文档库 最新最全的文档下载
当前位置:文档库 › 探究环境监测中的氨氮分析方法

探究环境监测中的氨氮分析方法

探究环境监测中的氨氮分析方法
探究环境监测中的氨氮分析方法

探究环境监测中的氨氮分析方法

摘要:氨氮是我国各级监测站点的必测项目之一,可从氨氮含量的多少推断出水体污染程度的重轻,可以说氨氮是我国水体环境监测的主要指标。水体中存在多种不同形态的氮化物,对它们进行合理的测定是考察水体是否被污染以及被污染程度的重要指标。随着社会的发展,人们生活水平不断提高,人们也逐渐意识到环境对人们的重要性,环保观念已深入人心,因此,氨氮的测定也得到更多人的关注。文章就水体中常用的氨氮测定方法及其特点、研究和应用以及今后我国氨氮测定方法的发展趋势进行了综合论述。

关键词:水体环境;氨氮测定;方法分析;发展趋势

1 水环境中氮的形态

氮普遍存在于水环境中,且存在形式主要有无机氮和有机氮两种,而无机氮主要包括氨氮、硝态氮和亚硝态氮。然而,氨氮、硝酸盐可被某些水生物所吸收,因此,当其在水中的含量超过一定的量就出现了我们常看到的现象——水体的富营养化。亚硝酸盐则是一种常见的强致癌物质,对人体危害极大。在有氧情况下,氨可被某些好氧微生物首先转化为亚硝酸盐,进而转化为硝酸盐;而在无氧环境中,一些厌氧微生物亦可将硝酸盐首先还原为亚硝酸盐,继而再被还原为氨。由此可见,在一定的环境条件下,水体中不同形态的氮可相互发生转化,是构成氮循环的重要组成部分。

目前,人们要对水环境的污染情况进行了解,可以直接监测水体中氮元素存在的形式和含量来进行初步的评定和了解,一般地,人们将水中氨氮的含量超过0.06 mg/L定为水体已被污染。水环境中的氮污染早已受到人们的关注,因其来源广泛,(例如农田的氮肥、人们日常生活的排泄物和垃圾等)对水质破坏性强。当有机氮污染物已完全分解时则会出现水体中仅含有硝酸盐而不含有其他氮类化合物的情况;当某水体中不但有硝酸盐而且又出现各种氮化合物的情况,则可以初步断定该水体受到了污染,这是一种简单易行的监测水体污染的方式。因此,对水体中所含氮的情况进行监测和分析,对水环境质量管理和监测非常重要。

2 水样的预处理

由于水质的不同,而且水体中所含的物质繁杂多样,因此,水样处理的方法也多种多样,而且根据水体的不同、测量目标的不同,应该选择不同的水样处理方式。比如,要对水样中的无机元素进行测定,就必须先提取相应的无机化合物,除去水体中的有机物,尽量使无机元素所处环境单一,常用的方法是消除,包括:硝酸消解法、硫酸与高锰酸钾消解法、碱分解法、多元消解法等,下面提出一些水样的处理技巧。

对于浓度很高的污染水体,难以对水中的某元素和物质进行提取和监测,然而苏爱梅提出一个很好的方法,可以将污水先按照倍数稀释,再对稀释后的溶液进行监测再反推出原始水样的元素浓度含量。

(完整版)环境监测系统解决方案

环境监测系统解决方案 一、系统概要 本综合管控云平台是一套基于云计算的物联网综合管控云服务平台。平台可适配于各种物联网应用系统,实时监控管理接入设备的状态与运行情况,并对设备进行远程操作,通过云平台对接物联网设备做到精确感知、精准操作、精细管理,提供稳定、可靠、低成本维护的一站式云端物联网平台。环境监测系统通过对现场温度、湿度、光照、风向、风速、PM2.5、气压等参数的数据采集,将参数数据远传至物联网云平台,实现现场各个设备的数据实时监测,用户可以通过电脑网页或是手机app实时查看,可以自由设置各个参数的标准值上下限,如果数据超限可以给相关的工作人员发送短信或是微信报警提醒,做到提前预警,避免造成不必要的损失,实现在远程就能值守现场设备。 二、拓扑图 现场传感器数据通过物联网中继器上传云平台,客户通过电脑网页或是手机app可以实时监控现场设备数据。

