,碱提优势也是因多糖类的不同而异。与酸提类似,碱提中碱的浓度也应得到有效控制,因为有些多糖在碱性较强时会水解。另外,稀酸、稀碱提取液应迅速中和或迅

多糖的分离纯化

多糖的提取和纯化 多糖的提取和纯化 摘要本文较详细地介绍了多糖的提取和纯化方法,为多糖的研究和生产提供参考依据。 关键词多糖;提取;纯化;活性炭 多糖(polysacharides,PS),又称多聚糖,是由10个以上的单糖通过苷键连接而成的,具有广泛生物活性的天然大分子化合物。它广泛分布于自然界高等植物、藻类、微生物(细菌和真菌)与动物体内。20世纪60年代以来,人们逐渐发现多糖具有复杂的、多方面的生物活性和功能[1]:(1)多糖可作为广谱免疫促进剂,具有免疫调节功能,能治疗风湿病、慢性病毒性肝炎、癌症等免疫系统疾病,甚至能抗AIDS病毒[2]。如甘草多糖具有明显的抗病毒和抗肿瘤作用[10],黑木耳多糖、银杏外种皮多糖和芦荟多糖可抗肿瘤和增强人体免疫功能[3-5]。 (2)多糖具有抗感染、抗放射、抗凝血、降血糖、降血脂、促进核酸与蛋白质的生物合成作用。如柴胡多糖具有抗辐射,增强免疫功能等生物学作用[6],麦冬多糖具有降血糖及免疫增强作用[7-8],动物黏多糖具有抗凝血、降血脂等功能[9]。(3)多糖能控制细胞分裂和分化,调节细胞的生长与衰老。如爬山虎多糖具有抗病毒和抗衰老作用[10],银杏外种皮粗多糖具有抗衰老、抗过敏、降血脂、止咳祛痰、减肥等功能[11]。 另外,多糖作为药物,其毒性极小,因而多糖的研究已引起人们极大的兴趣。由于多糖具有的生物活性与其结构紧密相关,而多糖的结构又是相当复杂的,所以在这一领域的研究相对缓慢。但人们在多糖的分离提取与纯化方面已做出了不少工作。 1. 多糖的提取[12] 1.1 热水浸提法: 1.1.1多糖提取条件的优选 根据文献报道[13]:影响热水浸提多糖的因素主要有提取时间、提取次数、溶剂体积、浸提温度、pH值、醇析浓度和植物颗粒大小等。在试验前对上述多种因素利用正交实验法做出优选,才能选出最佳提取方案。 1.1.2其步骤为:原料→粉碎→脱脂→粗提(2-3次)→吸滤或离心→沉淀→洗涤→干燥 首先除去表面脂肪。原料经粉碎后加入甲醇、乙醚、乙醇、丙酮或1:1的乙醇乙醚混合液,水浴加热搅拌或回流1-3小时,脱脂后过滤得到的残渣一般用水作溶剂(也有用氢氧化钾碱性水液、氯化钠水液、1%醋酸和1%苯酚或0.1-1M 氢氧化钠作为提取溶剂)提取多糖。温度控制在90-100℃,搅拌4-6小时,反复提取2-3次。得到的多糖提取液大多较粘稠,可进行吸滤。也可用离心法

磁珠法(多糖多酚)植物组织基因组DNA提取试剂盒

磁珠法多糖多酚植物组织基因组DNA提取试剂盒MagBeads Polysaccharide & Polyphenol Plant Genomic DNA Extraction Kit 【目录号】PTDE-6005、PTDE-6030; 【运输条件】2~25℃; 【保存条件】磁珠分散液、β-巯基乙醇2~8℃;蛋白酶K -20℃;其它组分室温保存; 【试剂盒组成】 【注意事项】 1. 使用前请检查裂解液(组分①)和结合液(组分②)是否出现结晶,如有结晶请置于 65℃温浴至重新溶解完全; 2. 初次使用全新试剂盒前,请按照结合液(组分②)标签标注量加入异丙醇,稀释备用; 3. 磁珠悬浮液(组分③)不可反复冻融或离心,使用前需充分摇匀; 4. 蛋白酶K(组分⑤)于-20℃长期保存,避免反复冻融;融化后4℃保存,并尽快使用; 5. 请仔细阅读本说明书,并按照操作指南建议操作。

【产品简介】 本试剂盒采用针对富含多糖多酚植物组织进行杂质去除的特殊磁珠,配合高性能缓冲液体系,可从各种富含多糖多酚植物组织样本中高质量的分离纯化基因组DNA。 特殊技术包埋的磁珠在特定条件下对核酸具有极强的亲和力,而当条件改变时,磁珠会释放所吸附的核酸,从而达到快速分离纯化核酸的目的。提取所得的基因组DNA产物片段大、纯度高、质量稳定可靠,尤其适合高通量仪器自动化提取,特别是本公司生产的各类型号自动化核酸提取仪或工作站。使用本试剂盒纯化所得核酸产物可适用于各种常规分子生物学下游实验,如:酶切、PCR、荧光定量PCR、文库构建、Southern杂交、芯片检测和高通量测序等。 【试剂盒说明】 【自备仪器及耗材】 研钵&研磨棒(或者研磨机、匀浆机)、水浴锅、涡旋混合仪、高速离心机、EP管(1.5mL 或2.0mL)、EP管配套用磁力架、核酸提取仪(仪器自动版操作步骤需准备)。 【自备试剂】 液氮、乙醇(80%, v/v)、异丙醇、RNase A溶液(100mg/mL,分散液10mM Tris-HCl, 1mM EDTA, pH值8.0)。 【仪器自动法版操作步骤】 该方法配合磁棒法核酸提取仪使用,以英芮诚ETP-300型全自动核酸提取仪为例,可同步完成32份植物样本提取工作。 1. 准备96孔板 注:1)每次吸取磁珠悬浮液前尽量摇晃均匀;2)为提高效率建议使用排枪。 2. 组织样本前处理和裂解 取适量(≤100mg)植物组织样本,液氮研磨至粉末状,尽量完全转移至EP管中。加入400μL 裂解液、0.8μL β-巯基乙醇和20μL蛋白酶K,涡旋振荡1~3min至混合均匀,呈云雾状。65℃温浴15min,每隔5~10min上下颠倒混匀一次。 注:1)若样本量大于100mg,但不超过400mg,需增加裂解液使用量,可按照每增加100mg组织样本增加150μL裂解液使用量,并延长裂解时间,其余试剂用量不变; 2)若样本个数较多,可预先将蛋白酶k、β-巯基乙醇和裂解液提前混合备用;

相关文档