三、系统构成 3.1系统登陆 ①PC端登陆: 本系统采用B/S架构,PC端用户只需打开浏览器通过IP地址进入管理系统,凭管理员分配的用户名密码进行登陆管理。(登陆界面可定制企业logo及信息)如下图: ②手机端登陆: 用户可在任何有本地局域网信号的地方,通过IOS或Android版本APP登陆系统,登陆账号与PC端账号相同。IOS 版本APP请在Apple Store搜索“易云系统”进行下载,安卓版本请在“易云物联网系统”公众号或PC端系统中扫描二维码进行下载。 3.2数据监控 能够便捷监控实时数据,并且可通过数据变化自动启停其他设备,各项数据可用数值、图片、文字分别展示,并通过短信等功能向用户发送报警信息。另外,可设定不同的监控点,更直观的监测每个测温点实时情况,模拟真实的设备位置分布。如下图:

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

水样氨氮的测定方法

氨氮的测定 氨氮的测定方法,通常有纳氏比色法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。以下是纳氏试剂比色法的测定方法。 一、纳氏试剂比色法的原理 碘化钾和碘化汞的碱性溶液与氨反应生成淡红棕色胶态化和物,其色度与氨氮含量成正比,通常可在410-425nm范围内测其吸光度,计算其含量。 本法最低检出浓度为0.025mg/L(光度法),测定上限为2 mg/L。采用目视比色法,最低检出浓度为0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。 二、仪器 1、带氮球的定氮蒸馏装置:500 mL凯氏烧瓶、氮球、直形冷凝 管。 2、分光光度计 3、PH计 三、试剂 做次实验配制试剂均应用无氨水配制。 1、无氨水。配制可选用以下任意一种方法制备: (1)蒸馏法:每升蒸馏水中加0.1mL硫酸,在全玻璃蒸馏器中重蒸

馏,弃去50mL初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。 (2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 2、1mol/L的盐酸溶液 3、1mol/L的氢氧化钠溶液 4、轻质氧化镁:将氧化镁在500℃下加热,以除去碳酸盐。 5、0.05%溴百里酚蓝指示计(PH6.0-7.6)。 6、防沫剂:如石蜡碎片 7、吸收剂:①硼酸溶液:称取20g硼酸溶于水,稀释至1L。②0.01mol/L硫酸溶液。 8、纳氏试剂。可选用下列方法之一制备: (1)称取20g碘化钾溶于约25mL水中,边搅拌边分次加入少量的二氯化汞(HgCl2)结晶粉末(约10g),至出现朱红色不易降解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取16g氢氧化钠,溶于50mL水中,充分冷却至室温。 另称取7g碘化钾和碘化汞溶于水,然后将次溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100mL,贮于聚乙烯瓶中,密塞保存。

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

废水中氨氮测定方法

氨氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的p H值。当p H值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至p H<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节p H至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。

大气环境质量监测分析方法

【tips】本文由李雪梅老师精心收编,值得借鉴。此处文字可以修改。 大气环境质量监测分析方法 大气中的有害物质是多种多样的,不同地区污染类型和排放污染物种类不尽相同,因此,在进行大气质量评价时,应根据各地的实际情况确定需要检测的大气环境指标。 关键字:大气环境质量监测分析方法 大气中的有害物质是多种多样的,不同地区污染类型和排放污染物种类不尽相同,因此,在进行大气质量评价时,应根据各地的实际情况确定需要检测的大气环境指标。 大气中常见的污染物有总悬浮颗粒物、降尘、可吸入颗粒物、二氧化硫、氮氧化物、总烃、铅、氟化物、臭氧和苯并[a]芘。 颗粒物质的测定:颗粒物质是大气污染物中数量最大、成分复杂、性质多样、Σ害较大的一种,它本身可以是有毒物质,还可以是其他有毒有害物质在大气中的运载体、催化剂或反应床。在某些情况下,颗粒物质与所吸附的气态或蒸气态物质结合,会产生比单个组分更大的协同毒性作用。所以,对颗粒物质的研究是控制大气污染的一个重要内容.大气中颗粒物质的检测项目有:总悬浮颗粒物的测定、可吸入颗粒物浓度及粒度分布的测定、降尘量的测定、颗粒中化学组分的测定。 其中,颗粒物浓度的测定最常用的是重量法,原理是:使一定体积的空气进入切割器,将大于某一粒径的微粒分离,小于这一粒径的微粒随着气流经分离器的出口被阻留在已恒重的滤膜上。根据采样前后滤膜的重量差及采样体积,计算出颗粒物浓度,以mg/m3表示(m3指标准状况下)。 二氧化硫的测定:大气中的含硫污染物主要有H2S、SO2、SO3、CS2、H2SO4和各种硫酸盐。他们主要来源于ú和石油燃料的燃烧、含硫矿石的冶炼、硫酸等化工产品生产排放的废气。

废水中氨氮测定方法()

氨氮 氨氮(NH 3-N)以游离氨(NH 3 )或铵盐(NH 4 +)形式存在于水中,两者的组成比取决 于水的p H值。当p H值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至p H<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述

加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。 (2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。(3)硫酸ρ=1.84。 步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和0.1—0.2ml 25%氢氧化钠溶液,调节p H至10.5左右,混匀。放置使沉淀,用经无氨水充分洗涤过的中速滤纸过滤,弃去初滤液20ml。 (一)纳氏试剂光度法 GB7479--87概述 1.方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2.干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

氨氮测定方法

氨氮 氮是有好几个指标:氨氮,总氮,硝酸盐氮,亚硝酸盐氮,凯式氮等 氨氮比较简便准确,精密度尚可的就是纳氏试剂比色法,不过一般根据水样浑浊程度,确定采用哪种预处理方法,一般较浑浊的用蒸馏法预处理,较清洁的用絮凝沉降预处理。预处理过的水样,测定氨氮一般用纳氏试剂法测定,含量高点也 可以用滴定法。都是国标。 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 1.方法的选择 氨氮的测定方法,通常有纳氏比色法、苯酚-次氯酸盐(或水杨酸-次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及浑浊等干扰测定,需做相应的预处理,苯酚-次氯酸盐比色法具灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法通常不需要对水样进行预处理和具测

量范围宽等优点。氨氮含量较高时,尚可采用蒸馏﹣酸滴定法。 2.水样的保存 水样采集在聚乙烯瓶或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至pH<2,于2—5℃下存放。酸化样品应注意防止吸收空气中的氮而遭致污染。 预处理 水样带色或浑浊以及含其它一些干扰物质,影响氨氮的测定。为此,在分析时需做适当的预处理。对较清洁的水,可采用絮凝沉淀法,对污染严重的水或工业废水,则以蒸馏法使之消除干扰。 (一)絮凝沉淀法 概述 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤去除颜色和浑浊等。 仪器 100ml具塞量筒或比色管。 试剂 (1)10%(m/V)硫酸锌溶液:称取10g硫酸锌溶于水,稀释至100ml。(2)25%氢氧化钠溶液:称取25g氢氧化钠溶于水,稀释至100ml,贮于聚乙烯瓶中。 (3)硫酸ρ=。 步骤 取100ml水样于具塞量筒或比色管中,加入1ml 10%硫酸锌溶液和— 25%

环境监测课程教学大纲..

环境监测课程教学大纲 课程名称:环境监测课程性质:XXX 总学时:64 学分:4 适用专业:环境工程开课单位:XXX 先修课程:无机化学、分析化学、有机化学、环境微生物学 一、课程性质、目的 环境监测是环境科学、环境工程、资源与环境、给水与排水工程等相关专业本科生的一门专业基础课,是环境科学与工程学科中具有综合性、实践性、时代性和创新性的一门重要的理论与方法课程。本课程是环境科学、环境工程和环境管理各领域的基础,是环境保护和环境科学研究不可缺少的,对环境保护的各个方面具有重大影响。 按监测对象学习,本课程主要讲述水和废水监测、大气和废气监测、固体废物监测、土壤污染监测、生物污染监测、噪声监测、环境放射性监测等内容。按测定项目学习,包括汞、镉、铬、铅、砷等重金属,氰化物、氟化物、硫化物、含氮化合物,水中溶解氧、生化需氧量、化学需氧量、酚类、油类,大气中SO2、NO X、TSP、PM10、CO、O3、烃类等气态污染物,光化学烟雾等二次污染物,颗粒物,多环芳烃类、二噁英类等重要有机污染物,以及酸雨项目监测等。按监测程序学习,本课程主要讲述各类环境监测的方案设计,优化布点、样品的采集、运输及保存,样品的预处理及测定,数据的处理及信息化,监测过程的质量保证等的内容。 按监测方法学习,主要讲述化学分析、仪器分析以及生物方法;主要为标准方法和正在推广的新的常规监测技术,还介绍一些行之有效的简易监测技术,及迅速发展的连续自动监测技术等内容。 本课程的教学目的是通过对上述内容的理论教学与实践教学,使学生掌握环境监测的基本概念、基本原理及相关法规,监测方法的科学原理和技术关键、各类监测方法的特点及适用范围等一系列理论与技术问题;掌握监测方案设计,优化布点、样品的采集、运输及保存,样品的预处理和分析测定、监测过程的质量保证、数据处理与分析评价的基本技能;了解环境监测新方法、新技术及其发展趋势。培养学生今后在监测数据收集、整理和评价等方面达到独立开展工作的能力,培养学生具有综合应用多种方法处理环境监测实践问题的能力,进一步培养与时俱进、发展新方法和新技术的创新思维和创新能力。为后期课程和将来的环境科学与工程研究、环境保护工作奠定良好的基础。 二、课程主要知识点及基本要求 第一章绪论 (一)目的与要求 1.了解环境监测的目的及分类。 2.掌握环境监测的一般过程或程序。 3.掌握优先污染物和优先监测的概念。 4.了解制订环境标准的原则及制订环境标准的作用、分类、分级情况。 5.掌握大气、水、土壤等最新的环境质量标准及其应用范围;了解各类污染物的控制或

物联网智能环境监测系统

《传感器与物联网技 术》 综合报告 题目:智能环境与物联网技术 专业: 学号: 姓名: 提交日期:二О一六年六月

摘要 环境与所有人的日常生活都息息相关,而物联网技术也随着计算机技术,信息技术,以及智能技术的发展越来越多的开始被应用到我们的日常生活中来。本文主要针对物联网技术应用到环境监测中的相关问题进行了分析与探讨。 智能环境利用各种传感器技术,移动计算,信息融合等技术对空气环境,海洋环境,河,湖水质,生态环境,城市环境质量进行全面有效地监控,通过构建全国各地环境质量的检测实现对全国范围内的环境进行实时在线监控和综合分析,建立全国性的污染源信息综合管理系统,为采取环境治理措施和污染预警提供更客观,有效的依据。 关键字:智能环境物联网技术传感器

目录 1引言 (4) 1.1 物联网简介 (4) 1.2智能环境研究的目的和背景 (4) 2需求分析 (4) 2.1智能环境功能需求分析 (5) 2.2各子系统需求分析 (5) 2.2.1大气污染监测子系统需求分析 (5) 2.2.2海洋污染监测子需求分析 (5) 2.2.3水质监测子系统需求分析 (5) 2.2.4生态环境检测子系统需求分析 (5) 2.2.5城市环境检测子系统需求分析 (5) 2.3其他非功能需求分析 (6) 2.3.1可靠性需求 (6) 2.3.2开放性需求 (6) 2.3.3可扩展性需求 (6) 2.3.4安全性需求 (6) 2.3.5应用环境需求 (6) 3详细设计 (6) 3.1各环境监测子系统解决方案 (6) 3.2智能环境监测系统结构图 (5) 3.2.1各子系统环境监测拓扑结构图 (6) 4结论 (12) 参考文献 (13)

高浓度氨氮废水处理方法与工艺

高浓度氨氮废水处理 废水处理, 高浓度废水处理, 高浓度 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L 以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

污水氨氮的测定方法

氨氮的测定方法 氨氮的测定方法,通常有纳氏比色法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏比色法具有操作简便、灵敏等特点,但钙、镁、铁等金属离子、硫化物、醛、酮类,以及水中色度和混浊等干扰测定,需要相应的预处理。以下是纳氏试剂比色法的测定方法。 一、纳氏试剂比色法的原理 碘化钾和碘化汞的碱性溶液与氨反应生成淡红棕色胶态化和物,其色度与氨氮含量成正比,通常可在 410-425nm 范围内测其吸光度,计算其含量。 本法最低检出浓度为 0.025mg/L(光度法),测定上限为 2 mg/L。采用目视比色法,最低检出浓度为 0.02mg/L。水样作适当的预处理后,本法可适用于地面水、地下水、工业废水和生活污水。 二、仪器 1、带氮球的定氮蒸馏装置:500 mL 凯氏烧瓶、氮球、直形冷凝管。 2、分光光度计 3、 PH 计 三、试剂 做次实验配制试剂均应用无氨水配制。 1、无氨水。配制可选用以下任意一种方法制备: (1)蒸馏法:每升蒸馏水中加 0.1mL 硫酸,在全玻璃蒸馏器中重蒸馏,弃去 50mL 初馏液,接取其余馏出液于具塞磨口的玻璃瓶中,密塞保存。 (2)离子交换法:使蒸馏水通过强酸性阳离子交换树脂柱。 2、1mol/L 的盐酸溶液 3、1mol/L 的氢氧化钠溶液 4、轻质氧化镁:将氧化镁在 500℃下加热,以除去碳酸盐。

5、0.05%溴百里酚蓝指示计(PH6.0-7.6)。 6、防沫剂:如石蜡碎片 7、吸收剂:①硼酸溶液:称取 20g 硼酸溶于水,稀释至 1L。② 0.01mol/L 硫酸溶液。 8、纳氏试剂。可选用下列方法之一制备: (1)称取 20g 碘化钾溶于约 25mL 水中,边搅拌边分次加入少量的二氯化汞(HgCl 2)结晶粉末(约 10g),至出现朱红色不易降解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加氯化汞溶液。 另称取 60g 氢氧化钾溶于水,并稀释至 250mL,冷却至室温后,将上述溶液徐徐注入氢氧化钾溶液中,用水稀释至 400mL,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取 16g 氢氧化钠,溶于 50mL 水中,充分冷却至室温。另称取 7g 碘化钾和碘化汞溶于水,然后将次溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至 100mL,贮于聚乙烯瓶中,密塞保存。 9、酒石酸钾钠溶液:称取 50g 酒石酸钾钠(KNaC 4H 4 O 6 .4H 2 O)溶于100mL 水中,加热煮 沸以除去氨,放冷,定容至 100mL。 10、铵标准贮备溶液:称取 3.819g 经 100℃干燥过的氯化氨(NH 4 Cl)溶于水中,移入 1000mL 容量瓶中,稀释至标线。从溶液每毫升含1.00mg 氨氮。 11、铵标准使用溶液:移取5.00 mL 铵标准贮备溶液于500mL 容量瓶中,用水稀释至标线。此溶液每毫升含0.01mg 氨氮。 四、测定步骤 1、水样预处理:取 250mL 水样(如氨氮含量较高,可取适量并加水至 250mL,使氨氮含量不超过 2.5mg),移入凯氏烧瓶中,加数滴溴百里酚蓝指示液,用氢氧化钠溶液或盐酸溶液调节至 PH 为 7 左右。加入 0.25g 轻质氧化镁和数粒玻璃珠,立即连接氮球和冷凝管,导管下端插入吸收液液面下。加热蒸馏,至馏出液达 200mL 时,停止蒸馏。定容至 250mL。 采用酸滴定法或纳氏比色法时,以 50mL 硼酸溶液为吸收剂;采用水扬酸—次氯酸盐比色法时,改用 50mL0.01mol/L 硫酸溶液为吸收剂。 2、标准曲线的绘制:吸取 0、0.50、1.00、3.00、5.00、7.00 和10.00mL 铵标准使用

生态环境监测网络建设方案

生态环境监测网络建设方案 生态环境监测是生态环境保护的基础,是生态文明建设的重要支撑。目前,我国生态环境监测网络存在范围和要素覆盖不全,建设规划、标准规范与信息发布不统一,信息化水平和共享程度不高,监测与监管结合不紧密,监测数据质量有待提高等突出问题,难以满足生态文明建设需要,影响了监测的科学性、权威性和政府公信力,必须加快推进生态环境监测网络建设。 一、总体要求 (一)指导思想。全面贯彻落实党的十八大和十八届二中、三中、四中全会精神,按照党中央、国务院决策部署,落实《中华人民共和国环境保护法》和《中共中央国务院关于加快推进生态文明建设的意见》要求,坚持全面设点、全国联网、自动预警、依法追责,形成政府主导、部门协同、社会参与、公众监督的生态环境监测新格局,为加快推进生态文明建设提供有力保障。 (二)基本原则。 明晰事权、落实责任。依法明确各方生态环境监测事权,推进部门分工合作,强化监测质量监管,落实政府、企业、社会责任和权利。 健全制度、统筹规划。健全生态环境监测法律法规、标准和技术规范体系,统一规划布局监测网络。 科学监测、创新驱动。依靠科技创新与技术进步,加强监测科研和综合分析,强化卫星遥感等高新技术、先进装备与系统的应用,提高生态环境监测立体化、自动化、智能化水平。 综合集成、测管协同。推进全国生态环境监测数据联网和共享,开展监测大数据分析,实现生态环境监测与监管有效联动。 (三)主要目标。到2020年,全国生态环境监测网络基本实现环境质量、重点污染源、生态状况监测全覆盖,各级各类监测数据系统互联共享,监测预报预警、信息化能力和保障水平明显提升,监测与监管协同联动,初步建成陆海统筹、天地一体、上下协同、信息共享的生态环境监测网络,使生态环境监测能力与生态文明建设要求相适应。 二、全面设点,完善生态环境监测网络 (四)建立统一的环境质量监测网络。环境保护部会同有关部门统一规划、整合优化环境质量监测点位,建设涵盖大气、水、土壤、噪声、辐射等要素,布局合理、功能完善的全国环境质量监测网络,按照统一的标准规范开展监测和评价,客观、准确反映环境质量状况。

氨氮废水处理

氨氮废水处理 2氨氮废水的危害 水环境中存在过量的氨氮会造成多方面的有害影响。 (1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43g,氧化成NO3--N耗氧4.57g。 (2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重后果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。 (3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。 1氨氮废水的来源 含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工

HJ水质氨氮的测定纳氏试剂分光光度法

氨氮的测定纳氏试剂分光光度法 目次 言 ... III 1适用范 围 .......... . (1) 2方法原 理 .......... . (1) 3干扰及消 除 .......... . (1) 试剂和材4 料 .......... . (1) 5仪器和设备

3 5 6 品 ..................................... ..3 7 骤 ..... 分 (4) 析 步 8 结 果 计 算 ..... (4) 9 准 确 度 和 精 密 度 .. ..5 10 质 量 保 证 和 质 量 控 制 ..................................... 为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》 ,保

护环境,保障人体健康,规范水中氨氮的监测方法,制定本标准。 本标准规定了测定水中氨氮的纳氏试剂分光光度法。 本标准是对《水质铵的测定纳氏试剂比色法》(GB7479-87)的修订。本标准首次发布于1987 年,原标准起草单位是江苏省环境监测中心站,本次为首次修订。本次修订的主要内容如下: ——标准的名称由《水质铵的测定纳氏试剂比色法》改为《水质氨氮的测定纳氏试剂分光光度法》。 ――增加了比色皿的光程(10 mm^20 mm)降低了方法的检出限,扩大了方法 的适用范围。明确规定了方法的测定下限和测定上限。 ――取消了目视比色法。 ――规范和调整了标准文本的结构和格式。 ――在主要试剂配制和样品预处理的关键步骤增加了注意事项。 ――合并了结果的计算公式。 自本标准实施之日起,原国家环境保护局1987 年 3 月14日批准、发布的国家 环境保护标准《水质铵的测定纳氏试剂比色法》(GB7479-87)废止。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:沈阳市环境监测中心站 本标准环境保护部2009年12月31日批准。

工业废水去除氨氮的方法

工业废水去除氨氮的方法 根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。 1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N 氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。

折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg 的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HClO+H++Cl- NH4++HClO→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进 行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。 2.选择性离子交换化去除氨氮 离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子

城市污水中氨氮的测定方法

城市污水中氨氮的测定方法 —N)以游离氮(NH3)或(NH4+)形式存在于水中,两者的组氨氮(NH 3 成比取决于水的PH值和水温。当PH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐,甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状态。 鱼类对水中氨氮比较敏感,当氨氮含量高时会导致鱼类死亡。 1、方法选择 氨氮的测定方法,通常有纳氏比色法、气相分子吸收法、苯酚—次氯酸盐(或水杨酸—次氯酸盐)比色法和电极法等。纳氏试剂比色法具操作简便、灵敏等特点,水中钙、镁和铁等金属离子、硫化物、醛和酮类、颜色,以及混浊等均干扰测定,需作相应的预处理。苯酚一次氯酸盐比色法具有灵敏、稳定等优点,干扰情况和消除方法同纳氏试剂比色法。电极法具有通常不需要对水样进行预处理和测量范围宽等优点,但电极的寿命和再现性存在一些问题。气相分子吸收法比较简单,使用专用仪器或原子吸收仪都可以达到良好的效果。氨氮含量较高时,可采用蒸馏—酸滴定法。 2、水样保存 水样采集在聚乙烯或玻璃瓶内,并应尽快分析,必要时可加硫酸将水样酸化至PH<2,于2~50C下存放。酸化样品应注意防止吸收空气中的氨而沾污。 (一)水样的预处理 水样带色或浑浊以及含其他一些物质,影响氨氮的测定。为此,在分析时需作适当的预处理。对较清洁的水,可采用絮凝沉淀法;对污染严重的水或工业废水,则用蒸馏法消除干扰。 絮凝沉淀法 加适量的硫酸锌于水样中,并加氢氧化钠使呈碱性,生成氢氧化锌沉淀,再经过滤除去颜色和浑浊等。

环境在线监测期末试卷答案版

一、名词解释(10分) 1. 数据交换:在多个数据终端设备(DTE)之间,为任意两个终端设备建立数据通信临时互连通路的过程称为数据交换。 2.CEMS系统:CEMS是英文Continuous Emission Monitoring System的缩写,是指对大气污染源排放的气态污染物和颗粒物进行浓度和排放总量连续监测并将信息实时传输到主管部门的装置,被称为“烟气自动监控系统”,亦称“烟气排放连续监测系统”或“烟气在线监测系统”。 3. 数据的有效性审核:自动监测数据有效性审核是指环保部门按照国家发布的标准、规范等对自动监测设备定期进行的监督考核,确定自动监测设备能否正常运行。国控企业污染源自动监测设备在正常运行状态下所提供的实时监测数据,即为通过有效性审核的污染源自动监测数据。 4. 零气:零气是指调整气体分析仪最小刻度的气体,以及进入分析仪时显示为零的气体。零气应不含有待侧成分或干扰物质,但可以含有与测定无关的成分。一般使用不含待测成分的高纯氮或清洁空气作为零气。零位调整就是使用零气调节分析仪的零点刻度。 8.零点漂移:采用零点校正液为试样连续测试,水污染源在线监测仪器的指示值在一定时间内变化的幅度。 9.量程漂移:采用量程校正液为试样连续测试,相对于水污染源在线监测仪器的测定量程,仪器指示值在一定时间内变化的幅度。 二、填空题(20分) 1. 废水在线自动监测系统是一套以在线自动分析仪器为核心,运用现代_现代传感器技术__、_自动测量技术__、_自动控制技术__、_计算机应用技术___技术及相关的专用分析软件和通讯网络所组成的一个综合性自动监测数据的采集系统。 2. 水质自动监测网国家网由__网络中心站_和_水质自动监测子站__组成。网络中心站设在_中国环境监测总站__,各水质自动监测子站委托_地方环境监测站(简称托管站)__ 负责日常运行和维护。为保证自动监测的数据质量,对在线监测系统必须定期进行_仪器校准_。 3. 环境空气自动监测系统监测项目包括__ SO2、_NO x、PM10 __、_O3 _。水质自动监测站的监测项目包括_水温_、_ pH、_溶解氧(DO)、_电导率_、_浊度__、_高锰酸盐指数__、_总有机碳(TOC) _氨氮___。湖泊水质自动监测站的监测项目还包括_总氮__和_总磷_ 。 4.数据交换操作包括__数字通道___、__模拟通道___、__开关量通道___。数据传输方式有__无线传输方式___、__有线传输方式___。(以太网方式) 5.气态污染物CEMS测量方法有_直接抽取法_、_稀释取样法__、_直接测量法_。 6.CEMS管理系统的参数设置的的内容有__标准曲线参数_、_速度场系数_、_皮托管系数_、_过量空气系数(a)_、_烟道截面积_、_污染物浓度和总量报表__。 7.在线自动监测仪器资质证书包括_中华人民共和国计量器具制造许可证_、_进口仪器具备国家质量技术监督部门的计量器具型式批准证书_、_环境保护部环境监测仪器检测中心适应性检测报告_、_具备国家环境保护产品认证证书(限国家已开展的认证产品)_。 8.在线监测系统包括_数据通讯平台系统_、_监测终端(污染源)仪器集成系统_、_运营维护系统(公司)_系统三部分。(空气质量在线监测系统、水质在线检测系统、污染源在线检测系统) 三、选择题(20分) 1. 通常连接大气自动监测仪器和采气管的材质为(B) A 玻璃B聚四氟乙烯 C 橡胶管 D 氯乙烯管

相关文档
相关文档 最新文档